Skip to content
2000
image of An In-Silico Approach to Study the Effect of Phosphorylation (Ps129) on the Conformational Dynamics of Membrane Bound Α-Synuclein

Abstract

Background

Phosphorylated α-Synuclein (α-Syn) is present in relatively small levels in normal human brains, but nearly all of the α-Syn in the Lewy bodies (LBs) that collect in the nigrostriatal region in the brain of Parkinsons disease patients is phosphorylated on serine 129 (pS129). Earlier studies suggested that mimicking phosphorylation at S129 may have an inhibitory effect on α-Syn aggregation and thus control α-Syn neuropathology. Although phosphorylation at S129 is associated with α-Syn inclusion in synucleinopathies, the mechanisms by which this post-translational modification (PTM) influences aggregation and contributes to LB illness in the brain are yet to be understood.

Objective

This research aims to study the effect of phosphorylation (pS129) on the conformational dynamics of membrane-bound α-Syn using Molecular Dynamics (MD) simulations.

Method

Using MD simulations, this computational study has demonstrated the effect of PTM on the conformational dynamics of pS129 α-Syn and its lipid membrane association. To better understand the impact of pS129 on the aggregation of the α-Syn structure monomer with recent atomic details, we have examined the MD trajectories, conducted a salt-bridge interaction study, Principal Component Analysis (PCA), and intra and inter-molecular hydrogen bond analysis.

Results

The conformational structure of pS129 α-Syn was observed from the MD trajectory analysis to be stable throughout the simulation, with higher compactness and reduced flexibility. The stability of the structure of pS129 α-Syn was also evaluated by 2-D and 3-D principal component analysis followed by a free energy landscape plot showing the global minima. The conformational snapshots and Ramachandran plot showed the absence of α-strands in the α-Syns Non-Amyloid Component Region (NAC) (71–82), which is necessary for aggregate formation.

Conclusion

Further, the intermolecular hydrogen bonds analysis indicates that the NAC region is not embedded into the lipid bilayer and has limited association with the other regions of the protein. Our findings reveal salient features of pS129 modifications that inhibit α-Syn aggregation.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968309465240930050924
2024-10-16
2024-11-22
Loading full text...

Full text loading...

