Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Background

Numerous natural products have been successfully developed for clinical use in the treatment of human diseases in almost every therapeutic area.

Objectives

This work aimed to assess the and α-amylase inhibition activities of carlina oxide and aplotaxene, isolated from the roots of and respectively.

Methods

The essential oil from roots was obtained using a Clevenger-type apparatus, and the hexanoic extract from the roots of was obtained through maceration. Major components of each plant were separated column chromatography. The α-amylase inhibition activity was evaluated using porcine pancreatic α-amylase, while the molecular docking study was conducted using the Molecular Operating Environment (MOE) with three types of α-amylase: human salivary, pancreatic α-amylase and α-amylase (PDB: 1Q4N, 5EMY, 7P4W respectively).

Results

The α-amylase inhibition results for the essential oil, the hexanoic extract, carlina oxide and aplotaxene showed that carlina oxide exhibited significant activity with IC of 0.42 mg/mL. However, the study showed no interaction between aplotaxene and the three α-amylase enzymes, whereas carlina oxide demonstrated one pi-cation interaction with 5EMY with the amino acid TYR 62 at a distance of 4.70 Å and two pi-H interactions with 7P4W with the amino acid LYS 383 at distances of 4.31 and 4 .03 Å.

Conclusion

In conclusion, carlina oxide has the potential to serve as an alternative agent for α-amylase inhibition, contributing to the reduction of postprandial hyperglycemia.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968317328240918041222
2024-10-02
2025-06-18
Loading full text...

Full text loading...

