Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Background

The allelopathic effects of the essential oils of and on seed germination of two wheat species qualify them as bio-herbicides.

Objective

In order to search for natural plant-based products that may have herbicidal action, we selected two plant species, and to evaluate the allelopathic potential of their essential oils on wheat seed germination of two wheat species.

Methods

Aerials parts of and were subjected to hydrodistillation using a Clevenger-type apparatus to extract essential oils, followed by characterization using gas chromatography coupled with mass spectrometry. Bioassays were conducted with ethanol as the organic solvent, employing three concentrations (0.25, 0.5, and 0.75 μl/ml of oil/ethanol) to assess their effects on the seed and seedling growth of two wheat species.

Results

Under laboratory conditions, extracts of and oils at varying concentrations (0.25 μl, 0.5 μl, and 0.75 μl) were examined for their effects on two wheat species ( L. and L.). The yields of the obtained oils were 1.19% and 0.25%, respectively. The chemical composition of the essential oils extracted from and was dominated by oxygenated monoterpenes, representing 97.5% and 94.9%, respectively. The tested essential oils strongly inhibit seed germination and seedling growth (root length LR and shoot length LPA) of both wheat species studied. The inhibition increased as the oil concentration increased, although this increase differed between the two species. This study has shown that the tested essential oils possess an interesting inhibitory allelopathic potential.

Conclusion

The findings of this study indicate that the tested essential oils possess promising allelopathic properties, suggesting them as natural bio-herbicides.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968312958240924060719
2024-10-07
2025-05-31
Loading full text...

Full text loading...