References

  1. Cohen P. The origins of protein phosphorylation. Nat. Cell Biol. 2002 4 5 E127 E130 10.1038/ncb0502‑e127 11988757
    [Google Scholar]
  2. Ochoa D. Jarnuczak A.F. Viéitez C. Gehre M. Soucheray M. Mateus A. Kleefeldt A.A. Hill A. Garcia-Alonso L. Stein F. Krogan N.J. Savitski M.M. Swaney D.L. Vizcaíno J.A. Noh K.M. Beltrao P. The functional landscape of the human phosphoproteome. Nat. Biotechnol. 2020 38 3 365 373 10.1038/s41587‑019‑0344‑3 31819260
    [Google Scholar]
  3. Manning G. Whyte D.B. Martinez R. Hunter T. Sudarsanam S. The protein kinase complement of the human genome. Science 2002 298 5600 1912 1934 10.1126/science.1075762 12471243
    [Google Scholar]
  4. Cohen P. The structure and regulation of protein phosphatases. Annu. Rev. Biochem. 1989 58 1 453 508 10.1146/annurev.bi.58.070189.002321 2549856
    [Google Scholar]
  5. Needham E.J. Parker B.L. Burykin T. James D.E. Humphrey S.J. Illuminating the dark phosphoproteome. Sci. Signal. 2019 12 565 eaau8645 10.1126/scisignal.aau8645 30670635
    [Google Scholar]
  6. Krause D.S. Van Etten R.A. Tyrosine kinases as targets for cancer therapy. N. Engl. J. Med. 2005 353 2 172 187 10.1056/NEJMra044389 16014887
    [Google Scholar]
  7. Zhang J. Yang P.L. Gray N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 2009 9 1 28 39 10.1038/nrc2559 19104514
    [Google Scholar]
  8. Fujiwara H. Hasegawa M. Dohmae N. Kawashima A. Masliah E. Goldberg M.S. Shen J. Takio K. Iwatsubo T. α-Synuclein is phosphorylated in synucleinopathy lesions. Nat. Cell Biol. 2002 4 2 160 164 10.1038/ncb748 11813001
    [Google Scholar]
  9. Anderson J.P. Walker D.E. Goldstein J.M. de Laat R. Banducci K. Caccavello R.J. Barbour R. Huang J. Kling K. Lee M. Diep L. Keim P.S. Shen X. Chataway T. Schlossmacher M.G. Seubert P. Schenk D. Sinha S. Gai W.P. Chilcote T.J. Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic Lewy body disease. J. Biol. Chem. 2006 281 40 29739 29752 10.1074/jbc.M600933200 16847063
    [Google Scholar]
  10. Kahle P.J. Neumann M. Ozmen L. Haass C. Physiology and pathophysiology of α-synuclein. Cell culture and transgenic animal models based on a Parkinson’s disease-associated protein. Ann. N.Y.Acad. Sci. 2000 920 1 33 41 10.1111/j.1749‑6632.2000.tb06902.x 11193173
    [Google Scholar]
  11. Panuganti V. Roy I. Oligomers, fibrils and aggregates formed by alpha-synuclein: Role of solution conditions. J. Biomol. Struct. Dyn. 2022 40 10 4389 4398 10.1080/07391102.2020.1856721 33292065
    [Google Scholar]
  12. McFarland N.R. Fan Z. Xu K. Schwarzschild M.A. Feany M.B. Hyman B.T. McLean P.J. α-synuclein S129 phosphorylation mutants do not alter nigrostriatal toxicity in a rat model of Parkinson disease. J. Neuropathol. Exp. Neurol. 2009 68 5 515 524 10.1097/NEN.0b013e3181a24b53 19525899
    [Google Scholar]
  13. Azeredo da Silveira S. Schneider B.L. Cifuentes-Diaz C. Sage D. Abbas-Terki T. Iwatsubo T. Unser M. Aebischer P. Phosphorylation does not prompt, nor prevent, the formation of α-synuclein toxic species in a rat model of Parkinson’s disease. Hum. Mol. Genet. 2009 18 5 872 887 19074459
    [Google Scholar]
  14. Karampetsou M. Ardah M.T. Semitekolou M. Polissidis A. Samiotaki M. Kalomoiri M. Majbour N. Xanthou G. El-Agnaf O.M.A. Vekrellis K. Phosphorylated exogenous alpha-synuclein fibrils exacerbate pathology and induce neuronal dysfunction in mice. Sci. Rep. 2017 7 1 16533 10.1038/s41598‑017‑15813‑8 29184069
    [Google Scholar]
  15. Ramalingam N. Jin S.X. Moors T.E. Ornelas L.F. Shimanaka K. Lei S. Cam H.P. Watson A.H. Brontesi L. Ding L. Hacibaloglu D.Y. Jiang H. Choi S.J. Kanter E. Liu L. Bartels T. Nuber S. Sulzer D. Mosharov E.V. Chen W.V. Li S. Selkoe D.J. Dettmer U. Dynamic physiological α-synuclein S129 phosphorylation is driven by neuronal activity. npj. Parkinsons Dis. 2023 9 4