References

  1. NairS.S. KavrekarV. MishraA. In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts.Eur. J. Exp. Biol.201331128132
    [Google Scholar]
  2. LiamisG. LiberopoulosE. BarkasF. ElisafM. Diabetes mellitus and electrolyte disorders.World J. Clin. Cases201421048849610.12998/wjcc.v2.i10.48825325058
    [Google Scholar]
  3. VssP. AdapaD. VanaD.R. ChoudhuryA. AsadullahJ. ChatterjeeA. Nutritional components relevant to type-2-diabetes: Dietary sources, metabolic functions and glycaemic effects.J. Res. Med. Dent.2018655275
    [Google Scholar]
  4. BurkeJ.P. WilliamsK. NarayanK.M.V. LeibsonC. HaffnerS.M. SternM.P. A population perspective on diabetes prevention: Whom should we target for preventing weight gain?Diabetes Care20032671999200410.2337/diacare.26.7.199912832302
    [Google Scholar]
  5. MukhtarY. GalalainA. YunusaU. A modern overview on diabetes mellitus: A chronic endocrine disorder.Eur J Biol.20205211410.47672/ejb.409
    [Google Scholar]
  6. AlbertiK.G.M.M. ZimmetP.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation.Diabet. Med.199815753955310.1002/(SICI)1096‑9136(199807)15:7<539::AID‑DIA668>3.0.CO;2‑S9686693
    [Google Scholar]
  7. NickavarB. AbolhasaniL. Bioactivity-guided separation of an a-amylase inhibitor flavonoid from Salvia virgata.Iran. J. Pharm. Res.2013121576124250572
    [Google Scholar]
  8. CerielloA. Postprandial hyperglycemia and diabetes complications: Is it time to treat?Diabetes20055411710.2337/diabetes.54.1.115616004
    [Google Scholar]
  9. BrayG.A. GreenwayF.L. Current and potential drugs for treatment of obesity.Endocr. Rev.199920680587510.1210/edrv.20.6.038310605627
    [Google Scholar]
  10. CalixtoJ.B. The role of natural products in modern drug discovery.An. Acad. Bras. Cienc.201991Suppl. 3e2019010510.1590/0001‑376520192019010531166478
    [Google Scholar]
  11. DaviesJ. Section 3 the advent of modern microbiology-in praise of antibiotics.ASM1999655304310
    [Google Scholar]
  12. SinghS.B. PelaezF. Biodiversity, chemical diversity and drug discovery.Prog. Drug Res.200865141174
    [Google Scholar]
  13. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010.J. Nat. Prod.201275331133510.1021/np200906s22316239
    [Google Scholar]
  14. KarimaS. FaridaS. MihoubZ.M. Antimicrobial activity of an algerian medicinal plant: Carthamus caeruleus L.PHCOG COMMN20133471
    [Google Scholar]
  15. OudaA. N. FatihaM. SadiaM. ZohraS. F. NoureddineD. In vivo anti-inflammatory activity of aqueous extract of Carthamus caeruleus L. rhizome against carrageenan-induced inflammation in mice.Jordan J. Biol.2021143
    [Google Scholar]
  16. MeddourR. Meddour-SaharO. Medicinal plants and their traditional uses in kabylia (Tizi Oouzou, Algeria).Arab J Med Aromat Plants201512137151
    [Google Scholar]
  17. MamiI.R. Merad-BoussalahN. El Amine DibM. TabtiB. CostaJ. MuselliA. Chemical variability and antioxidant activities of the essential oils of the aerial parts of Ammoides verticillata and the roots of Carthamus caeruleus and their synergistic effect in combination.Comb. Chem. High Throughput Screen.2021241717832504498
    [Google Scholar]
  18. ToubaneA. RezzougS.A. BesombesC. DaoudK. Optimization of accelerated solvent extraction of Carthamus caeruleus L. Evaluation of antioxidant and anti-inflammatory activity of extracts.Ind. Crops Prod.20179762063110.1016/j.indcrop.2016.12.002
    [Google Scholar]
  19. DahmaniM. LaoufiR. SelamaO. ArabK. Gas chromatography coupled to mass spectrometry characterization, anti-inflammatory effect, wound-healing potential, and hair growth-promoting activity of Algerian Carthamus caeruleus L (Asteraceae).Indian J. Pharmacol.201850312312910.4103/ijp.IJP_65_1730166749
    [Google Scholar]
