Skip to content
2000
Volume 18, Issue 3
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Background

Chalcones have been demonstrated to possess numerous therapeutic qualities in recent years, such as antibacterial, antiviral, anti-ulcerative, antioxidant, anti-inflammatory, antihyperglycemic, antimalarial, antitubercular, analgesic, antiplatelet, and anticancer activities.

Objective

To explore the synthesis, docking, and therapeutic characteristics of chalcones as antibacterial and anthelmintic compounds.

Methods

The chalcone derivatives (3a-3k) and (6l-6v) were synthesized two selective different reactions, based on the Claisen-Schmidt reaction. All synthesized compounds were evaluated for their antibacterial activity using an cup-plate method, and their anthelmintic activity was assessed using an earthworm paralysis and death assay. To validate these findings, conducted molecular docking experiments between the dihydrofolate reductase receptor (PDB ID: 4LAE) and the synthesised compounds (3a-3k) and (6l-6v) to determine catalytic interactions.

Results

Compound 6(n) exhibited the greatest efficacy in biological activity against compared to all other compounds examined. Compound 6(o) exhibited substantial efficacy against and . Emphasizing these findings, the compounds 3(a), 3(g), 3(i), 6(n), and 6(o) demonstrated hydrogen bond interactions with certain amino acid residues of the receptor, including THR 122, ASN 18, ASN19, GLN 96, SER 50, and ALA 8, during molecular docking.

Conclusion

The study results showed that the synthesised derivative 6(n) had beneficial antibacterial properties against , while derivative 6(o) exhibited antibacterial activity against and anthlelmintic activity against .

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968347168241015102108
2024-10-18
2025-05-07
Loading full text...

Full text loading...