References

  1. MajrashiA.A. Preliminary assessment of weed population in vegetable and fruit farms of Taif, Saudi Arabia.Braz. J. Biol.202282e25581610.1590/1519‑6984.25581635239821
    [Google Scholar]
  2. JugulamM. Biology, Physiology and Molecular Biology of Weeds.Boca Raton, FL, USACRC Press201710.1201/9781315121031
    [Google Scholar]
  3. VarahA. AhodoK. ChildsD.Z. ComontD. CrookL. FreckletonR.P. GoodsellR. HicksH.L. HullR. NeveP. NorrisK. Acting pre-emptively reduces the long-term costs of managing herbicide resistance.Sci. Rep.2024141620110.1038/s41598‑024‑56525‑038485959
    [Google Scholar]
  4. DessaintF. ChadoeufR. BarralisG. Weed community diversity in annual crops in Côte d’Or (France).Biotechnol. Agron. Soc. Environ.2001529198
    [Google Scholar]
  5. AtakM. MaviK. UremisI. Bio-herbicidal effects of oregano and rosemary essential oils on germination and seedling growth of bread wheat cultivars and weeds.Rom. Biotechnol. Lett.2016211114911159
    [Google Scholar]
  6. Grul’ováD. Pl’uchtováM. FejérJ. De MartinoL. CaputoL. SedlákV. De FeoV. Influence of six essential oils on invasive Solidago canadensis L. seed germination.Nat. Prod. Res.202034223231323310.1080/14786419.2018.155269430689411
    [Google Scholar]
  7. PintoA.P.R. SeibertJ.B. dos SantosO.D.H. FilhoS.A.V. do NascimentoA.M. Chemical constituents and allelopathic activity of the essential oil from leaves of Eremanthus erythropappus.Aust. J. Bot.201866860160810.1071/BT18138
    [Google Scholar]
  8. SumalanR.M. AlexaE. PopescuI. NegreaM. RadulovI. ObistioiuD. CocanI. Exploring ecological alternatives for crop protection using Coriandrum sativum essential oil.Molecules20192411204010.3390/molecules2411204031142010
    [Google Scholar]
  9. IsmanM.B. Plant essential oils for pest and disease management.Crop Prot.2000198-1060360810.1016/S0261‑2194(00)00079‑X
    [Google Scholar]
  10. MacíasF.A. MejíasF.J.R. MolinilloJ.M.G. Recent advances in allelopathy for weed control: From knowledge to applications.Pest Manag. Sci.20197592413243610.1002/ps.535530684299
    [Google Scholar]
  11. MamarotJ. RodriguezA. Crop weeds.Paris, FranceACTA2014569
    [Google Scholar]
  12. DudaiN. LewinsohnE. LarkovO. KatzirI. RavidU. ChaimovitshD. Sa’adD. PutievskyE. Dynamics of yield components and essential oil production in a commercial hybrid sage (Salvia officinalis x Salvia fruticosa cv. Newe Ya’ar no. 4).J. Agric. Food Chem.199947104341434510.1021/jf990158710552813
    [Google Scholar]
  13. TworkoskiT. Herbicide effects of essential oils.Weed Sci.200250442543110.1614/0043‑1745(2002)050[0425:HEOEO]2.0.CO;2
    [Google Scholar]
  14. HachaniC. AbassiM. LazharC.S. LamhamediM. BéjaouiZ. Allelopathic effects of leahates of Casuarina glauca Sieb. ex Spreng. and Populus nigra L. on germination and seedling growth of Triticum durum Desf. under laboratory conditions.Agrofor. Syst.2019931973198310.1007/s10457‑018‑0298‑3
    [Google Scholar]
  15. ZheljazkovV.D. JeliazkovaE.A. AstatkieT. Allelopathic effects of essential oils on seed germination of barley and wheat.Plants20211012272810.3390/plants1012272834961198
    [Google Scholar]
  16. TütenocaklıT. CoşkunY. TaşI. OralA. TürkerG. Allelopathic effects of some essential oil components on germination and seedling growth of wheat.Curr. Trends Nat. Sci.2022112151352010.47068/ctns.2022.v11i21.055
    [Google Scholar]
  17. AghbashB.N. PouresmaeilM. DehghanG. NojadehM.S. MobaiyenH. MaggiF. Chemical composition, antibacterial and anti-radical activity of essential oils of Satureja macrantha CAMey. At different stages of growth.Foods2020949410.3390/foods904049432295101
    [Google Scholar]
