Skip to content
2000
Volume 18, Issue 3
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Background

Phosphorylated α-Synuclein (α-Syn) is present in relatively small levels in normal human brains, but nearly all of the α-Syn in the Lewy bodies (LBs) that collect in the nigrostriatal region in the brain of Parkinson's disease patients is phosphorylated on serine 129 (pS129). Earlier studies suggested that mimicking phosphorylation at S129 may have an inhibitory effect on α-Syn aggregation and thus control α-Syn neuropathology. Although phosphorylation at S129 is associated with α-Syn inclusion in synucleinopathies, the mechanisms by which this post-translational modification (PTM) influences aggregation and contributes to LB illness in the brain are yet to be understood.

Objective

This research aims to study the effect of phosphorylation (pS129) on the conformational dynamics of membrane-bound α-Syn using Molecular Dynamics (MD) simulations.

Methods

Using MD simulations, this computational study has demonstrated the effect of PTM on the conformational dynamics of pS129 α-Syn and its lipid membrane association. To better understand the impact of pS129 on the aggregation of the α-Syn structure monomer with recent atomic details, we have examined the MD trajectories, conducted a salt-bridge interaction study, Principal Component Analysis (PCA), and intra and inter-molecular hydrogen bond analysis.

Results

The conformational structure of pS129 α-Syn was observed from the MD trajectory analysis to be stable throughout the simulation, with higher compactness and reduced flexibility. The stability of the structure of pS129 α-Syn was also evaluated by 2-D and 3-D principal component analysis followed by a free energy landscape plot showing the global minima. The conformational snapshots and Ramachandran plot showed the absence of α-strands in the α-Syn's Non-Amyloid Component Region (NAC) (71–82), which is necessary for aggregate formation.

Conclusion

Further, the intermolecular hydrogen bonds analysis indicates that the NAC region is not embedded into the lipid bilayer and has limited association with the other regions of the protein. Our findings reveal salient features of pS129 modifications that inhibit α-Syn aggregation.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968309465240930050924
2024-10-16
2025-04-04
Loading full text...

Full text loading...

