Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Background

Acute Kidney Injury (AKI) is a common clinical disease that has a high incidence and mortality rate. Clove, a robust natural source of bioactive chemicals and rich in secondary metabolites, plays a wide range of biological roles.

Aim

The present study aimed to assess the ameliorative efficacy of clove extract against acute renal damage induced by folic acid in rats.

Methods

Gas Chromatography/Mass Spectrometry (GC/MS) was used to investigate the main components of clove extract. Folic acid, at a dose of 250 mg/kg, was delivered intraperitoneally to rats to induce AKI. Eighteen rats were divided into three groups: control, AKI, and AKI + clove extract (500 mg/kg).

Results

The administration of clove extract significantly restored the levels of creatine, urea, uric acid, sodium, potassium, chloride, creatinine clearance, and microalbumin to nearly normal levels. Also, clove water extract inhibited oxidative stress by decreasing concentrations of Malondialdehyde (MDA) and Nitric Oxide (NO). Furthermore, clove extract elevated the levels of Glutathione-reduced (GSH), Catalase (CAT), and Glutathione S-transferase (GST). Kidney section histology showed notable improvements after the administration of clove extract.

Conclusion

The clove water extract has been found to contain many bioactive components possessing antioxidant and anti-inflammatory properties, effectively protecting against acute renal injury.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968337186240926063010
2024-10-18
2025-05-10
Loading full text...

Full text loading...