    [Google Scholar]
  16. Ree R. Varland S. Arnesen T. Spotlight on protein N-terminal acetylation. Exp. Mol. Med. 2018 50 7 1 13 10.1038/s12276‑018‑0116‑z 30054468
    [Google Scholar]
  17. Waxman E.A. Mazzulli J.R. Giasson B.I. Characterization of hydrophobic residue requirements for α-synuclein fibrillization. Biochemistry 2009 48 40 9427 9436 10.1021/bi900539p 19722699
    [Google Scholar]
  18. Fusco G. De Simone A. Gopinath T. Vostrikov V. Vendruscolo M. Dobson C.M. Veglia G. Direct observation of the three regions in α-synuclein that determine its membrane-bound behaviour. Nat. Commun. 2014 5 1 3827 10.1038/ncomms4827 24871041
    [Google Scholar]
  19. Chandra S. Chen X. Rizo J. Jahn R. Südhof T.C. A broken α -helix in folded α -Synuclein. J. Biol. Chem. 2003 278 17 15313 15318 10.1074/jbc.M213128200 12586824
    [Google Scholar]
  20. Snead D. Eliezer D. Alpha-synuclein function and dysfunction on cellular membranes. Exp. Neurobiol. 2014 23 4 292 313 10.5607/en.2014.23.4.292 25548530
    [Google Scholar]
  21. Dikiy I. Eliezer D. Folding and misfolding of alpha-synuclein on membranes. Biochim. Biophys. Acta Biomembr. 2012 1818 4 1013 1018 10.1016/j.bbamem.2011.09.008
    [Google Scholar]
  22. Pfefferkorn C.M. Jiang Z. Lee J.C. Biophysics of α-synuclein membrane interactions. Biochim. Biophys. Acta Biomembr. 2012 1818 2 162 171 10.1016/j.bbamem.2011.07.032
    [Google Scholar]
  23. Stewart T. Sossi V. Aasly J.O. Wszolek Z.K. Uitti R.J. Hasegawa K. Yokoyama T. Zabetian C.P. Leverenz J.B. Stoessl A.J. Wang Y. Ginghina C. Liu C. Cain K.C. Auinger P. Kang U.J. Jensen P.H. Shi M. Zhang J. Phosphorylated α-synuclein in Parkinson’s disease: Correlation depends on disease severity. Acta Neuropathol. Commun. 2015 3 1 7 10.1186/s40478‑015‑0185‑3 25637461
    [Google Scholar]
  24. Wang Y. Shi M. Chung K.A. Zabetian C.P. Leverenz J.B. Berg D. Srulijes K. Trojanowski J.Q. Lee V.M.Y. Siderowf A.D. Hurtig H. Litvan I. Schiess M.C. Peskind E.R. Masuda M. Hasegawa M. Lin X. Pan C. Galasko D. Goldstein D.S. Jensen P.H. Yang H. Cain K.C. Zhang J. Phosphorylated α-synuclein in Parkinson’s disease. Sci. Transl. Med. 2012 4 121 121ra20 10.1126/scitranslmed.3002566 22344688
    [Google Scholar]
  25. Hansson O. Hall S. Öhrfelt A. Zetterberg H. Blennow K. Minthon L. Nägga K. Londos E. Varghese S. Majbour N.K. Al-Hayani A. El-Agnaf O.M.A. Levels of cerebrospinal fluid α-synuclein oligomers are increased in Parkinson’s disease with dementia and dementia with Lewy bodies compared to Alzheimer’s disease. Alzheimers Res. Ther. 2014 6 3 25 10.1186/alzrt255 24987465
    [Google Scholar]
  26. Foulds P.G. Mitchell J.D. Parker A. Turner R. Green G. Diggle P. Hasegawa M. Taylor M. Mann D. Allsop D. Phosphorylated α‐synuclein can be detected in blood plasma and is potentially a useful biomarker for Parkinson’s disease. FASEB J. 2011 25 12 4127 4137 10.1096/fj.10‑179192 21865317
    [Google Scholar]
  27. Majbour N.K. Vaikath N.N. van Dijk K.D. Ardah M.T. Varghese S. Vesterager L.B. Montezinho L.P. Poole S. Safieh-Garabedian B. Tokuda T. Teunissen C.E. Berendse H.W. van de Berg W.D.J. El-Agnaf O.M.A. Oligomeric and phosphorylated alpha-synuclein as potential CSF biomarkers for Parkinson’s disease. Mol. Neurodegener. 2016 11 1 7 10.1186/s13024‑016‑0072‑9 26782965
    [Google Scholar]
  28. Oueslati A. Implication of alpha-synuclein phosphorylation at S129 in synucleinopathies: What have we learned in the last decade? J. Parkinsons Dis. 2016 6 1 39 51 10.3233/JPD‑160779 27003784
    [Google Scholar]