References

  1. CohenP. The origins of protein phosphorylation.Nat. Cell Biol.200245E127E13010.1038/ncb0502‑e12711988757
    [Google Scholar]
  2. OchoaD. JarnuczakA.F. ViéitezC. GehreM. SoucherayM. MateusA. KleefeldtA.A. HillA. Garcia-AlonsoL. SteinF. KroganN.J. SavitskiM.M. SwaneyD.L. VizcaínoJ.A. NohK.M. BeltraoP. The functional landscape of the human phosphoproteome.Nat. Biotechnol.202038336537310.1038/s41587‑019‑0344‑331819260
    [Google Scholar]
  3. ManningG. WhyteD.B. MartinezR. HunterT. SudarsanamS. The protein kinase complement of the human genome.Science200229856001912193410.1126/science.107576212471243
    [Google Scholar]
  4. CohenP. The structure and regulation of protein phosphatases.Annu. Rev. Biochem.198958145350810.1146/annurev.bi.58.070189.0023212549856
    [Google Scholar]
  5. NeedhamE.J. ParkerB.L. BurykinT. JamesD.E. HumphreyS.J. Illuminating the dark phosphoproteome.Sci. Signal.201912565eaau864510.1126/scisignal.aau864530670635
    [Google Scholar]
  6. KrauseD.S. Van EttenR.A. Tyrosine kinases as targets for cancer therapy.N. Engl. J. Med.2005353217218710.1056/NEJMra04438916014887
    [Google Scholar]
  7. ZhangJ. YangP.L. GrayN.S. Targeting cancer with small molecule kinase inhibitors.Nat. Rev. Cancer200991283910.1038/nrc255919104514
    [Google Scholar]
  8. FujiwaraH. HasegawaM. DohmaeN. KawashimaA. MasliahE. GoldbergM.S. ShenJ. TakioK. IwatsuboT. α-Synuclein is phosphorylated in synucleinopathy lesions.Nat. Cell Biol.20024216016410.1038/ncb74811813001
    [Google Scholar]
  9. AndersonJ.P. WalkerD.E. GoldsteinJ.M. de LaatR. BanducciK. CaccavelloR.J. BarbourR. HuangJ. KlingK. LeeM. DiepL. KeimP.S. ShenX. ChatawayT. SchlossmacherM.G. SeubertP. SchenkD. SinhaS. GaiW.P. ChilcoteT.J. Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic Lewy body disease.J. Biol. Chem.200628140297392975210.1074/jbc.M60093320016847063
    [Google Scholar]
  10. KahleP.J. NeumannM. OzmenL. HaassC. Physiology and pathophysiology of α-synuclein. Cell culture and transgenic animal models based on a Parkinson’s disease-associated protein.Ann. N. Y. Acad. Sci.20009201334110.1111/j.1749‑6632.2000.tb06902.x11193173
    [Google Scholar]
  11. PanugantiV. RoyI. Oligomers, fibrils and aggregates formed by alpha-synuclein: Role of solution conditions.J. Biomol. Struct. Dyn.202240104389439810.1080/07391102.2020.185672133292065
    [Google Scholar]
  12. McFarlandN.R. FanZ. XuK. SchwarzschildM.A. FeanyM.B. HymanB.T. McLeanP.J. α-synuclein S129 phosphorylation mutants do not alter nigrostriatal toxicity in a rat model of Parkinson disease.J. Neuropathol. Exp. Neurol.200968551552410.1097/NEN.0b013e3181a24b5319525899
    [Google Scholar]
  13. Azeredo da SilveiraS. SchneiderB.L. Cifuentes-DiazC. SageD. Abbas-TerkiT. IwatsuboT. UnserM. AebischerP. Phosphorylation does not prompt, nor prevent, the formation of α-synuclein toxic species in a rat model of Parkinson’s disease.Hum. Mol. Genet.200918587288719074459
    [Google Scholar]
  14. KarampetsouM. ArdahM.T. SemitekolouM. PolissidisA. SamiotakiM. KalomoiriM. MajbourN. XanthouG. El-AgnafO.M.A. VekrellisK. Phosphorylated exogenous alpha-synuclein fibrils exacerbate pathology and induce neuronal dysfunction in mice.Sci. Rep.2017711653310.1038/s41598‑017‑15813‑829184069
    [Google Scholar]
  15. RamalingamN. JinS.X. MoorsT.E. OrnelasL.F. ShimanakaK. LeiS. CamH.P. WatsonA.H. BrontesiL. DingL. HacibalogluD.Y. JiangH. ChoiS.J. KanterE. LiuL. BartelsT. NuberS. SulzerD. MosharovE.V. ChenW.V. LiS. SelkoeD.J. DettmerU. Dynamic physiological α-synuclein S129 phosphorylation is driven by neuronal activity. npj.Parkinsons Dis.202394