References

  1. YanL.J. Folic acid‐induced animal model of kidney disease.Animal Model. Exp. Med.20214432934210.1002/ame2.1219434977484
    [Google Scholar]
  2. LiT. YangK. GaoW. PengF. ZouX. Cellular senescence in acute kidney injury: Target and opportunity.Biochem. Biophys. Res. Commun.202470614974410.1016/j.bbrc.2024.14974438479244
    [Google Scholar]
  3. Acute kidney injury.Nat. Rev. Dis. Primers2021715110.1038/s41572‑021‑00291‑034267226
    [Google Scholar]
  4. KellumJ.A. RomagnaniP. AshuntantangG. RoncoC. ZarbockA. AndersH.J. Acute kidney injury.Nat. Rev. Dis. Primers2021715210.1038/s41572‑021‑00284‑z34267223
    [Google Scholar]
  5. KhandelwalA. SatarianoM. DoshiK. AggarwalP. AvasaralaV. SoodA. BansalS. NeyraJ.A. RainaR. Management and outcomes of acute kidney injury due to burns: A literature review.J. Burn Care Res.202445232333710.1093/jbcr/irad12137565542
    [Google Scholar]
  6. YoonS.Y. KimJ.S. JeongK.H. KimS.K. Acute kidney injury: Biomarker-guided diagnosis and management.Medicina (Kaunas)202258334010.3390/medicina5803034035334515
    [Google Scholar]
  7. ZaghloulM.S. AbdelrahmanR.S. Nilotinib ameliorates folic acid-induced acute kidney injury through modulation of TWEAK and HSP-70 pathways.Toxicology201942715230310.1016/j.tox.2019.15230331593741
    [Google Scholar]
  8. LiX. ZouY. XingJ. FuY.Y. WangK.Y. WanP.Z. ZhaiX.Y. Pretreatment with roxadustat (FG-4592) attenuates folic acid-induced kidney injury through antiferroptosis via Akt/GSK-3 β/Nrf2 pathway.Oxid. Med. Cell. Longev.2020202011710.1155/2020/628698432051732
    [Google Scholar]
  9. ZhangD. LiuS. JiangH. LiuS. KongF. DIA proteomics analysis reveals the mechanism of folic acid-induced acute kidney injury and the effects of icariin.Chem. Biol. Interact.202439011087810.1016/j.cbi.2024.11087838272249
    [Google Scholar]
  10. RashedA. MohamedA.S. SolimanA. Ameliorative effect of galium verum (Rubiaceae Family) methanolic extract on folic acid-induced acute kidney injury in male rats.Iraqi J. Pharm Sci.2023323142410.31351/vol32iss3pp14‑24
    [Google Scholar]
  11. LiD. LiuB. FanY. LiuM. HanB. MengY. XuX. SongZ. LiuX. HaoQ. DuanX. NakaiA. ChangY. CaoP. TanK. Nuciferine protects against folic acid‐induced acute kidney injury by inhibiting ferroptosis.Br. J. Pharmacol.202117851182119910.1111/bph.1536433450067
    [Google Scholar]
  12. Rahbar SaadatY. Hosseiniyan KhatibiS.M. ArdalanM. BarzegariA. Zununi VahedS. Molecular pathophysiology of acute kidney injury: The role of sirtuins and their interactions with other macromolecular players.J. Cell. Physiol.202123653257327410.1002/jcp.3008432989772
    [Google Scholar]
  13. HuiZ. WenH. ZhuJ. DengH. JiangX. YeX.Y. WangL. XieT. BaiR. Discovery of plant-derived anti-tumor natural products: Potential leads for anti-tumor drug discovery.Bioorg. Chem.202414210695710.1016/j.bioorg.2023.10695737939507
    [Google Scholar]
  14. LvY. LiW. LiaoW. JiangH. LiuY. CaoJ. LuW. FengY. Nano-drug delivery systems based on natural products.Int. J. Nanomedicine20241954156910.2147/IJN.S44369238260243
    [Google Scholar]
  15. Liñán-AteroR. AghababaeiF. GarcíaS.R. HasiriZ. ZiogkasD. MorenoA. Clove essential oil: Chemical profile, biological activities, encapsulation strategies, and food applications.Antioxidants (Basel)202413448810.3390/antiox13040488
    [Google Scholar]
  16. RuddarajuLK. PammiSVN. GuntukuGS. PadavalaVS. KolapalliVRM. A review on anti-bacterials to combat resistance: From ancient era of plants and metals to present and future perspectives of green nano technological combinations.Asian J Pharm Sci2020151425910.1016/j.ajps.2019.03.002
    [Google Scholar]
  17. SurguchovA. BernalL. SurguchevA.A. Phytochemicals as regulators of genes involved in synucleinopathies.Biomolecules202111562410.3390/biom11050624
    [Google Scholar]
  18. KadriY. NciriR. BardaaS. BrahmiN. SaberS. HarrathA.H. AldahmashW. AlwaselS. MohanyM. El FekiA. Salah AllaguiM. Syzygium aromaticum alleviates cerium chloride-induced neurotoxic effect in the adult mice.Toxicol. Mech. Methods2019291263410.1080/15376516.2018.150684930064281
    [Google Scholar]
  19. PandeyV.K. SrivastavaS. Ashish; Dash, K.K.; Singh, R.; Dar, A.H.; Singh, T.; Farooqui, A.; Shaikh, A.M.; Kovacs, B. Bioactive properties of clove (Syzygium aromaticum) essential oil nanoemulsion: A comprehensive review.Heliyon2024101e2243710.1016/j.heliyon.2023.e2243738163240
    [Google Scholar]