  18. Saric-KrsmanovicM. UmiljendicJ.G. RadivojevicL. RajkovicM. SantricL. Durovic-PejcevR. Chemical composition of Ambrosia trifida essential oil and phytotoxic effect on other plants.Chimique. Biodivers.202017e190050810.1002/cbdv.201900508
    [Google Scholar]
  19. RicklefsR.E. MillerG.L. Écologie.BruxellesDe Boeck Université2005427
    [Google Scholar]
  20. Alvarez-CastellanosP.P. BishopC.D. Pascual-VillalobosM.J. Antifungal activity of the essential oil of flowerheads of garland chrysanthemum (Chrysanthemum coronarium) against agricultural pathogens.Phytochemistry20015719910210.1016/S0031‑9422(00)00461‑111336267
    [Google Scholar]
  21. KimJ. ChoiJ.N. KuK.M. KangD. KimJ.S. ParkJ.H.Y. LeeC.H. A correlation between antioxidant activity and metabolite release during the blanching of Chrysanthemum coronarium L.Biosci. Biotechnol. Biochem.201175467468010.1271/bbb.10079921512247
    [Google Scholar]
  22. EisaE.A. Tilly-MándyA. HonfiP. ShalaA.Y. GururaniM.A. Chrysanthemum: A comprehensive review on recent developments on in vitro regeneration.Biology20221112177410.3390/biology1112177436552283
    [Google Scholar]
  23. AinaneA. Mohamed Abdoul-LatifF. Ait MouhS. El YaagoubiB. MohamedJ. AinaneT. Chemical study and antibacterial activity in vitro of the essential oil of Chrysanthemum coronarium L.Pharmacologyonline20213865870
    [Google Scholar]
  24. GurkanE. KoksalE.P. SariogluI. Cytotoxicity assay of Chrysanthemum coronarium.Fitoterapia1998693284
    [Google Scholar]
  25. ChoiJ.M. LeeE.O. LeeH.J. KimK.H. AhnK.S. ShimB.S. KimN.I. SongM.C. BaekN.I. KimS.H. Identification of campesterol from Chrysanthemum coronarium L. and its antiangiogenic activities.Phytother. Res.2007211095495910.1002/ptr.218917604370
    [Google Scholar]
  26. Bar-EyalM. SharonE. SpiegelY. Nematicidal activity of Chrysanthemum coronarium.Eur. J. Plant Pathol.2006114442743310.1007/s10658‑006‑0011‑7
    [Google Scholar]
  27. LiY. LiuY. MaA. BaoY. WangM. SunZ. In vitro antiviral, anti-inflammatory, and antioxidant activities of the ethanol extract of Mentha piperita L.Food Sci. Biotechnol.20172661675168310.1007/s10068‑017‑0217‑930263705
    [Google Scholar]
  28. SinghR. ShushniM.A.M. BelkheirA. Antibacterial and antioxidant activities of Mentha piperita L.Arab. J. Chem.20158332232810.1016/j.arabjc.2011.01.019
    [Google Scholar]
  29. Kiełtyka-DadasiewiczA. Morphological and genetic diversity among peppermint (Mentha × piperita L.) cultivars.Acta Sci. Pol. Hortorum Cultus201716315116110.24326/asphc.2017.3.15
    [Google Scholar]
  30. HudzN. KobylinskaL. PokajewiczK. Horčinová SedláčkováV. FedinR. VoloshynM. MyskivI. BrindzaJ. WieczorekP.P. LipokJ. Mentha piperita: Essential oil and extracts, their biological activities, and perspectives on the development of new medicinal and cosmetic products.Molecules20232821744410.3390/molecules2821744437959863
    [Google Scholar]
  31. ShanaidaM. HudzN. BiałońM. KryvtsowaM. SvydenkoL. FilipskaA. Paweł WieczorekP. Chromatographic profiles and antimicrobial activity of the essential oils obtained from some species and cultivars of the Mentheae tribe (Lamiaceae).Saudi J. Biol. Sci.202128116145615210.1016/j.sjbs.2021.06.06834759738
    [Google Scholar]
  32. AldoghachiF.E.H. Noor Al-MousawiU.M. ShariF.H. Antioxidant activity of rosmarinic acid extracted and purified from Mentha piperita.Arch. Razi Inst.20217651279128710.22092/ari.2021.356072.177035355734
    [Google Scholar]
  33. SrivastavaS.N. DixitD. In vitro antioxidant and antimicrobial activities of herbal combinations of Rosemarinus officinalis (rosemary) and Mentha piperita (peppermint).Int. J. Biol. Pharm. Allied Sci.20211092974298610.31032/IJBPAS/2021/10.9.5607
    [Google Scholar]