  20. MamiI.R. BelabbesR. Amine DibM.E. TabtiB. CostaJ. MuselliA. Biological activities of carlina oxide isolated from the roots of Carthamus caeruleus.J. Nat. Prod.2020102145152
    [Google Scholar]
  21. BenabdesselamS. GuechiE-K. IzzaH. Antioxidant, antibacterial and anticoagulant activities of the methanolic extract of Rhaponticum caeruleus fruit growing wild in eastern algeria.Pharm. Lett.201810110
    [Google Scholar]
  22. BenyellesB. AllaliH. El Amine DibM. DjabouN. TabtiB. CostaJ. Essential oil from Rhaponticum acaule L. roots: Comparative study using HS-SPME/GC/GC–MS and hydrodistillation techniques.J. Saudi Chem. Soc.201418697297610.1016/j.jscs.2011.12.001
    [Google Scholar]
  23. MosbahH. ChahdouraH. KammounJ. HlilaM.B. LouatiH. HammamiS. FlaminiG. AchourL. SelmiB. Rhaponticum acaule (L) DC essential oil: Chemical composition, in vitro antioxidant and enzyme inhibition properties.BMC Complement. Altern. Med.20181817910.1186/s12906‑018‑2145‑529506517
    [Google Scholar]
  24. RamasubbuN. SundarK. RagunathC. RafiM.M. Structural studies of a Phe256Trp mutant of human salivary α-amylase: Implications for the role of a conserved water molecule in enzyme activity.Arch. Biochem. Biophys.2004421111512410.1016/j.abb.2003.10.00714678792
    [Google Scholar]
  25. CanerS. ZhangX. JiangJ. ChenH.M. NguyenN.T. OverkleeftH. BrayerG.D. WithersS.G. Glucosyl epi‐cyclophellitol allows mechanism‐based inactivation and structural analysis of human pancreatic α‐amylase.FEBS Lett.201659081143115110.1002/1873‑3468.1214327000970
    [Google Scholar]
  26. GorrecF. BelliniD. The FUSION protein crystallization screen.J. Appl. Cryst.202255231031910.1107/S160057672200176535497656
    [Google Scholar]
  27. TsyrulnevaI. AlagappanP. LiedbergB. Colorimetric detection of salivary a-amylase using maltose as a noncompetitive inhibitor for polysaccharide cleavage.ACS Sens.20194486587310.1021/acssensors.8b0134330895774
    [Google Scholar]
  28. YadavR. BhartiyaJ.P. VermaS.K. NandkeoliarM.K. The evaluation of serum amylase in the patients of type 2 diabetes mellitus, with a possible correlation with the pancreatic functions.J. Clin. Diagn. Res.2013771291129410.7860/JCDR/2013/6016.312023998048
    [Google Scholar]
  29. RinesA.K. SharabiK. TavaresC.D.J. PuigserverP. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes.Nat. Rev. Drug Discov.2016151178680410.1038/nrd.2016.15127516169
    [Google Scholar]
  30. AL-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels.Biomolecules20199943010.3390/biom909043031480505
    [Google Scholar]
  31. RasouliH. Hosseini-GhazviniS.M.B. AdibiH. KhodarahmiR. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: A virtual screening perspective for the treatment of obesity and diabetes.Food Funct.2017851942195410.1039/C7FO00220C28470323
    [Google Scholar]
  32. Cisneros-YupanquiM. LanteA. MihaylovaD. KrastanovA.I. RizziC. THE A-amylase and A-glucosidase inhibition capacity of grape pomace: A review.Food Bioprocess Technol.202316469170310.1007/s11947‑022‑02895‑036062030
    [Google Scholar]
  33. TiwariV.P. DubeyA. Al-ShehriM. TripathiI.P. Exploration of human pancreatic alpha-amylase inhibitors from Physalis peruviana for the treatment of type 2 diabetes.J. Biomol. Struct. Dyn.20244221031104610.1080/07391102.2023.224333637545158
    [Google Scholar]
  34. SilvaF.M.L. DonegaM.A. CerdeiraA.L. CornianiN. VeliniE.D. CantrellC.L. DayanF.E. CoelhoM.N. SheaK. DukeS.O. Roots of the invasive species Carduus nutans L. and C. acanthoides L. produce large amounts of aplotaxene, a possible allelochemical.J. Chem. Ecol.201440327628410.1007/s10886‑014‑0390‑824557607
    [Google Scholar]
