Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Objective

Nanoparticles (NPs) are reliable biological tools for curative purposes through their application in nanomedicine. The present study synthesized and characterized silver nanoparticles (AgNPs) from a fruit. The investigation aims to examine the antidiabetic effect of the AgNPs using and models.

Methods

Briefly, the synthesized AgNPs were confirmed by the application of ultraviolet-visible (UV-Vis) spectroscopy, and five other techniques, ; transmission electron microscopy (TEM) techniques, Fourier transform infrared (FTIR) spectroscopy, energy dispersive X-ray spectroscopy (EDX), X-ray diffraction analysis (XRD) and scanning electron microscope (SEM). The model assay investigated the scavenging effect of AgNPS on (DPPH), superoxide anion (Oˉ), hydroxyl anion (-OH), ferric reducing antioxidant power (FRAP), and α-amylase/α-glucosidase inhibitory activity. The model involving rats-induced type-2 diabetes with streptozotocin (STZ) was divided into six (6) groups of seven (7) rats each to assess antioxidative parameters.

Results

The AgNPs scavenged free radicals (DPPH) and moderately inhibited (Oˉ), hydroxyl anion (-OH), reduced ferric to ferrous ions, and inhibited both α-amylase and α-glucosidase activity with increasing concentrations. Similarly, AgNPs ameliorated oxidative stress imposed by type 2 diabetes on the rats’ tissues significantly ( < 0.05), depleting total cholesterol, low-density lipoprotein (LDL), and increased total protein composite and high-density lipoprotein (HDL) contents. The AgNPs enhanced catalase and superoxide dismutase, reduced glutathione (GSH), and, concomitantly, decreased malondialdehyde (MDA) levels in the tissue homogenate.

Conclusion

These findings provide scientific evidence for the first time, finding the application of a biogenic compound synthesized from fruit in the treatment of type 2 diabetes.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968284847240920103341
2024-10-04
2025-04-18
Loading full text...

Full text loading...