    [Google Scholar]
  16. ReeR. VarlandS. ArnesenT. Spotlight on protein N-terminal acetylation.Exp. Mol. Med.201850711310.1038/s12276‑018‑0116‑z30054468
    [Google Scholar]
  17. WaxmanE.A. MazzulliJ.R. GiassonB.I. Characterization of hydrophobic residue requirements for α-synuclein fibrillization.Biochemistry200948409427943610.1021/bi900539p19722699
    [Google Scholar]
  18. FuscoG. De SimoneA. GopinathT. VostrikovV. VendruscoloM. DobsonC.M. VegliaG. Direct observation of the three regions in α-synuclein that determine its membrane-bound behaviour.Nat. Commun.201451382710.1038/ncomms482724871041
    [Google Scholar]
  19. ChandraS. ChenX. RizoJ. JahnR. SüdhofT.C. A broken α -helix in folded α -Synuclein.J. Biol. Chem.200327817153131531810.1074/jbc.M21312820012586824
    [Google Scholar]
  20. SneadD. EliezerD. Alpha-synuclein function and dysfunction on cellular membranes.Exp. Neurobiol.201423429231310.5607/en.2014.23.4.29225548530
    [Google Scholar]
  21. DikiyI. EliezerD. Folding and misfolding of alpha-synuclein on membranes.Biochim. Biophys. Acta Biomembr.2012181841013101810.1016/j.bbamem.2011.09.008
    [Google Scholar]
  22. PfefferkornC.M. JiangZ. LeeJ.C. Biophysics of α-synuclein membrane interactions.Biochim. Biophys. Acta Biomembr.20121818216217110.1016/j.bbamem.2011.07.032
    [Google Scholar]
  23. StewartT. SossiV. AaslyJ.O. WszolekZ.K. UittiR.J. HasegawaK. YokoyamaT. ZabetianC.P. LeverenzJ.B. StoesslA.J. WangY. GinghinaC. LiuC. CainK.C. AuingerP. KangU.J. JensenP.H. ShiM. ZhangJ. Phosphorylated α-synuclein in Parkinson’s disease: Correlation depends on disease severity.Acta Neuropathol. Commun.201531710.1186/s40478‑015‑0185‑325637461
    [Google Scholar]
  24. WangY. ShiM. ChungK.A. ZabetianC.P. LeverenzJ.B. BergD. SrulijesK. TrojanowskiJ.Q. LeeV.M.Y. SiderowfA.D. HurtigH. LitvanI. SchiessM.C. PeskindE.R. MasudaM. HasegawaM. LinX. PanC. GalaskoD. GoldsteinD.S. JensenP.H. YangH. CainK.C. ZhangJ. Phosphorylated α-synuclein in Parkinson’s disease.Sci. Transl. Med.20124121121ra2010.1126/scitranslmed.300256622344688
    [Google Scholar]
  25. HanssonO. HallS. ÖhrfeltA. ZetterbergH. BlennowK. MinthonL. NäggaK. LondosE. VargheseS. MajbourN.K. Al-HayaniA. El-AgnafO.M.A. Levels of cerebrospinal fluid α-synuclein oligomers are increased in Parkinson’s disease with dementia and dementia with Lewy bodies compared to Alzheimer’s disease.Alzheimers Res. Ther.2014632510.1186/alzrt25524987465
    [Google Scholar]
  26. FouldsP.G. MitchellJ.D. ParkerA. TurnerR. GreenG. DiggleP. HasegawaM. TaylorM. MannD. AllsopD. Phosphorylated α‐synuclein can be detected in blood plasma and is potentially a useful biomarker for Parkinson’s disease.FASEB J.201125124127413710.1096/fj.10‑17919221865317
    [Google Scholar]
  27. MajbourN.K. VaikathN.N. van DijkK.D. ArdahM.T. VargheseS. VesteragerL.B. MontezinhoL.P. PooleS. Safieh-GarabedianB. TokudaT. TeunissenC.E. BerendseH.W. van de BergW.D.J. El-AgnafO.M.A. Oligomeric and phosphorylated alpha-synuclein as potential CSF biomarkers for Parkinson’s disease.Mol. Neurodegener.2016111710.1186/s13024‑016‑0072‑926782965
    [Google Scholar]
  28. OueslatiA. Implication of alpha-synuclein phosphorylation at S129 in synucleinopathies: What have we learned in the last decade?J. Parkinsons Dis.201661395110.3233/JPD‑16077927003784
    [Google Scholar]
  29. PaleologouK.E. OueslatiA. ShakkedG. RospigliosiC.C. KimH.Y. LambertoG.R. FernandezC.O. SchmidA. CheginiF. GaiW.P. ChiappeD. MoniatteM. SchneiderB.L. AebischerP. EliezerD. ZweckstetterM. MasliahE. LashuelH.A. Phosphorylation at S87 is enhanced in synucleinopathies, inhibits α-synuclein oligomerization, and influences synuclein-membrane interactions.J. Neurosci.20103093184319810.1523/JNEUROSCI.5922‑09.201020203178