  29. Paleologou K.E. Oueslati A. Shakked G. Rospigliosi C.C. Kim H.Y. Lamberto G.R. Fernandez C.O. Schmid A. Chegini F. Gai W.P. Chiappe D. Moniatte M. Schneider B.L. Aebischer P. Eliezer D. Zweckstetter M. Masliah E. Lashuel H.A. Phosphorylation at S87 is enhanced in synucleinopathies, inhibits α-synuclein oligomerization, and influences synuclein-membrane interactions. J. Neurosci. 2010 30 9 3184 3198 10.1523/JNEUROSCI.5922‑09.2010 20203178
    [Google Scholar]
  30. Oueslati A. Paleologou K.E. Schneider B.L. Aebischer P. Lashuel H.A. Mimicking phosphorylation at serine 87 inhibits the aggregation of human α-synuclein and protects against its toxicity in a rat model of Parkinson’s disease. J. Neurosci. 2012 32 5 1536 1544 10.1523/JNEUROSCI.3784‑11.2012 22302797
    [Google Scholar]
  31. Hirai Y. Fujita S.C. Iwatsubo T. Hasegawa M. Phosphorylated α‐synuclein in normal mouse brain. FEBS Lett. 2004 572 1-3 227 232 10.1016/j.febslet.2004.07.046 15304353
    [Google Scholar]
  32. McCormack A.L. Mak S.K. Di Monte D.A. Increased α-synuclein phosphorylation and nitration in the aging primate substantia nigra. Cell Death Dis. 2012 3 5 e315 10.1038/cddis.2012.50 22647852
    [Google Scholar]
  33. Canron M.H. Perret M. Vital A. Bézard E. Dehay B. Age-dependent α-synuclein aggregation in the Microcebus murinus lemur primate. Sci. Rep. 2012 2 1 910 10.1038/srep00910 23205271
    [Google Scholar]
  34. Ghanem S.S. Majbour N.K. Vaikath N.N. Ardah M.T. Erskine D. Jensen N.M. Fayyad M. Sudhakaran I.P. Vasili E. Melachroinou K. Abdi I.Y. Poggiolini I. Santos P. Dorn A. Carloni P. Vekrellis K. Attems J. McKeith I. Outeiro T.F. Jensen P.H. El-Agnaf O.M.A. α-Synuclein phosphorylation at serine 129 occurs after initial protein deposition and inhibits seeded fibril formation and toxicity. Proc. Natl. Acad. Sci. USA 2022 119 15 e2109617119 10.1073/pnas.2109617119 35353605
    [Google Scholar]
  35. Delic V. Chandra S. Abdelmotilib H. Maltbie T. Wang S. Kem D. Scott H.J. Underwood R.N. Liu Z. Volpicelli-Daley L.A. West A.B. Sensitivity and specificity of phospho‐Ser129 α‐synuclein monoclonal antibodies. J. Comp. Neurol. 2018 526 12 1978 1990 10.1002/cne.24468 29888794
    [Google Scholar]
  36. Sanjeev A. Sahu R.K. Mattaparthi V.S.K. Potential of mean force and molecular dynamics study on the transient interactions between α and β synuclein that drive inhibition of α-synuclein aggregation. J. Biomol. Struct. Dyn. 2017 35 15 3342 3353 10.1080/07391102.2016.1254119 27809690
    [Google Scholar]
  37. Gibb W.R. Lees A.J. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1988 51 6 745 752 10.1136/jnnp.51.6.745 2841426
    [Google Scholar]
  38. Lücking C.B. Brice A. Alpha-synuclein and Parkinson’s disease. Cell. Mol. Life Sci. 2000 57 13 1894 1908 10.1007/PL00000671 11215516
    [Google Scholar]
  39. Nguyen P.H. Ramamoorthy A. Sahoo B.R. Zheng J. Faller P. Straub J.E. Dominguez L. Shea J.E. Dokholyan N.V. De Simone A. Ma B. Nussinov R. Najafi S. Ngo S.T. Loquet A. Chiricotto M. Ganguly P. McCarty J. Li M.S. Hall C. Wang Y. Miller Y. Melchionna S. Habenstein B. Timr S. Chen J. Hnath B. Strodel B. Kayed R. Lesné S. Wei G. Sterpone F. Doig A.J. Derreumaux P. Amyloid oligomers: A joint experimental/computational perspective on Alzheimer’s disease, Parkinson’s disease, type II diabetes, and amyotrophic lateral sclerosis. Chem. Rev. 2021 121 4 2545 2647 10.1021/acs.chemrev.0c01122 33543942
    [Google Scholar]
  40. Gallegos S. Pacheco C. Peters C. Opazo C.M. Aguayo L.G. Features of alpha-synuclein that could explain the progression and irreversibility of Parkinson’s disease. Front. Neurosci. 2015 9 59 10.3389/fnins.2015.00059 25805964
    [Google Scholar]
  41. Balupuri A. Choi K.E. Kang N.S. Computational insights into the role of α-strand/sheet in aggregation of α-synuclein. Sci. Rep. 2019 9 1 59 10.1038/s41598‑018‑37276‑1 30635607
    [Google Scholar]