References

  1. GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the global burden of disease study 2019.Lancet2022400103692221224810.1016/S0140‑6736(22)02185‑736423648
    [Google Scholar]
  2. HajareS.T. GobenaR.K. ChauhanN.M. ErnisoF. Prevalence of intestinal parasite infections and their associated factors among food handlers working in selected catering establishments from Bule Hora, Ethiopia.Biomed Res Int20212021666974210.1155/2021/6669742
    [Google Scholar]
  3. ZhuangC. ZhangW. ShengC. ZhangW. XingC. MiaoZ. Chalcone: A privileged structure in medicinal chemistry.Chem. Rev.2017117127762781010.1021/acs.chemrev.7b0002028488435
    [Google Scholar]
  4. RammohanA. ReddyJ.S. SravyaG. RaoC.N. ZyryanovG.V. Chalcone synthesis, properties and medicinal applications: A review.Environ. Chem. Lett.202018243345810.1007/s10311‑019‑00959‑w
    [Google Scholar]
  5. RudrapalM. KhanJ. DukhyilA.A.B. AlarousyR.M.I.I. AttahE.I. SharmaT. KhairnarS.J. BendaleA.R. Chalcone scaffolds, bioprecursors of flavonoids: Chemistry, bioactivities, and pharmacokinetics.Molecules20212623717710.3390/molecules26237177
    [Google Scholar]
  6. QianH. LiuD. LvC. Synthesis of chalcones via claisen-schmidt reaction catalyzed by sulfonic acid-functional ionic liquids.Ind. Eng. Chem. Res.20115021146114910.1021/ie101790k
    [Google Scholar]
  7. BuiT.H. NguyenN.T. DangP.H. NguyenH.X. NguyenM.T. Design and synthesis of chalcone derivatives as potential non-purine xanthine oxidase inhibitors.Springerplus201651178910.1186/s40064‑016‑3485‑627795931
    [Google Scholar]
  8. MurugesanA. GenganR.M. RajamanikandanR. IlanchelianM. LinC-H. One-pot synthesis of Claisen–Schmidt reaction through (E)-chalcone derivatives: Spectral studies in human serum albumin protein binding and molecular docking investigation.Synth. Commun.201747201884190410.1080/00397911.2017.1355466
    [Google Scholar]
  9. SusantiV.H.E. SetyowatiW.A.E. Synthesis and characterization of some bromochalcones derivatives. IOP Conf. Ser.: Mater. Sci. Eng., 201901200210.1088/1757‑899X/578/1/012002
    [Google Scholar]
  10. GoyalK. KaurR. GoyalA. AwasthiR. Chalcones: A review on synthesis and pharmacological activities.J Appl Pharm Sci,20211110.7324/JAPS.2021.11s101
    [Google Scholar]
  11. ElkanziN.A.A. HrichiH. AlolayanR.A. DerafaW. ZahouF.M. BakrR.B. Synthesis of chalcones derivatives and their biological activities: A review.ACS Omega2022732277692778610.1021/acsomega.2c0177935990442
    [Google Scholar]
  12. SalehiB. QuispeC. ChamkhiI. El OmariN. BalahbibA. Sharifi-RadJ. BouyahyaA. AkramM. IqbalM. DoceaA.O. Pharmacological properties of chalcones: A review of preclinical including molecular mechanisms and clinical evidence.Front. Pharmacol.20211159265410.3389/fphar.2020.592654
    [Google Scholar]
  13. TakahashiM. MaedaS. OguraK. TeranoA. OmataM. The possible role of vascular endothelial growth factor (VEGF) in gastric ulcer healing: effect of sofalcone on VEGF release in vitro.J. Clin. Gastroenterol.199827S178S18210.1097/00004836‑199800001‑000299872518
    [Google Scholar]
  14. AttardeM. VoraA. VargheseA. KachwalaY. Synthesis and evaluation of chalcone derivatives for its alpha amylase inhibitory activity.Org. Chem. An. Indian J.201410519220410.3329/bjsir.v42i1.354
    [Google Scholar]
  15. AroraV. AroraP. LambaH. Synthesis and biological activities of some 3,5-disubstituted pyrazoline derivatives of 2-acetyl naphthalene.International. J. Pharm. and Pharmaceut Sci.2012430330610.1002/ardp.20180014130048015
    [Google Scholar]
  16. AggarwalN. KumarR. DurejaP. KhuranaJ.M. Synthesis, antimicrobial evaluation and QSAR analysis of novel nalidixic acid based 1,2,4-triazole derivatives.Eur. J. Med. Chem.20114694089409910.1016/j.ejmech.2011.06.00921752498
    [Google Scholar]
  17. CeylanS. BayrakH. Basoglu OzdemirS. UygunY. MermerA. DemirbasN. UlkerS. Microwave-assisted and conventional synthesis of novel antimicrobial 1,2,4-triazole derivatives containing nalidixic acid skeleton.Heterocycl. Commun.201622422923710.1515/hc‑2016‑0019
    [Google Scholar]
  18. MohamedN.G. ShehaM.M. HassanH.Y. Abdel-HafezL.J.M. OmarF.A. Synthesis, antimicrobial activity and molecular modeling study of 3-(5-amino-(2H)-1,2,4-triazol-3-yl]-naphthyridinones as potential DNA-gyrase inhibitors.Bioorg. Chem.20188159961110.1016/j.bioorg.2018.08.03130248511
    [Google Scholar]
  19. AgarwalU. TonkR.K. SharmaK. BhutaniR. VermaS. Synthesis, ADME, molecular docking and biological evaluation of new 2-aminobenzothiazloes.Curr. Bioact. Compd.2023199e12052321685510.2174/1573407219666230512121913
    [Google Scholar]
  20. MunirajasekharD. MalipeddiH. SunilM. Synthesis and anthelmintic activity of 2-amino-6-substituted benzothiazoles.Int. Res. J. Pharm.20112114117
    [Google Scholar]
  21. LathaK.P. VagdeviH.M. VaidyaV.P. ChandrashekharC.H. Anthelmintic activity of the crude extracts of Ficus racemosa.Int J Green Pharm20082210010310.4103/0973‑8258.41180
    [Google Scholar]
  22. GhoshT. MaityT.K. BoseandA. DashG.K. Athelmintic activity of Bacopa monierr.Indian J Nat Prod.2005211619
    [Google Scholar]
  23. RastogiT. BhutdaV. MoonK. AswarP.B. KhadabadiS.S. Comparative studies on anthelmintic activity of Moringa oleifera and Vitex negundo.Asian J. Res. Chem20092181182
    [Google Scholar]
  24. ThakkarS.S. ThakorP. RayA. DoshiH. ThakkarV.R. Benzothiazole analogues: Synthesis, characterization, MO calculations with PM6 and DFT, in silico studies and in vitro antimalarial as DHFR inhibitors and antimicrobial activities.Bioorg. Med. Chem.201725205396540610.1016/j.bmc.2017.07.05728789907
    [Google Scholar]
  25. HeJ. QiaoW. AnQ. YangT. LuoY. Dihydrofolate reductase inhibitors for use as antimicrobial agents.Eur. J. Med. Chem.202019511226810.1016/j.ejmech.2020.11226832298876
    [Google Scholar]
  26. SuwitoH. Jumina.; Mustofa.; Pudjiastuti, P.; Fanani, M.Z.; Kimata-Ariga, Y.; Katahira, R.; Kawakami, T.; Fujiwara, T.; Hase, T.; Sirat, H.M.; Puspaningsih, N.N. Design and synthesis of chalcone derivatives as inhibitors of the ferredoxin - ferredoxin-NADP+ reductase interaction of Plasmodium falciparum: Pursuing new antimalarial agents.Molecules20141912214732148810.3390/molecules191221473
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968347168241015102108
Loading
/content/journals/ccb/10.2174/0122127968347168241015102108
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test