    [Google Scholar]
  30. OueslatiA. PaleologouK.E. SchneiderB.L. AebischerP. LashuelH.A. Mimicking phosphorylation at serine 87 inhibits the aggregation of human α-synuclein and protects against its toxicity in a rat model of Parkinson’s disease.J. Neurosci.20123251536154410.1523/JNEUROSCI.3784‑11.201222302797
    [Google Scholar]
  31. HiraiY. FujitaS.C. IwatsuboT. HasegawaM. Phosphorylated α‐synuclein in normal mouse brain.FEBS Lett.20045721-322723210.1016/j.febslet.2004.07.04615304353
    [Google Scholar]
  32. McCormackA.L. MakS.K. Di MonteD.A. Increased α-synuclein phosphorylation and nitration in the aging primate substantia nigra.Cell Death Dis.201235e31510.1038/cddis.2012.5022647852
    [Google Scholar]
  33. CanronM.H. PerretM. VitalA. BézardE. DehayB. Age-dependent α-synuclein aggregation in the Microcebus murinus lemur primate.Sci. Rep.20122191010.1038/srep0091023205271
    [Google Scholar]
  34. GhanemS.S. MajbourN.K. VaikathN.N. ArdahM.T. ErskineD. JensenN.M. FayyadM. SudhakaranI.P. VasiliE. MelachroinouK. AbdiI.Y. PoggioliniI. SantosP. DornA. CarloniP. VekrellisK. AttemsJ. McKeithI. OuteiroT.F. JensenP.H. El-AgnafO.M.A. α-Synuclein phosphorylation at serine 129 occurs after initial protein deposition and inhibits seeded fibril formation and toxicity.Proc. Natl. Acad. Sci. USA202211915e210961711910.1073/pnas.210961711935353605
    [Google Scholar]
  35. DelicV. ChandraS. AbdelmotilibH. MaltbieT. WangS. KemD. ScottH.J. UnderwoodR.N. LiuZ. Volpicelli-DaleyL.A. WestA.B. Sensitivity and specificity of phospho‐Ser129 α‐synuclein monoclonal antibodies.J. Comp. Neurol.2018526121978199010.1002/cne.2446829888794
    [Google Scholar]
  36. SanjeevA. SahuR.K. MattaparthiV.S.K. Potential of mean force and molecular dynamics study on the transient interactions between α and β synuclein that drive inhibition of α-synuclein aggregation.J. Biomol. Struct. Dyn.201735153342335310.1080/07391102.2016.125411927809690
    [Google Scholar]
  37. GibbW.R. LeesA.J. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease.J. Neurol. Neurosurg. Psychiatry198851674575210.1136/jnnp.51.6.7452841426
    [Google Scholar]
  38. LückingC.B. BriceA. Alpha-synuclein and Parkinson’s disease.Cell. Mol. Life Sci.200057131894190810.1007/PL0000067111215516
    [Google Scholar]
  39. NguyenP.H. RamamoorthyA. SahooB.R. ZhengJ. FallerP. StraubJ.E. DominguezL. SheaJ.E. DokholyanN.V. De SimoneA. MaB. NussinovR. NajafiS. NgoS.T. LoquetA. ChiricottoM. GangulyP. McCartyJ. LiM.S. HallC. WangY. MillerY. MelchionnaS. HabensteinB. TimrS. ChenJ. HnathB. StrodelB. KayedR. LesnéS. WeiG. SterponeF. DoigA.J. DerreumauxP. Amyloid oligomers: A joint experimental/computational perspective on Alzheimer’s disease, Parkinson’s disease, type II diabetes, and amyotrophic lateral sclerosis.Chem. Rev.202112142545264710.1021/acs.chemrev.0c0112233543942
    [Google Scholar]
  40. GallegosS. PachecoC. PetersC. OpazoC.M. AguayoL.G. Features of alpha-synuclein that could explain the progression and irreversibility of Parkinson’s disease.Front. Neurosci.201595910.3389/fnins.2015.0005925805964
    [Google Scholar]
  41. BalupuriA. ChoiK.E. KangN.S. Computational insights into the role of α-strand/sheet in aggregation of α-synuclein.Sci. Rep.2019915910.1038/s41598‑018‑37276‑130635607
    [Google Scholar]
  42. ManzanzaN.O. SedlackovaL. KalariaR.N. Alpha-synuclein post-translational modifications: Implications for pathogenesis of lewy body disorders.Front. Aging Neurosci.20211369029310.3389/fnagi.2021.69029334248606
