Skip to content
2000
image of Biogenic Silver Nanoparticles (AgNPs) Ameliorates Oxidative Biomarkers in Type-2 Diabetic Rats: In vitro and In vivo Report

Abstract

Objective

Nanoparticles (NPs) are reliable biological tools for curative purposes through their application in nanomedicine. The present study synthesized and characterized silver nanoparticles (AgNPs) from a fruit. The investigation aims to examine the antidiabetic effect of the AgNPs using and models.

Methods

Briefly, the synthesized AgNPs were confirmed by the application of ultraviolet-visible (UV-Vis) spectroscopy, and five other techniques, ; transmission electron microscopy (TEM) techniques, Fourier transform infrared (FTIR) spectroscopy, energy dispersive X-ray spectroscopy (EDX), X-ray diffraction analysis (XRD) and scanning electron microscope (SEM). The model assay investigated the scavenging effect of AgNPS on (DPPH), superoxide anion (Oˉ), hydroxyl anion (-OH), ferric reducing antioxidant power (FRAP), and α-amylase/α-glucosidase inhibitory activity. The model involving rats-induced type-2 diabetes with streptozotocin (STZ) was divided into six (6) groups of seven (7) rats each to assess antioxidative parameters.

Results

The AgNPs scavenged free radicals (DPPH) and moderately inhibited (Oˉ), hydroxyl anion (-OH), reduced ferric to ferrous ions, and inhibited both α-amylase and α-glucosidase activity with increasing concentrations. Similarly, AgNPs ameliorated oxidative stress imposed by type 2 diabetes on the rats’ tissues significantly ( < 0.05), depleting total cholesterol, low-density lipoprotein (LDL), and increased total protein composite and high-density lipoprotein (HDL) contents. The AgNPs enhanced catalase and superoxide dismutase, reduced glutathione (GSH), and, concomitantly, decreased malondialdehyde (MDA) levels in the tissue homogenate.

Conclusion

These findings provide scientific evidence for the first time, finding the application of a biogenic compound synthesized from fruit in the treatment of type 2 diabetes.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968284847240920103341
2024-10-04
2024-11-22
Loading full text...

Full text loading...