  42. Manzanza N.O. Sedlackova L. Kalaria R.N. Alpha-synuclein post-translational modifications: Implications for pathogenesis of lewy body disorders. Front. Aging Neurosci. 2021 13 690293 10.3389/fnagi.2021.690293 34248606
    [Google Scholar]
  43. Sonustun B. Altay M.F. Strand C. Ebanks K. Hondhamuni G. Warner T.T. Lashuel H.A. Bandopadhyay R. Pathological relevance of post-translationally modified alpha-synuclein (pSer87, pSer129, nTyr39) in idiopathic Parkinson’s disease and multiple system atrophy. Cells 2022 11 5 906 10.3390/cells11050906 35269528
    [Google Scholar]
  44. Parra-Rivas L.A. Madhivanan K. Aulston B.D. Wang L. Prakashchand D.D. Boyer N.P. Saia-Cereda V.M. Branes-Guerrero K. Pizzo D.P. Bagchi P. Sundar V.S. Tang Y. Das U. Scott D.A. Rangamani P. Ogawa Y. Subhojit Roy Serine-129 phosphorylation of α-synuclein is an activity-dependent trigger for physiologic protein-protein interactions and synaptic function. Neuron 2023 111 24 4006 4023.e10 10.1016/j.neuron.2023.11.020 38128479
    [Google Scholar]
  45. Hospital A. Goñi J.R. Orozco M. Gelpí J.L. Molecular dynamics simulations: Advances and applications. Adv. Appl. Bioinform. Chem. 2015 8 37 47 26604800
    [Google Scholar]
  46. Berman H.M. Battistuz T. Bhat T.N. Bluhm W.F. Bourne P.E. Burkhardt K. Feng Z. Gilliland G.L. Iype L. Jain S. Fagan P. Marvin J. Padilla D. Ravichandran V. Schneider B. Thanki N. Weissig H. Westbrook J.D. Zardecki C. The Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr. 2002 58 6 899 907 10.1107/S0907444902003451 12037327
    [Google Scholar]
  47. Case D.A. Ben-Shalom I.Y. Brozell S.R. Cerutti D.S. Cheatham T.E. Cruzeiro V.W.D. Darden T.A. Duke R.E. Ghoreishi D. Gilson M.K. Amber 2018. San Francisco University of California 2018
    [Google Scholar]
  48. Jo S. Kim T. Iyer V.G. Im W. CHARMM‐GUI: A web‐based graphical user interface for CHARMM. J. Comput. Chem. 2008 29 11 1859 1865 10.1002/jcc.20945 18351591
    [Google Scholar]
  49. Fusco G. Pape T. Stephens A.D. Mahou P. Costa A.R. Kaminski C.F. Kaminski Schierle G.S. Vendruscolo M. Veglia G. Dobson C.M. De Simone A. De Simone A. Structural basis of synaptic vesicle assembly promoted by α-synuclein. Nat. Commun. 2016 7 1 12563 10.1038/ncomms12563 27640673
    [Google Scholar]
  50. Das D. Mattaparthi V.S.K. Conformational dynamics of A30G α-synuclein that causes familial Parkinson’s disease. J. Biomol. Struct. Dyn. 2023 41 24 1 13
    [Google Scholar]
  51. Henriques J. Cragnell C. Skepö M. Molecular dynamics simulations of intrinsically disordered proteins: Force field evaluation and comparison with experiment. J. Chem. Theory Comput. 2015 11 7 3420 3431 10.1021/ct501178z 26575776
    [Google Scholar]
  52. Darden T. York D. Pedersen L. Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems. J. Chem. Phys. 1993 98 12 10089 10092 10.1063/1.464397
    [Google Scholar]
  53. Salomon-Ferrer R. Götz A.W. Poole D. Le Grand S. Walker R.C. Routine microsecond molecular dynamics simulations with Amber on gpus. 2. Explicit solvent particle mesh ewald. J. Chem. Theory Comput. 2013 9 9 3878 3888 10.1021/ct400314y 26592383
    [Google Scholar]
  54. Ryckaert J.P. Ciccotti G. Berendsen H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977 23 3 327 341 10.1016/0021‑9991(77)90098‑5
    [Google Scholar]
  55. Patra A.K. Sharma K. Dutta N. Pattanaik A.K. Response of gravid does to partial replacement of dietary protein by a leaf meal mixture of Leucaena leucocephala, Morus alba and Azadirachta indica. Anim. Feed Sci. Technol. 2003 109 1-4 171 182 10.1016/S0377‑8401(03)00202‑5
    [Google Scholar]
  56. Roe D.R. Cheatham T.E. III PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013 9 7 3084 3095 10.1021/ct400341p 26583988
    [Google Scholar]
  57. Kabsch W. Sander C. Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features. Biopolymers 1983 22 12 2577 2637 10.1002/bip.360221211 6667333