    [Google Scholar]
  43. SonustunB. AltayM.F. StrandC. EbanksK. HondhamuniG. WarnerT.T. LashuelH.A. BandopadhyayR. Pathological relevance of post-translationally modified alpha-synuclein (pSer87, pSer129, nTyr39) in idiopathic Parkinson’s disease and multiple system atrophy.Cells202211590610.3390/cells1105090635269528
    [Google Scholar]
  44. Parra-RivasL.A. MadhivananK. AulstonB.D. WangL. PrakashchandD.D. BoyerN.P. Saia-CeredaV.M. Branes-GuerreroK. PizzoD.P. BagchiP. SundarV.S. TangY. DasU. ScottD.A. RangamaniP. OgawaY. Subhojit Roy, Serine-129 phosphorylation of α-synuclein is an activity-dependent trigger for physiologic protein-protein interactions and synaptic function.Neuron20231112440064023.e1010.1016/j.neuron.2023.11.02038128479
    [Google Scholar]
  45. HospitalA. GoñiJ.R. OrozcoM. GelpíJ.L. Molecular dynamics simulations: Advances and applications.Adv. Appl. Bioinform. Chem.20158374726604800
    [Google Scholar]
  46. BermanH.M. BattistuzT. BhatT.N. BluhmW.F. BourneP.E. BurkhardtK. FengZ. GillilandG.L. IypeL. JainS. FaganP. MarvinJ. PadillaD. RavichandranV. SchneiderB. ThankiN. WeissigH. WestbrookJ.D. ZardeckiC. The Protein Data Bank.Acta Crystallogr. D Biol. Crystallogr.200258689990710.1107/S090744490200345112037327
    [Google Scholar]
  47. CaseD.A. Ben-ShalomI.Y. BrozellS.R. CeruttiD.S. CheathamT.E. CruzeiroV.W.D. DardenT.A. DukeR.E. GhoreishiD. GilsonM.K. Amber 2018.San FranciscoUniversity of California2018
    [Google Scholar]
  48. JoS. KimT. IyerV.G. Im, W. CHARMM‐GUI: A web‐based graphical user interface for CHARMM.J. Comput. Chem.200829111859186510.1002/jcc.2094518351591
    [Google Scholar]
  49. FuscoG. PapeT. StephensA.D. MahouP. CostaA.R. KaminskiC.F. Kaminski SchierleG.S. VendruscoloM. VegliaG. DobsonC.M. De SimoneA. De SimoneA. Structural basis of synaptic vesicle assembly promoted by α-synuclein.Nat. Commun.2016711256310.1038/ncomms1256327640673
    [Google Scholar]
  50. DasD. MattaparthiV.S.K. Conformational dynamics of A30G α-synuclein that causes familial Parkinson’s disease.J. Biomol. Struct. Dyn.20234124113
    [Google Scholar]
  51. HenriquesJ. CragnellC. SkepöM. Molecular dynamics simulations of intrinsically disordered proteins: Force field evaluation and comparison with experiment.J. Chem. Theory Comput.20151173420343110.1021/ct501178z26575776
    [Google Scholar]
  52. DardenT. YorkD. PedersenL. Particle mesh Ewald: An N ⋅log (N) method for Ewald sums in large systems.J. Chem. Phys.19939812100891009210.1063/1.464397
    [Google Scholar]
  53. Salomon-FerrerR. GötzA.W. PooleD. Le GrandS. WalkerR.C. Routine microsecond molecular dynamics simulations with Amber on gpus. 2. Explicit solvent particle mesh ewald.J. Chem. Theory Comput.2013993878388810.1021/ct400314y26592383
    [Google Scholar]
  54. RyckaertJ.P. CiccottiG. BerendsenH.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes.J. Comput. Phys.197723332734110.1016/0021‑9991(77)90098‑5
    [Google Scholar]
  55. PatraA.K. SharmaK. DuttaN. PattanaikA.K. Response of gravid does to partial replacement of dietary protein by a leaf meal mixture of Leucaena leucocephala, Morus alba and Azadirachta indica.Anim. Feed Sci. Technol.20031091-417118210.1016/S0377‑8401(03)00202‑5
    [Google Scholar]
  56. RoeD.R. CheathamT.E. III PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data.J. Chem. Theory Comput.2013973084309510.1021/ct400341p26583988
    [Google Scholar]
  57. KabschW. SanderC. Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features.Biopolymers198322122577263710.1002/bip.3602212116667333