References

  1. Saeedi P. Petersohn I. Salpea P. Malanda B. Karuranga S. Unwin N. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res. Clin. Pract. 2019 157 107843
    [Google Scholar]
  2. Sun H. Saeedi P. Karuranga S. Pinkepank M. Ogurtsova K. Duncan B.B. Stein C. Basit A. Chan J.C.N. Mbanya J.C. Pavkov M.E. Ramachandaran A. Wild S.H. James S. Herman W.H. Zhang P. Bommer C. Kuo S. Boyko E.J. Magliano D.J. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022 183 109119 10.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  3. Alam U. Asghar O. Azmi S. Malik R.A. Chapter 15 - General aspects of diabetes mellitus. Diabetes and the Nervous System Elsevier 2014 211 222
    [Google Scholar]
  4. Katsarou A. Gudbjörnsdottir S. Rawshani A. Dabelea D. Bonifacio E. Anderson B.J. Jacobsen L.M. Schatz D.A. Lernmark Å. Type 1 diabetes mellitus. Nat. Rev. Dis. Primers 2017 3 1 17016 10.1038/nrdp.2017.16 28358037
    [Google Scholar]
  5. Galicia-Garcia U. Benito-Vicente A. Jebari S. Larrea-Sebal A. Siddiqi H. Uribe K.B. Ostolaza H. Martín C. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci. 2020 21 17 6275 10.3390/ijms21176275 32872570
    [Google Scholar]
  6. Sanni O. Erukainure O.L. Oyebode O.A. Koorbanally N.A. Islam M.S. Concentrated hot water-infusion of phragmanthera incana improves muscle glucose uptake, inhibits carbohydrate digesting enzymes and abates Fe2+-induced oxidative stress in hepatic tissues. Biomed. Pharmacother. 2018 108 September 417 423 10.1016/j.biopha.2018.09.014 30236851
    [Google Scholar]
  7. Carracher A.M. Marathe P.H. Close K.L. International diabetes federation 2017. J. Diabetes 2018 10 5 353 356 10.1111/1753‑0407.12644 29345068
    [Google Scholar]
  8. Msomi N.Z. Shode F.O. Pooe O.J. Mazibuko-Mbeje S. Simelane M.B.C. Iso-mukaadial acetate from Warburgia salutaris enhances glucose uptake in the L6 rat myoblast cell line. Biomolecules 2019 9 10 520 10.3390/biom9100520 31546691
    [Google Scholar]
  9. Trinh B.T.D. Staerk D. Jäger A.K. Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes. J. Ethnopharmacol. 2016 186 189 195 10.1016/j.jep.2016.03.060 27041401
    [Google Scholar]
  10. Wu Q. Miao W. Zhang Y. Gao H. Hui D. Mechanical properties of nanomaterials: A review. Nanotechnol. Rev. 2020 9 1 259 273 10.1515/ntrev‑2020‑0021
    [Google Scholar]
  11. Zoric´ I. Larsson E.M. Kasemo B. Langhammer C. Localized surface plasmons shed light on nanoscale metal hydrides. Adv. Mater. 2010 22 41 4628 4633 10.1002/adma.201000973 20734375
    [Google Scholar]
  12. Bayda S. Adeel M. Tuccinardi T. Cordani M. Rizzolio F. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules 2019 25 1 112 10.3390/molecules25010112 31892180
    [Google Scholar]
  13. Yang L. Yang L. Ding L. Deng F. Luo X-B. Luo S-L. Principles for the application of nanomaterials in environmental pollution control and resource reutilization. Nanomaterials for the Removal of Pollutants and Resource Reutilization. Elsevier 2019 1 23 10.1016/B978‑0‑12‑814837‑2.00001‑9
    [Google Scholar]
  14. Saddik M.S. Al-Hakkani M.F. Abu-Dief A.M. Mohamed M.S. Al-Fattah I.A. Makki M. El-Mokhtar M.A. Sabet M.A. Amin M.S. Ahmed H.A. Al-Ghamdi K. Mohammad M.K. Hassan M.H.A. Formulation and evaluation of azithromycin-loaded silver nanoparticles for the treatment of infected wounds. Int. J. Pharm. X 2024 7 100245 10.1016/j.ijpx.2024.100245 38633410
    [Google Scholar]
  15. Abu-Dief A.M. Alsehli M. Awaad A. The bioreaction and immune responses of PEG-coated silica NPs and the role of the surface density coating after oral administration into mice. Appl. Nanosci. 2023 13 8 5563 5578 10.1007/s13204‑023‑02770‑0
    [Google Scholar]