  20. AfrendiE. PrastyaM.E. AstutiR.I. WahyuniW.T. BatubaraI. Bioactivity of the ethanol extract of clove (Syzygium aromaticum) as antitoxin.Int. J. Food Sci.202320231810.1155/2023/324521037780095
    [Google Scholar]
  21. GuptaA. PuriV. SharmaR. PuriS. Folic acid induces acute renal failure (ARF) by enhancing renal prooxidant state.Exp. Toxicol. Pathol.201264322523210.1016/j.etp.2010.08.01020833517
    [Google Scholar]
  22. NassanM.A. MohamedE.H. AbdelhafezS. IsmailT.A. Effect of clove and cinnamon extracts on experimental model of acute hematogenous pyelonephritis in albino rats: Immunopathological and antimicrobial study.Int. J. Immunopathol. Pharmacol.2015281606810.1177/039463201557207525816407
    [Google Scholar]
  23. MohamedA.S. Bin DajemS. Al-KahtaniM. AliS.B. IbrahimE. MorsyK. FahmyS.R. Silver/chitosan nanocomposites induce physiological and histological changes in freshwater bivalve.J. Trace Elem. Med. Biol.20216512671910.1016/j.jtemb.2021.12671933517023
    [Google Scholar]
  24. MorsyK. FahmyS. MohamedA. AliS. El-GarhyM. ShazlyM. Optimizing and evaluating the antihelminthic activity of the biocompatible zinc oxide nanoparticles against the ascaridid nematode, parascaris equorum in vitro.Acta Parasitol.201964487388610.2478/s11686‑019‑00111‑231478140
    [Google Scholar]
  25. SchirmeisterJ. Determination of creatinine in serum.Dtsch. Med. Wochenschr.1964891940
    [Google Scholar]
  26. FawcettJ.K. ScottJ.E. A rapid and precise method for the determination of urea.J. Clin. Pathol.196013215615910.1136/jcp.13.2.15613821779
    [Google Scholar]
  27. BarhamD. TrinderP. An improved colour reagent for the determination of blood glucose by the oxidase system.Analyst (Lond.)197297115114214510.1039/an97297001425037807
    [Google Scholar]
  28. TrinderP. A rapid method for the determination of sodium in serum.Analyst (Lond.)19517690759659910.1039/an9517600596
    [Google Scholar]
  29. SchoenfeldR.G. LewellanC.J. A colorimetric method for determination of serum chloride.Clin. Chem.196410653353910.1093/clinchem/10.6.533
    [Google Scholar]
  30. HillmannG. BeyerG. Rapid determination of serum potassium by turbidity measurement with kalignost after protein precipitation.Z. Klin. Chem. Klin. Biochem.19675293945605219
    [Google Scholar]
  31. PanuyiotouB.N. Microalbuminuria: Pathogenesis, prognosis and management.J. Int. Med. Res.199422418120110.1177/0300060594022004017958379
    [Google Scholar]
  32. DixitS.G. RaniP. AnandA. KhatriK. ChauhanR. BharihokeV. To study the effect of monosodium glutamate on histomorphometry of cortex of kidney in adult albino rats.Ren. Fail.201436226627010.3109/0886022X.2013.84686524188378
    [Google Scholar]
  33. AbdelrahmanR.S. AbdelsalamR.A. ZaghloulM.S. Beneficial effect of trimetazidine on folic acid‐induced acute kidney injury in mice: Role of HIF‐1α/HO‐1.J. Biochem. Mol. Toxicol.2022365e2301110.1002/jbt.2301135191561
    [Google Scholar]
  34. KandelR. SinghK.P. Higher concentrations of folic acid cause oxidative stress, acute cytotoxicity, and long-term fibrogenic changes in kidney epithelial cells.Chem. Res. Toxicol.202235112168217910.1021/acs.chemrestox.2c0025836354958
    [Google Scholar]
  35. ZuluM. KaileT. KantengaT. ChilesheC. NkhomaP. SinkalaM. Kidney injury molecule-1 and microalbuminuria levels in Zambian population: Biomarkers of kidney injury.Pan Afr. Med. J.2016245410.11604/pamj.2016.24.54.875927642395
    [Google Scholar]
  36. BaeC.R. KimY. KwonY.G. CU06-1004 alleviates oxidative stress and inflammation on folic acid-induced acute kidney injury in mice.J. Pharmacol. Sci.20241542778510.1016/j.jphs.2023.12.00938246731
    [Google Scholar]
  37. LiX. ZouY. FuY.Y. XingJ. WangK.Y. WanP.Z. ZhaiX.Y. A-lipoic acid alleviates folic acid-induced renal damage through inhibition of ferroptosis.Front. Physiol.20211268054410.3389/fphys.2021.68054434630132
    [Google Scholar]
  38. BolisettyS. AgarwalA. Urine albumin as a biomarker in acute kidney injury.Am. J. Physiol. Renal Physiol.20113003F626F62710.1152/ajprenal.00004.201121228105
    [Google Scholar]
  39. WroneE.M. CarnethonM.R. PalaniappanL. FortmannS.P. Association of dietary protein intake and microalbuminuria in healthy adults: Third National Health and Nutrition Examination Survey.Am. J. Kidney Dis.200341358058710.1053/ajkd.2003.5011912612981
    [Google Scholar]
  40. KoroshiA. Microalbuminuria, is it so important?Hippokratia200711310510719582202
    [Google Scholar]