  34. SunZ. WangH. WangJ. ZhouL. YangP. Chemical composition and anti-inflammatory, cytotoxic and antioxidant activities of essential oil from leaves of mentha piperita grown in China.PLoS One2014912e11476710.1371/journal.pone.011476725493616
    [Google Scholar]
  35. WuZ. TanB. LiuY. DunnJ. Martorell GuerolaP. TortajadaM. CaoZ. JiP. Chemical composition and antioxidant properties of essential oils from peppermint, native spearmint and scotch spearmint.Molecules20192415282510.3390/molecules2415282531382468
    [Google Scholar]
  36. El-Lateef GharibF.A. da SilvaJ.A.T. Composition, total phenolic content and antioxidant activity of the essential oil of four Lamiaceae herbs.Med. Aromat. Plant Sci. Biotechnol.201371927
    [Google Scholar]
  37. UribeE. MarínD. Vega-GálvezA. Quispe-FuentesI. RodríguezA. Assessment of vacuum-dried peppermint (Mentha piperita L.) as a source of natural antioxidants.Food Chem.201619055956510.1016/j.foodchem.2015.05.10826213010
    [Google Scholar]
  38. Martínez-MorenoF. AmmarK. SolísI. Global changes in cultivated area and breeding activities of durum wheat from 1800 to date: A historical review.Agronomy2022125113510.3390/agronomy12051135
    [Google Scholar]
  39. Fourar-BelaifaR. Fleurat-LessardF. Experimental evaluation of the sensitivity to rice weevil attacks of varieties of cereal species cultivated in Algeria.Cah. Agric.20152428329110.1684/agr.2015.0767
    [Google Scholar]
  40. AminaT.Z. ManelZ-D.D. LamiaC.B. El AmineD.M. Seasonal variations in the chemical composition of essential oil and antifungal and larvicidal activities of Marrubium vulgare, aromatic plant growing wild of West-Algeria.Antiinfect. Agents2023212e06122221162510.2174/2211352521666221206100828
    [Google Scholar]
  41. JenningsW. ShibamotoT. Qualitative analysis of flavour and fragrance volatiles by glass-capillary gas chromatography.Academic Press198012710.1016/B978‑0‑12‑384250‑3.X5001‑6
    [Google Scholar]
  42. KönigW.A. HochmuthD.H. JoulainD. Terpenoids and Related Constituents of Essential oils.1st edHamburgLibrary of Mass Finder2001
    [Google Scholar]
  43. Mc Lafferty StaufferD.B. Wiley Registry of Mass Spectral Data6th ed;Mass Spectrometry Library Search System BenchTop/PBM version 3.10d: PalisadeNewfield1994
    [Google Scholar]
  44. Mc LaffertyF.W. The Wiley/NBS Registry of Mass Spectra Data.4th edNew YorkWiley-Interscience1988
    [Google Scholar]
  45. DhimaK.V. VasilakoglouI.B. EleftherohorinosI.G. LithourgidisA.S. Allelopathic potential of winter cereal cover crop mulches on grass weed suppression and sugarbeet development.Crop Sci.20064641682169110.2135/cropsci2005.09‑0311
    [Google Scholar]
  46. ChungI.M. KimK.H. AhnJ.K. LeeS.B. KimS.H. HahnS.J. Comparison of allelopathic potential of rice leaves, straw, and hull extracts on barnyardgrass.Agron. J.20039541063107010.2134/agronj2003.1063
    [Google Scholar]
  47. BenomariF.Z. AndreuV. KotarbaJ.N. DibM.E.A. BertrandC. MusellA. CostaJ. Essential oils from Algerian species of Mentha as new bio-control agents against phytopathogen strains.Chemistry2017252988929900
    [Google Scholar]
  48. HosniK. HassenI. SebeiH. CasabiancaH. Secondary metabolites from Chrysanthemum coronarium (Garland) flowerheads: Chemical composition and biological activities.Ind. Crops Prod.20134426327110.1016/j.indcrop.2012.11.033
    [Google Scholar]
  49. TawahaK. HudaibM. Volatile oil profiles of the aerial parts of Jordanian garland, Chrysanthemum coronarium.Pharm. Biol.201048101108111410.3109/1388020090350564120818927
    [Google Scholar]
  50. RegnaultR.C. PhilogeneB.J.R. VincentC.H. Bio pesticides of plant origin.ParisEd. TEC&DOC2008546
    [Google Scholar]