  16. Abu-Dief A.M. Alsehli M. Awaad A. A higher dose of PEGylated gold nanoparticles reduces the accelerated blood clearance phenomenon effect and induces spleen B lymphocytes in albino mice. Histochem. Cell Biol. 2022 157 6 641 656 10.1007/s00418‑022‑02086‑0 35157114
    [Google Scholar]
  17. Larayetan R. Ojemaye M.O. Okoh O.O. Okoh A.I. Silver nanoparticles mediated by Callistemon citrinus extracts and their antimalaria, antitrypanosoma and antibacterial efficacy. J. Mol. Liq. 2019 273 615 625 10.1016/j.molliq.2018.10.020
    [Google Scholar]
  18. G Ayeni A. OJ Pooe P. M Singh S. N Nundkumar N. MBC Simelane S. Cytotoxic and antioxidant activities of selected South African medicinal plants. Pharmacogn. J. 2019 11 6s 1532 1539 10.5530/pj.2019.11.234
    [Google Scholar]
  19. Nagai T. Sakai M. Inoue R. Inoue H. Suzuki N. Antioxidative activities of some commercially honeys, royal jelly, and propolis. Food Chem. 2001 75 2 237 240 10.1016/S0308‑8146(01)00193‑5
    [Google Scholar]
  20. Chung S.K. Osawa T. Kawakishi S. Hydroxyl radical-scavenging effects of spices and scavengers from brown mustard ( Brassica nigra ). Biosci. Biotechnol. Biochem. 1997 61 1 118 123 10.1271/bbb.61.118
    [Google Scholar]
  21. Oyaizu M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Eiyogaku Zasshi 1986 44 6 307 315 10.5264/eiyogakuzashi.44.307
    [Google Scholar]
  22. Oyaizu M. Studies on products of browning reaction: Antioxidative activity of products of browning reaction. Jpn J Nutr. 1986 44 6 307 315 10.5264/eiyogakuzashi.44.307
    [Google Scholar]
  23. Mohammed A. Koorbanally N.A. Islam M.S. Anti-diabetic effect of Xylopia aethiopica (Dunal) A. Rich. (Annonaceae) fruit acetone fraction in a type 2 diabetes model of rats. J. Ethnopharmacol. 2016 180 131 139 10.1016/j.jep.2016.01.009 26795545
    [Google Scholar]
  24. Ellman G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959 82 1 70 77 10.1016/0003‑9861(59)90090‑6 13650640
    [Google Scholar]
  25. Kakkar P. Das B. Viswanathan P.N. A modified spectrophotometric assay of superoxide dismutase. Indian J. Biochem. Biophys. 1984 21 2 130 132 6490072
    [Google Scholar]
  26. Hadwan M.H. Abed H.N. Data supporting the spectrophotometric method for the estimation of catalase activity. Data Brief 2016 6 194 199 10.1016/j.dib.2015.12.012 26862558
    [Google Scholar]
  27. Oboh G. Akinyemi A.J. Ademiluyi A.O. Antioxidant and inhibitory effect of red ginger (Zingiber officinale var. Rubra) and white ginger (Zingiber officinale Roscoe) on Fe2+ induced lipid peroxidation in rat brain in vitro. Exp. Toxicol. Pathol. 2012 64 1-2 31 36 10.1016/j.etp.2010.06.002 20598871
    [Google Scholar]
  28. Mauricio MD Guerra-Ojeda S Marchio P Valles SL Aldasoro M Escribano-Lopez I Nanoparticles in medicine: A focus on vascular oxidative stress. Oxid. Med. Cell Longev. 2018 2018 10.1155/2018/6231482
    [Google Scholar]
  29. Goulas V. Banegas-Luna A.J. Constantinou A. Pérez-Sánchez H. Barbouti A. Computation screening of multi-target antidiabetic properties of phytochemicals in common edible mediterranean plants. Plants 2022 11 13 1637 10.3390/plants11131637 35807588
    [Google Scholar]
  30. Sharma P. Joshi T. Joshi T. Chandra S. Tamta S. In silico screening of potential antidiabetic phytochemicals from Phyllanthus emblica against therapeutic targets of type 2 diabetes. J. Ethnopharmacol. 2020 248 112268 10.1016/j.jep.2019.112268 31593813
    [Google Scholar]
  31. Wahab M. Bhatti A. John P. Evaluation of antidiabetic activity of biogenic silver nanoparticles using thymus serpyllum on streptozotocin-induced diabetic balb/c mice. Polymers 2022 14 15 3138 10.3390/polym14153138 35956652
    [Google Scholar]