  41. FutrakulN. SridamaV. FutrakulP. Microalbuminuria--A biomarker of renal microvascular disease.Ren. Fail.200931214014310.1080/0886022080259594819212911
    [Google Scholar]
  42. ReddyV.P. Oxidative stress in health and disease.Biomedicines20231111292510.3390/biomedicines1111292538001926
    [Google Scholar]
  43. TomsaA.M. AlexaA.L. JunieM.L. RachisanA.L. CiumarneanL. Oxidative stress as a potential target in acute kidney injury.PeerJ20197e804610.7717/peerj.804631741796
    [Google Scholar]
  44. YilgorA. DemirC. Determination of oxidative stress level and some antioxidant activities in refractory epilepsy patients.Sci. Rep.2024141668810.1038/s41598‑024‑57224‑638509121
    [Google Scholar]
  45. AlBasherG. AlfarrajS. AlarifiS. AlkhtaniS. AlmeerR. AlsultanN. AlharthiM. AlotibiN. Al-dbassA. Abdel MoneimA.E. Nephroprotective role of selenium nanoparticles against glycerol-induced acute kidney injury in rats.Biol. Trace Elem. Res.2020194244445410.1007/s12011‑019‑01793‑531264127
    [Google Scholar]
  46. LiB. AlliR. VogelP. GeigerT.L. IL-10 modulates DSS-induced colitis through a macrophage–ROS–NO axis.Mucosal Immunol.20147486987810.1038/mi.2013.10324301657
    [Google Scholar]
  47. NoemanS.A. HamoodaH.E. BaalashA.A. Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats.Diabetol. Metab. Syndr.2011311710.1186/1758‑5996‑3‑1721812977
    [Google Scholar]
  48. KumarD. SinglaS.K. PuriV. PuriS. The restrained expression of NF-kB in renal tissue ameliorates folic acid induced acute kidney injury in mice.PLoS One2015101e11594710.1371/journal.pone.011594725559736
    [Google Scholar]
  49. KosekiK. MaekawaY. BitoT. YabutaY. WatanabeF. High-dose folic acid supplementation results in significant accumulation of unmetabolized homocysteine, leading to severe oxidative stress in Caenorhabditis elegans.Redox Biol.20203710172410.1016/j.redox.2020.10172432961438
    [Google Scholar]
  50. UlanowskaM. OlasB. Biological properties and prospects for the application of eugenol—A review.Int. J. Mol. Sci.2021227367110.3390/ijms2207367133916044
    [Google Scholar]
  51. MarkakisC. TsarouchaA. PapaloisAE. LambropoulouM. SpartalisE. TsigalouC. The role of eugenol in the prevention of acute pancreatitis-induced acute kidney injury: Experimental study.HPB Surg20162016320314710.1155/2016/3203147
    [Google Scholar]
  52. SaidM.M. The protective effect of eugenol against gentamicin-induced nephrotoxicity and oxidative damage in rat kidney.Fundam. Clin. Pharmacol.201125670871610.1111/j.1472‑8206.2010.00900.x21105912
    [Google Scholar]
  53. FathyM. Abdel-latifR. AbdelgwadY.M. OthmanO.A. Abdel-RazikA.R.H. DandekarT. OthmanE.M. Nephroprotective potential of eugenol in a rat experimental model of chronic kidney injury; targeting NOX, TGF-β, and Akt signaling.Life Sci.202230812095710.1016/j.lfs.2022.12095736113730
    [Google Scholar]
  54. Pinho-da-SilvaL. Mendes-MaiaP.V. Teَfilo, T.M.N.G.; Barbosa, R.; Ceccatto, V.M.; Coelho-de-Souza, A.N.; Santos Cruz, J.; Leal-Cardoso, J.H. trans-Caryophyllene, a natural sesquiterpene, causes tracheal smooth muscle relaxation through blockade of voltage-dependent Ca2+ channels.Molecules20121710119651197710.3390/molecules17101196523060288
    [Google Scholar]
  55. DahhamS. TabanaY. IqbalM. AhamedM. EzzatM. MajidA. MajidA. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna.Molecules2015207118081182910.3390/molecules20071180826132906
    [Google Scholar]
  56. ScandiffioR. GeddoF. CottoneE. QuerioG. AntoniottiS. GalloM.P. MaffeiM.E. BovolinP. Protective effects of (E)-β-caryophyllene (BCP) in chronic inflammation.Nutrients20201211327310.3390/nu1211327333114564
    [Google Scholar]
  57. Horváth, B.; Mukhopadhyay, P.; Kechrid, M.; Patel, V.; Tanchian, G.; Wink, D.A.; Gertsch, J.; Pacher, P. β-caryophyllene ameliorates cisplatin-induced nephrotoxicity in a cannabinoid 2 receptor-dependent manner.Free Radic. Biol. Med.20125281325133310.1016/j.freeradbiomed.2012.01.01422326488
    [Google Scholar]
  58. FrancomanoF. CarusoA. BarbarossaA. FazioA. La TorreC. CeramellaJ. β-Caryophyllene: A sesquiterpene with countless biological properties.Appl. Sci.2019924542010.3390/app9245420
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968337186240926063010
Loading
/content/journals/ccb/10.2174/0122127968337186240926063010
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): acute kidney injury; Clove; eugenol; folic acid; histopathology; inflammation; oxidative stress
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test