  51. LesuffleurF. Short-term rhizodeposition of nitrogen and root exudation of amino acids by white clover (Trifoluim repense L.)..Doctoral thesis in Physiology, Biology of Organisms, Populations, Interactions. Institute of Fundamental and Applied Biology (IBFA). University of Caen, Lower Normandy, France2007260
    [Google Scholar]
  52. NinkuuV. ZhangL. YanJ. FuZ. YangT. ZengH. Biochemistry of terpenes and recent advances in plant protection.Int. J. Mol. Sci.20212211571010.3390/ijms2211571034071919
    [Google Scholar]
  53. MekkyM.S. HassanienA.M.A. KamelE.M. IsmailA.E.A. Allelopathic effect of Ocimum basilicum L. extracts on weeds and some crops and its possible use as new crude bio-herbicide.Ann. Agric. Sci.201964221122110.1016/j.aoas.2019.12.005
    [Google Scholar]
  54. Abd-ElGawadA.M. El GendyA.E.N.G. AssaeedA.M. Al-RowailyS.L. AlharthiA.S. MohamedT.A. NassarM.I. DewirY.H. ElshamyA.I. Phytotoxic effects of plant essential oils: A systematic review and structure-activity relationship based on chemometric analyses.Plants20201013610.3390/plants1001003633375618
    [Google Scholar]
  55. GrulováD. Effect of plant essential oils against rophalosiphum padi on wheat and barley.Nat. Prod. Commun.2017121517152010.1177/1934578X1701200933
    [Google Scholar]
  56. MirmostafaeeS. AziziM. FujiiY. Study of allelopathic interaction of essential oils from medicinal and aromatic plants on seed germination and seedling growth of lettuce.Agronomy202010216310.3390/agronomy10020163
    [Google Scholar]
  57. Ben GhnayaA. HamrouniL. AmriI. AhouesH. HananaM. RomaneA. Study of allelopathic effects of Eucalyptus erythrocorys L. crude extracts against germination and seedling growth of weeds and wheat.J Nat Prod Res201530182058206410.1080/14786419.2015.110897326643715
    [Google Scholar]
  58. ElalouiM. SoltaniI. LaamouriA. EnnajahA. HoucineS. Allelopathic activity of extracts from leaves of Ziziphus spina-christi collected in five Tunisian ecotypes.Int. J. Innov. Sci. Res.2015202333342
    [Google Scholar]
  59. LiuX. TianF. TianY.Y. DongF. XuJ. ZhengY. Isolation and identification of potential alelochemicals from aerial parts of Avena fatua L. and their allelopathic effect on Wheat.J. Agric. Food Chem.201664183492350010.1021/acs.jafc.5b05498
    [Google Scholar]
  60. OraonS. MondalS. Allelopathic effect of Lamiaceous weeds on seed germination and early growth of aromatic rice (Oryza sativa ‘Gobindobhog’).Acta Agrobot.20217474110.5586/aa.741
    [Google Scholar]
  61. KoiouK. VasilakoglouI. DhimaK. Herbicidal potential of lavender (Lavandula angustifolia Mill.) essential oil components on bristly foxtail (Setaria verticillata (L.) P. Beauv.): Comparison with carvacrol, carvone, thymol and eugenol.Arch. Biol. Sci.202072222323110.2298/ABS200106016K
    [Google Scholar]
  62. EvenoM.E. ChabanneA. The allelopathic effects of oats (Avena sativa) on various weeds and cultivated plants.Growing Vines Organically20091624
    [Google Scholar]
  63. TsaoR. YuQ. Nematicidal activity of monoterpenoid compounds against economically important nematodes in agriculture.J. Essent. Oil Res.200012335035410.1080/10412905.2000.9699533
    [Google Scholar]
  64. De MastroG. El MahdiJ. RutaC. Bioherbicidal potential of the essential oils from mediterranean Lamiaceae for weed control in organic farming.Plants202110481810.3390/plants1004081833924193
    [Google Scholar]
  65. De AlmeidaL.F.R. FreiF. ManciniE. De MartinoL. De FeoV. De FeoV. Phytotoxic activities of Mediterranean essential oils.Molecules20101564309432310.3390/molecules1506430920657443
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968312958240924060719
Loading
/content/journals/ccb/10.2174/0122127968312958240924060719
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test