    [Google Scholar]
  58. SarakatsannisJ.N. DuanY. Statistical characterization of salt bridges in proteins.Proteins200560473273910.1002/prot.2054916021620
    [Google Scholar]
  59. SalsburyF.R.Jr Molecular dynamics simulations of protein dynamics and their relevance to drug discovery.Curr. Opin. Pharmacol.201010673874410.1016/j.coph.2010.09.01620971684
    [Google Scholar]
  60. XiaoJ. SalsburyF.R. Molecular dynamics simulations of aptamer-binding reveal generalized allostery in thrombin.J. Biomol. Struct. Dyn.201735153354336910.1080/07391102.2016.125468227794633
    [Google Scholar]
  61. PogerD. MarkA.E. On the validation of molecular dynamics simulations of saturated and cis-monounsaturated phosphatidylcholine lipid bilayers: A comparison with experiment.J. Chem. Theory Comput.20106132533610.1021/ct900487a26614341
    [Google Scholar]
  62. PogerD. MarkA.E. Lipid bilayers: The effect of force field on ordering and Dynamics.J. Chem. Theory Comput.20128114807481710.1021/ct300675z26605633
    [Google Scholar]
  63. LiuC. ZhaoY. XiH. JiangJ. YuY. DongW. The membrane interaction of alpha-synuclein.Front. Cell. Neurosci.20211563372710.3389/fncel.2021.63372733746714
    [Google Scholar]
  64. FrallicciardiJ. MelcrJ. SiginouP. MarrinkS.J. PoolmanB. Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes.Nat. Commun. 160520211335338137
    [Google Scholar]
  65. DasD. BharadwazP. MattaparthiV.S.K. Computational investigation on the effect of the peptidomimetic inhibitors (NPT100-18A and NPT200-11) on the α-synuclein and lipid membrane interactions.J. Biomol. Struct. Dyn.202311210.1080/07391102.2023.226259937768058
    [Google Scholar]
  66. SanjeevA. MattaparthiV.S.K. Computational investigation on the effects of H50Q and G51D mutations on the α-Synuclein aggregation propensity.J. Biomol. Struct. Dyn.20183692224223610.1080/07391102.2017.134706028650719
    [Google Scholar]
  67. LandH. HumbleM.S. Yasara: A tool to obtain structural guidance in biocatalytic investigations.Methods Mol. Biol.20181685436710.1007/978‑1‑4939‑7366‑8_429086303
    [Google Scholar]
  68. ParkS. YoonJ. JangS. LeeK. ShinS. The role of the acidic domain of α-synuclein in amyloid fibril formation: A molecular dynamics study.J. Biomol. Struct. Dyn.201634237638310.1080/07391102.2015.103301625869255
    [Google Scholar]
  69. YoonJ. LeeM. ParkY. LeeK. ShinS. In silico investigation of the structural stability as the origin of the pathogenicity of α -synuclein protofibrils.J. Biomol. Struct. Dyn.20234123141031411510.1080/07391102.2023.219907737036430
    [Google Scholar]
  70. JamalS. KumariA. SinghA. GoyalS. GroverA. Conformational ensembles of α-synuclein derived peptide with different osmolytes from temperature replica exchange sampling.Front. Neurosci.20171168410.3389/fnins.2017.0068429270108
    [Google Scholar]
  71. YaoY. TangY. WeiG. Epigallocatechin gallate destabilizes α-synuclein fibril by disrupting the E46–K80 salt-bridge and inter-protofibril interface.ACS Chem. Neurosci.202011244351436110.1021/acschemneuro.0c0059833186020
    [Google Scholar]
  72. LuY. PrudentM. FauvetB. LashuelH.A. GiraultH.H. Phosphorylation of α-Synuclein at Y125 and S129 alters its metal binding properties: Implications for understanding the role of α-Synuclein in the pathogenesis of Parkinson’s Disease and related disorders.ACS Chem. Neurosci.201121166767510.1021/cn200074d22860160
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968309465240930050924
Loading
/content/journals/ccb/10.2174/0122127968309465240930050924
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test