    [Google Scholar]
  58. Sarakatsannis J.N. Duan Y. Statistical characterization of salt bridges in proteins. Proteins 2005 60 4 732 739 10.1002/prot.20549 16021620
    [Google Scholar]
  59. Salsbury F.R. Jr Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Curr. Opin. Pharmacol. 2010 10 6 738 744 10.1016/j.coph.2010.09.016 20971684
    [Google Scholar]
  60. Xiao J. Salsbury F.R. Molecular dynamics simulations of aptamer-binding reveal generalized allostery in thrombin. J. Biomol. Struct. Dyn. 2017 35 15 3354 3369 10.1080/07391102.2016.1254682 27794633
    [Google Scholar]
  61. Poger D. Mark A.E. On the validation of molecular dynamics simulations of saturated and cis-monounsaturated phosphatidylcholine lipid bilayers: A comparison with experiment. J. Chem. Theory Comput. 2010 6 1 325 336 10.1021/ct900487a 26614341
    [Google Scholar]
  62. Poger D. Mark A.E. Lipid bilayers: The effect of force field on ordering and Dynamics. J. Chem. Theory Comput. 2012 8 11 4807 4817 10.1021/ct300675z 26605633
    [Google Scholar]
  63. Liu C. Zhao Y. Xi H. Jiang J. Yu Y. Dong W. The membrane interaction of alpha-synuclein. Front. Cell. Neurosci. 2021 15 633727 10.3389/fncel.2021.633727 33746714
    [Google Scholar]
  64. Frallicciardi J. Melcr J. Siginou P. Marrink S.J. Poolman B. Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nat. Commun. 1605 2021 13 35338137
    [Google Scholar]
  65. Das D. Bharadwaz P. Mattaparthi V.S.K. Computational investigation on the effect of the peptidomimetic inhibitors (NPT100-18A and NPT200-11) on the α-synuclein and lipid membrane interactions. J. Biomol. Struct. Dyn. 2023 1 12 10.1080/07391102.2023.2262599 37768058
    [Google Scholar]
  66. Sanjeev A. Mattaparthi V.S.K. Computational investigation on the effects of H50Q and G51D mutations on the α-Synuclein aggregation propensity. J. Biomol. Struct. Dyn. 2018 36 9 2224 2236 10.1080/07391102.2017.1347060 28650719
    [Google Scholar]
  67. Land H. Humble M.S. Yasara: A tool to obtain structural guidance in biocatalytic investigations. Methods Mol. Biol. 2018 1685 43 67 10.1007/978‑1‑4939‑7366‑8_4 29086303
    [Google Scholar]
  68. Park S. Yoon J. Jang S. Lee K. Shin S. The role of the acidic domain of α-synuclein in amyloid fibril formation: A molecular dynamics study. J. Biomol. Struct. Dyn. 2016 34 2 376 383 10.1080/07391102.2015.1033016 25869255
    [Google Scholar]
  69. Yoon J. Lee M. Park Y. Lee K. Shin S. In silico investigation of the structural stability as the origin of the pathogenicity of α -synuclein protofibrils. J. Biomol. Struct. Dyn. 2023 41 23 14103 14115 10.1080/07391102.2023.2199077 37036430
    [Google Scholar]
  70. Jamal S. Kumari A. Singh A. Goyal S. Grover A. Conformational ensembles of α-synuclein derived peptide with different osmolytes from temperature replica exchange sampling. Front. Neurosci. 2017 11 684 10.3389/fnins.2017.00684 29270108
    [Google Scholar]
  71. Yao Y. Tang Y. Wei G. Epigallocatechin gallate destabilizes α-synuclein fibril by disrupting the E46–K80 salt-bridge and inter-protofibril interface. ACS Chem. Neurosci. 2020 11 24 4351 4361 10.1021/acschemneuro.0c00598 33186020
    [Google Scholar]
  72. Lu Y. Prudent M. Fauvet B. Lashuel H.A. Girault H.H. Phosphorylation of α-Synuclein at Y125 and S129 alters its metal binding properties: Implications for understanding the role of α-Synuclein in the pathogenesis of Parkinson’s Disease and related disorders. ACS Chem. Neurosci. 2011 2 11 667 675 10.1021/cn200074d 22860160
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968309465240930050924
Loading
/content/journals/ccb/10.2174/0122127968309465240930050924
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test