  35. CerdeiraA.L. SilvaF.M.L. DonegaM.A. CantrellC.L. SheaK. DukeS.O. VeliniE.D. CornianiN. Roots of the invasive species Carduus nutans L. and C. acanthoides L. Produce the phytotoxin aplotaxene, a possible allelochemical.Planta Med.20137910PB210.1055/s‑0033‑1348556
    [Google Scholar]
  36. BenhamidatL. Amine DibM.E. BensaidO. ZatlaA.T. KenicheA. OuarI.E. NassimD. MuselliA. Chemical composition and antioxidant, anti-inflammatory and anticholinesterase properties of the aerial and root parts of Centaurea acaulis essential oils: Study of the combinatorial activities of aplotaxene with reference standards.J. Essent. Oil-Bear. Plants202225112614610.1080/0972060X.2022.2046177
    [Google Scholar]
  37. SemaouiM. DibM.E.A. DjabouN. CostaJ. MuselliA. chemical composition, biological activities and toxicity study of Carduncellus pinnatus essential oil from west algeria.Curr. Bioact. Compd.2022183e02082119518610.2174/1573407217666210802113423
    [Google Scholar]
  38. HavlikJ. BudesinskyM. KloucekP. KokoskaL. ValterovaI. VasickovaS. ZelenyV. Norsesquiterpene hydrocarbon, chemical composition and antimicrobial activity of Rhaponticum carthamoides root essential oil.Phytochemistry200970341441810.1016/j.phytochem.2008.12.01819195668
    [Google Scholar]
  39. SemmlerF.W. FeldsteinJ. On the knowledge of the components of essential oils. (on the components of costus root oil).Ber. Dtsch. Chem. Ges.19144732687269410.1002/cber.19140470353
    [Google Scholar]
  40. BinderR.G. BensonM. HaddonW.F. FrenchR.C. Aplotaxene derivatives from Cirsium arvense.Phytochemistry199231310331034
    [Google Scholar]
  41. LinkP. RothK. SporerF. WinkM. Carlina acaulis exhibits antioxidant activity and counteracts ab toxicity in caenorhabditis elegans.Molecules201621787110.3390/molecules2107087127384550
    [Google Scholar]
  42. PavelaR. PavoniL. BonacucinaG. CespiM. CappellacciL. PetrelliR. SpinozziE. AguzziC. ZeppaL. UbaldiM. DesneuxN. CanaleA. MaggiF. BenelliG. Encapsulation of Carlina acaulis essential oil and carlina oxide to develop long-lasting mosquito larvicides: microemulsions versus nanoemulsions.J. Pest Sci.202194389991510.1007/s10340‑020‑01327‑2
    [Google Scholar]
  43. ĐorđevićS. PetrovićS. DobrićS. MilenkovićM. VučićevićD. ŽižićS. KukićJ. Antimicrobial, anti-inflammatory, anti-ulcer and antioxidant activities of Carlina acanthifolia root essential oil.J. Ethnopharmacol.2007109345846310.1016/j.jep.2006.08.02117011148
    [Google Scholar]
  44. SaralievaE.N. PetkovaN.T. IvanovI.G. AnevaI.Y. GeorgievV.G. NikolovaK.T. Polyphenolic compounds, triterpenes, carlina oxide, antioxidant activity and carbohydrate profile of different vegetal parts of Carlina vulgaris L., Carlina acanthifolia all. and Carlina Corymbosa L. TROP.J. Nat. Prod. Res.202371042424248
    [Google Scholar]
  45. SaralievaE. DinchevaI. TumbarskiY. PetkovaN. Vilhelmova-IlievaN. NikolovaI. SimeonovaL. IvanovI. Chemical composition, antibacterial, antiviral, antioxidant, and acetylcholinesterase inhibitory properties of essential oils from Carlina acanthifolia all. Roots.J. Essent. Oil-Bear. Plants202225597698610.1080/0972060X.2022.2133973
    [Google Scholar]
  46. AchiriR. BenhamidatL. MamiI.R. DibM.E.A. AissaouiN. CherifC.Z. CherifH.Z. MuselliA. chemical composition and antioxidant, anti-inflammatory and antimicrobial activities of the essential oil and its major component (Carlina oxide) of Carlina hispanica roots from WESTERN ALGERIA.J. Essent. Oil-Bear. Plants20212451113112410.1080/0972060X.2021.2005692
    [Google Scholar]
  47. Stojanović-RadićZ. ČomićL. RadulovićN. BlagojevićP. Mihajilov-KrstevT. RajkovićJ. Commercial Carlinae radix herbal drug: Botanical identity, chemical composition and antimicrobial properties.Pharm. Biol.201250893394010.3109/13880209.2011.64921422480199