  32. Ajayi A. Larayetan R. Yahaya A. Falola O.O. Ude N.A. Adamu H. Oguche S.M. Abraham K. Egbagba A.O. Egwumah C. Ojochegbe S.O. Balogun J.O. Ukanu P.I. Biogenic synthesis of silver nanoparticles with bitter leaf (vernonia amygdalina) aqueous extract and its effects on testosterone-induced benign prostatic hyperplasia (bph) in wistar rat. Chemistry Africa 2021 4 4 791 807 10.1007/s42250‑021‑00272‑6
    [Google Scholar]
  33. Abdel-Raouf N. Al-Enazi N.M. Ibraheem I.B.M. Alharbi R.M. Alkhulaifi M.M. Biosynthesis of silver nanoparticles by using of the marine brown alga Padina pavonia and their characterization. Saudi J. Biol. Sci. 2019 26 6 1207 1215 10.1016/j.sjbs.2018.01.007 31516350
    [Google Scholar]
  34. Larayetan R.A. Ayeni G. Yahaya A. Ajayi A. Omale S. Ishaq U. Abiodun D.J. Olisah C. Aigbogun J. Enyioma-Alozie S. Chemical composition of gossypium herbaceum linn and its antioxidant, antibacterial, cytotoxic and antimalarial activities. Clin Complement Med Pharmacol. 2021 1 1 100008 10.1016/j.ccmp.2021.100008
    [Google Scholar]
  35. Simelane M.B.C. Lawal O.A. Djarova T.G. Opoku A.R. In vitro antioxidant and cytotoxic activity of Gunnera perpensa L. (Gunneraceae) from South Africa. J. Med. Plants Res. 2010 4 21 2181 2188
    [Google Scholar]
  36. Bashal A.H. Khalil K.D. Habeeb T. Abu-Dief A.M. Exploring the biomedical potential of chitosan‐ceria nanocomposites: Synthesis and characterizations. Appl. Organomet. Chem. 2024 38 6 e7467 10.1002/aoc.7467
    [Google Scholar]
  37. Bashal A.H. Khalil K.D. Abu-Dief A.M. El-Atawy M.A. Cobalt oxide-chitosan based nanocomposites: Synthesis, characterization and their potential pharmaceutical applications. Int. J. Biol. Macromol. 2023 253 Pt 4 126856 10.1016/j.ijbiomac.2023.126856 37714231
    [Google Scholar]
  38. Abu-Dief A.M. El-Khatib R.M. Aljohani F.S. Al-Abdulkarim H.A. Alzahrani S. El-Sarrag G. Ismael M. Synthesis, structural elucidation, DFT calculation, biological studies and DNA interaction of some aryl hydrazone Cr3+, Fe3+, and Cu2+ chelates. Comput. Biol. Chem. 2022 97 107643 10.1016/j.compbiolchem.2022.107643 35189479
    [Google Scholar]
  39. Salau V.F. Erukainure O.L. Ayeni G. Ibeji C.U. Islam M.S. Modulatory effect of ursolic acid on neurodegenerative activities in oxidative brain injury: An ex vivo study. J. Food Biochem. 2021 45 2 e13597 10.1111/jfbc.13597 33368405
    [Google Scholar]
  40. Ding S. Li M. Gong H. Zhu Q. Shi G. Zhu A. Sensitive and selective measurement of hydroxyl radicals at subcellular level with tungsten nanoelectrodes. Anal. Chem. 2020 92 3 2543 2549 10.1021/acs.analchem.9b04139 31927939
    [Google Scholar]
  41. Rathee J.S. Hassarajani S.A. Chattopadhyay S. Antioxidant activity of Nyctanthes arbor-tristis leaf extract. Food Chem. 2007 103 4 1350 1357 10.1016/j.foodchem.2006.10.048
    [Google Scholar]
  42. Filippi A. Liu F. Wilson J. Lelieveld S. Korschelt K. Wang T. Wang Y. Reich T. Pöschl U. Tremel W. Tong H. Antioxidant activity of cerium dioxide nanoparticles and nanorods in scavenging hydroxyl radicals. RSC Advances 2019 9 20 11077 11081 10.1039/C9RA00642G 35520271
    [Google Scholar]
  43. Spiegel M. Kapusta K. Kołodziejczyk W. Saloni J. Żbikowska B. Hill G.A. Sroka Z. Antioxidant activity of selected phenolic acids–ferric reducing antioxidant power assay and QSAR analysis of the structural features. Molecules 2020 25 13 3088 10.3390/molecules25133088 32645868
    [Google Scholar]
  44. Jini D. Sharmila S. Green synthesis of silver nanoparticles from Allium cepa and its in vitro antidiabetic activity. Mater. Today Proc. 2020 22 432 438 10.1016/j.matpr.2019.07.672
    [Google Scholar]
  45. Jini D. Sharmila S. Anitha A. Pandian M. Rajapaksha R.M.H. In vitro and in silico studies of silver nanoparticles (AgNPs) from Allium sativum against diabetes. Sci. Rep. 2022 12 1 22109 10.1038/s41598‑022‑24818‑x 36543812