    [Google Scholar]
  48. RohlederN. NaterU.M. Determinants of salivary α-amylase in humans and methodological considerations.Psychoneuroendocrinology200934446948510.1016/j.psyneuen.2008.12.00419155141
    [Google Scholar]
  49. YangZ.M. LinJ. ChenL.H. ZhangM. ChenW.W. YangX.R. The roles of AMY1 copies and protein expression in human salivary α-amylase activity.Physiol. Behav.201513817317810.1016/j.physbeh.2014.10.03725446200
    [Google Scholar]
  50. GrigoleitJ.S. KullmannJ.S. OberbeckR. SchedlowskiM. EnglerH. Salivary α-amylase response to endotoxin administration in humans.Psychoneuroendocrinology20133891819182310.1016/j.psyneuen.2013.01.00323394872
    [Google Scholar]
  51. ArhakisA. KaragiannisV. KalfasS. Salivary alpha-amylase activity and salivary flow rate in young adults.Open Dent. J.20137171510.2174/187421060130701000723524385
    [Google Scholar]
  52. TiwariS. SrivastavaR. SinghC. ShuklaK. SinghR. SinghP. SinghR. SinghN. SharmaR. Amylases: An overview with special reference to alpha amylase.J GLOBAL BIOSCI20154118861901
    [Google Scholar]
  53. DouglasC.W. Enzymic activity of salivary amylase when bound to the surface of oral streptococci oro-gastro-intestinal digestion of starch in white bread, wheat-based and gluten-free pasta: Unveiling the contribution of human salivary a-amylase starch and glucose oligosaccharides protect salivary-type amylase activity at acid PH.Food Chem.201915274566573
    [Google Scholar]
  54. FreitasD. Le FeunteunS. Oro-gastro-intestinal digestion of starch in white bread, wheat-based and gluten-free pasta: Unveiling the contribution of human salivary α-amylase.Food Chem.201927427456657310.1016/j.foodchem.2018.09.02530372980
    [Google Scholar]
  55. ScannapiecoF.A. Salivary alpha-amylase: Role in dental plaque and caries formation.Crit. Rev. Oral Biol. Med.199343-4301307
    [Google Scholar]
  56. KellerP.J. AllanB.J. The protein composition of human pancreatic juice.J. Biol. Chem.1967242228128710.1016/S0021‑9258(19)81461‑86016613
    [Google Scholar]
  57. DateK. Regulatory functions of α-amylase in the small intestine other than starch digestion: α-glucosidase activity, glucose absorption, cell proliferation, and differentiation.IN NEW INSIGHTS INTO METABOLIC SYNDROME; INTECHOPEN2020
    [Google Scholar]
  58. Asanuma-DateK. HiranoY. LeN. SanoK. KawasakiN. HashiiN. HirutaY. NakayamaK. UmemuraM. IshikawaK. SakagamiH. OgawaH. Functional regulation of sugar assimilation by N-glycan-specific interaction of pancreatic α-amylase with glycoproteins of duodenal brush border membrane.J. Biol. Chem.201228727231042311810.1074/jbc.M111.31465822584580
    [Google Scholar]
  59. OlaokunO.O. McGawL.J. EloffJ.N. NaidooV. Evaluation of the inhibition of carbohydrate hydrolysing enzymes, antioxidant activity and polyphenolic content of extracts of ten African Ficus species (Moraceae) used traditionally to treat diabetes.BMC Complement. Altern. Med.20131319410.1186/1472‑6882‑13‑9423641947
    [Google Scholar]
  60. HaguetQ. Le JoubiouxF. ChavanelleV. GroultH. SchoonjansN. LanghiC. MichauxA. OteroY.F. BoisseauN. PeltierS.L. SirventP. MaugardT. Inhibitory potential of a-amylase, a-glucosidase, and pancreatic lipase by a formulation of five plant extracts: TOTUM-63.Int. J. Mol. Sci.2023244365210.3390/ijms2404365236835060
    [Google Scholar]
  61. HernándezM.S. RodríguezM.R. GuerraN.P. RosésR.P. Amylase production by Aspergillus niger in submerged cultivation on two wastes from food industries.J. Food Eng.20067319310010.1016/j.jfoodeng.2005.01.009
    [Google Scholar]
  62. de VriesR. Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes; relevance for industrial production.Appl. Microbiol. Biotechnol.2003611102010.1007/s00253‑002‑1171‑912658510
    [Google Scholar]
  63. KazimA.R.S. JiangY. LiS. HeX. Aspergillus nidulans amyg functions as an intracellular a-amylase to promote a-glucan synthesis.Microbiol. Spectr.202193e00644e2110.1128/Spectrum.00644‑2134756063
    [Google Scholar]
  64. AkasakaN. FujiwaraS. The therapeutic and nutraceutical potential of agmatine, and its enhanced production using Aspergillus oryzae.Amino Acids202052218119710.1007/s00726‑019‑02720‑730915570
    [Google Scholar]
  65. RuadrewS. CraftJ. AidooK. Occurrence of toxigenic Aspergillus spp. and aflatoxins in selected food commodities of Asian origin sourced in the West of Scotland.Food Chem. Toxicol.20135565365810.1016/j.fct.2013.02.00123416649
    [Google Scholar]
  66. PorfirifM.C. MilatichE.J. FarruggiaB.M. RomaniniD. Production of alpha-amylase from Aspergillus oryzae for several industrial applications in a single step.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20161022879210.1016/j.jchromb.2016.04.01527085017
    [Google Scholar]
  67. Bhanja DeyT. BanerjeeR. Purification, biochemical characterization and application of α-amylase produced by Aspergillus oryzae IFO-30103.Biocatal. Agric. Biotechnol.201541839010.1016/j.bcab.2014.10.002
    [Google Scholar]
  68. EkinsS. MestresJ. TestaB. In silico pharmacology for drug discovery: Applications to targets and beyond.Br. J. Pharmacol.20071521213710.1038/sj.bjp.070730617549046
    [Google Scholar]
  69. AleksandrovA. MyllykallioH. Advances and challenges in drug design against tuberculosis: Application of in silico approaches.Expert Opin. Drug Discov.2019141354610.1080/17460441.2019.155048230477360
    [Google Scholar]
  70. NgK.C.S. NgabonzizaJ.C.S. LempensP. de JongB.C. van LethF. MeehanC.J. Bridging the TB data gap: In silico extraction of rifampicin-resistant tuberculosis diagnostic test results from whole genome sequence data.PeerJ20197e756410.7717/peerj.756431523514
    [Google Scholar]
  71. OlokobaA.B. ObateruO.A. OlokobaL.B. Type 2 diabetes mellitus: A review of current trends.Oman Med. J.201227426927310.5001/omj.2012.6823071876
    [Google Scholar]
  72. AryaeianN. Khorshidi SedehiS. ArablouT. Polyphenols and their effects on diabetes management: A review.Med. J. Islam. Repub. Iran201731188689210.14196/mjiri.31.13429951434
    [Google Scholar]
  73. GholamH.A. FalahH. SharififarF. MirtajA.S. The inhibitory effect of some Iranian plants extracts on the alpha glucosidase.Iran. J. Basic Med. Sci.200811119
    [Google Scholar]
  74. VinholesJ. VizzottoM. Synergisms in alpha-glucosidase inhibition and antioxidant activity of Camellia sinensis L. Kuntze and Eugenia uniflora L.Ethanolic Extracts. Pharmacognosy Res.20179110110710.4103/0974‑8490.19779728250662
    [Google Scholar]
  75. ManaharanT. TengL.L. AppletonD. MingC.H. MasilamaniT. PalanisamyU.D. Antioxidant and antiglycemic potential of Peltophorum pterocarpum plant parts.Food Chem.201112941355136110.1016/j.foodchem.2011.05.041
    [Google Scholar]
  76. OgunyemiO.M. GyebiG.A. SaheedA. PaulJ. Nwaneri-ChidozieV. OlorundareO. AdebayoJ. KoketsuM. AljarbaN. AlkahtaniS. BatihaG.E.S. OlaiyaC.O. Inhibition mechanism of alpha-amylase, a diabetes target, by a steroidal pregnane and pregnane glycosides derived from Gongronema latifolium Benth.Front. Mol. Biosci.2022986671910.3389/fmolb.2022.86671936032689
    [Google Scholar]
  77. RaviL. In vitro and in silico alpha-amylase inhibition potential (anti-diabetic activity) of pseuderanthemum bicolor (sims) radik.In Vitro20201312
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968317328240918041222
Loading
/content/journals/ccb/10.2174/0122127968317328240918041222
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test