    [Google Scholar]
  46. Oguntibeju O.O. Type 2 diabetes mellitus, oxidative stress and inflammation: Examining the links. Int. J. Physiol. Pathophysiol. Pharmacol. 2019 11 3 45 63 31333808
    [Google Scholar]
  47. Luc K. Schramm-Luc A. Guzik T.J. Mikolajczyk T.P. Oxidative stress and inflammatory markers in prediabetes and diabetes. J. Physiol. Pharmacol. 2019 70 6 809 824 32084643
    [Google Scholar]
  48. Parhofer K.G. Interaction between glucose and lipid metabolism: More than diabetic dyslipidemia. Diabetes Metab. J. 2015 39 5 353 362 10.4093/dmj.2015.39.5.353 26566492
    [Google Scholar]
  49. Santos-Gallego C.G. Rosenson R.S. Role of HDL in those with diabetes. Curr. Cardiol. Rep. 2014 16 9 512 10.1007/s11886‑014‑0512‑5
    [Google Scholar]
  50. Xepapadaki E. Zvintzou E. Kalogeropoulou C. Filou S. Kypreos K.E. The antioxidant function of HDL in atherosclerosis. Angiology 2020 71 2 112 121 10.1177/0003319719854609 31185723
    [Google Scholar]
  51. Ahmad M.N. Farah A.I. Al-Qirim T.M. The cardiovascular complications of diabetes: A striking link through protein glycation. Rom. J. Intern. Med. 2020 58 4 188 198 10.2478/rjim‑2020‑0021 32759408
    [Google Scholar]
  52. Wang W. Wu S. Wang J. Li Z. Cui H. Lin S. Zhu J. Chen Q. Superoxide dismutase transcellular shuttle constructed from dendritic MOF and charge reversible protein derivatives. Chem. Sci. 2019 10 16 4476 4485 10.1039/C8SC04160A 31057775
    [Google Scholar]
  53. Kaushal J. Mehandia S. Singh G. Raina A. Arya S.K. Catalase enzyme: Application in bioremediation and food industry. Biocatal. Agric. Biotechnol. 2018 16 192 199 10.1016/j.bcab.2018.07.035
    [Google Scholar]
  54. Chang L. Xu J.X. Zhao J. Pang Y-Z. Tang C-S. Qi Y.F. Taurine antagonized oxidative stress injury induced by homocysteine in rat vascular smooth muscle cells. Acta Pharmacol. Sin. 2004 25 3 341 346 15000888
    [Google Scholar]
  55. Narayanankutty A. Job J.T. Narayanankutty V. Glutathione, an antioxidant tripeptide: Dual roles in carcinogenesis and chemoprevention. Curr. Protein Pept. Sci. 2019 20 9 907 917 10.2174/1389203720666190206130003 30727890
    [Google Scholar]
  56. Mishra S. Mishra B. Study of lipid peroxidation, nitric oxide end product, and trace element status in type 2 diabetes mellitus with and without complications. Int. J. Appl. Basic Med. Res. 2017 7 2 88 93 10.4103/2229‑516X.205813 28584737
    [Google Scholar]
  57. Ul Haq M.N. Shah G.M. Menaa F. Khan R.A. Althobaiti N.A. Albalawi A.E. Alkreathy H.M. Green silver nanoparticles synthesized from Taverniera couneifolia elicits effective anti-diabetic effect in alloxan-induced diabetic wistar rats. Nanomaterials 2022 12 7 1035 10.3390/nano12071035 35407153
    [Google Scholar]
  58. Perumalsamy R. Krishnadhas L. Anti-diabetic activity of silver nanoparticles synthesized from the hydroethanolic extract of Myristica fragrans seeds. Appl. Biochem. Biotechnol. 2022 194 3 1136 1148 10.1007/s12010‑022‑03825‑8 35091876
    [Google Scholar]
  59. Ponnanikajamideen M. Rajeshkumar S. Vanaja M. Annadurai G. In vivo type 2 diabetes and wound-healing effects of antioxidant gold nanoparticles synthesized using the insulin plant Chamaecostus cuspidatus in albino rats. Can. J. Diabetes 2019 43 2 82 89.e6 10.1016/j.jcjd.2018.05.006 30413371
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968284847240920103341
Loading
/content/journals/ccb/10.2174/0122127968284847240920103341
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: type 2- diabetes ; inhibition ; streptozotocin ; Nanoparticles ; T. tetrapleura ; spectroscopy ; scavenging
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test