References

  1. SaeediP. PetersohnI. SalpeaP. MalandaB. KarurangaS. UnwinN. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas.Diabetes Res. Clin. Pract.2019157107843
    [Google Scholar]
  2. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.10911934879977
    [Google Scholar]
  3. AlamU. AsgharO. AzmiS. MalikR.A. Chapter 15 - General aspects of diabetes mellitus.Diabetes and the Nervous System.Elsevier2014211222
    [Google Scholar]
  4. KatsarouA. GudbjörnsdottirS. RawshaniA. DabeleaD. BonifacioE. AndersonB.J. JacobsenL.M. SchatzD.A. LernmarkÅ. Type 1 diabetes mellitus.Nat. Rev. Dis. Primers2017311701610.1038/nrdp.2017.1628358037
    [Google Scholar]
  5. Galicia-GarciaU. Benito-VicenteA. JebariS. Larrea-SebalA. SiddiqiH. UribeK.B. OstolazaH. MartínC. Pathophysiology of type 2 diabetes mellitus.Int. J. Mol. Sci.20202117627510.3390/ijms2117627532872570
    [Google Scholar]
  6. SanniO. ErukainureO.L. OyebodeO.A. KoorbanallyN.A. IslamM.S. Concentrated hot water-infusion of phragmanthera incana improves muscle glucose uptake, inhibits carbohydrate digesting enzymes and abates Fe2+-induced oxidative stress in hepatic tissues.Biomed. Pharmacother.2018108September41742310.1016/j.biopha.2018.09.01430236851
    [Google Scholar]
  7. CarracherA.M. MaratheP.H. CloseK.L. International diabetes federation 2017.J. Diabetes201810535335610.1111/1753‑0407.1264429345068
    [Google Scholar]
  8. MsomiN.Z. ShodeF.O. PooeO.J. Mazibuko-MbejeS. SimelaneM.B.C. Iso-mukaadial acetate from Warburgia salutaris enhances glucose uptake in the L6 rat myoblast cell line.Biomolecules201991052010.3390/biom910052031546691
    [Google Scholar]
  9. TrinhB.T.D. StaerkD. JägerA.K. Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes.J. Ethnopharmacol.201618618919510.1016/j.jep.2016.03.06027041401
    [Google Scholar]
  10. WuQ. MiaoW. ZhangY. GaoH. HuiD. Mechanical properties of nanomaterials: A review.Nanotechnol. Rev.20209125927310.1515/ntrev‑2020‑0021
    [Google Scholar]
  11. Zoric´I. LarssonE.M. KasemoB. LanghammerC. Localized surface plasmons shed light on nanoscale metal hydrides.Adv. Mater.201022414628463310.1002/adma.20100097320734375
    [Google Scholar]
  12. BaydaS. AdeelM. TuccinardiT. CordaniM. RizzolioF. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine.Molecules201925111210.3390/molecules2501011231892180
    [Google Scholar]
  13. YangL. YangL. DingL. DengF. LuoX-B. LuoS-L. Principles for the application of nanomaterials in environmental pollution control and resource reutilization.Nanomaterials for the Removal of Pollutants and Resource Reutilization.Elsevier201912310.1016/B978‑0‑12‑814837‑2.00001‑9
    [Google Scholar]
  14. SaddikM.S. Al-HakkaniM.F. Abu-DiefA.M. MohamedM.S. Al-FattahI.A. MakkiM. El-MokhtarM.A. SabetM.A. AminM.S. AhmedH.A. Al-GhamdiK. MohammadM.K. HassanM.H.A. Formulation and evaluation of azithromycin-loaded silver nanoparticles for the treatment of infected wounds.Int. J. Pharm. X2024710024510.1016/j.ijpx.2024.10024538633410
    [Google Scholar]
  15. Abu-DiefA.M. AlsehliM. AwaadA. The bioreaction and immune responses of PEG-coated silica NPs and the role of the surface density coating after oral administration into mice.Appl. Nanosci.20231385563557810.1007/s13204‑023‑02770‑0
    [Google Scholar]
  16. Abu-DiefA.M. AlsehliM. AwaadA. A higher dose of PEGylated gold nanoparticles reduces the accelerated blood clearance phenomenon effect and induces spleen B lymphocytes in albino mice.Histochem. Cell Biol.2022157664165610.1007/s00418‑022‑02086‑035157114
    [Google Scholar]
  17. LarayetanR. OjemayeM.O. OkohO.O. OkohA.I. Silver nanoparticles mediated by Callistemon citrinus extracts and their antimalaria, antitrypanosoma and antibacterial efficacy.J. Mol. Liq.201927361562510.1016/j.molliq.2018.10.020
    [Google Scholar]
  18. G AyeniA. OJ Pooe, P.; M Singh, S.; N Nundkumar, N.; MBC Simelane, S. Cytotoxic and antioxidant activities of selected South African medicinal plants.Pharmacogn. J.2019116s1532153910.5530/pj.2019.11.234
    [Google Scholar]
  19. NagaiT. SakaiM. InoueR. InoueH. SuzukiN. Antioxidative activities of some commercially honeys, royal jelly, and propolis.Food Chem.200175223724010.1016/S0308‑8146(01)00193‑5
    [Google Scholar]
  20. ChungS.K. OsawaT. KawakishiS. Hydroxyl radical-scavenging effects of spices and scavengers from brown mustard (Brassica nigra).Biosci. Biotechnol. Biochem.199761111812310.1271/bbb.61.118
    [Google Scholar]
  21. OyaizuM. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine.Eiyogaku Zasshi198644630731510.5264/eiyogakuzashi.44.307
    [Google Scholar]
  22. OyaizuM. Studies on products of browning reaction: Antioxidative activity of products of browning reaction.Jpn J Nutr.198644630731510.5264/eiyogakuzashi.44.307
    [Google Scholar]
  23. MohammedA. KoorbanallyN.A. IslamM.S. Anti-diabetic effect of Xylopia aethiopica (Dunal) A. Rich. (Annonaceae) fruit acetone fraction in a type 2 diabetes model of rats.J. Ethnopharmacol.201618013113910.1016/j.jep.2016.01.00926795545
    [Google Scholar]
  24. EllmanG.L. Tissue sulfhydryl groups.Arch. Biochem. Biophys.1959821707710.1016/0003‑9861(59)90090‑613650640
    [Google Scholar]
  25. KakkarP. DasB. ViswanathanP.N. A modified spectrophotometric assay of superoxide dismutase.Indian J. Biochem. Biophys.19842121301326490072
    [Google Scholar]
  26. HadwanM.H. AbedH.N. Data supporting the spectrophotometric method for the estimation of catalase activity.Data Brief2016619419910.1016/j.dib.2015.12.01226862558
    [Google Scholar]
  27. ObohG. AkinyemiA.J. AdemiluyiA.O. Antioxidant and inhibitory effect of red ginger (Zingiber officinale var. Rubra) and white ginger (Zingiber officinale Roscoe) on Fe2+ induced lipid peroxidation in rat brain in vitro.Exp. Toxicol. Pathol.2012641-2313610.1016/j.etp.2010.06.00220598871
    [Google Scholar]
  28. MauricioMD Guerra-OjedaS MarchioP VallesSL AldasoroM Escribano-LopezI Nanoparticles in medicine: A focus on vascular oxidative stress.Oxid. Med. Cell Longev.2018201810.1155/2018/6231482
    [Google Scholar]
  29. GoulasV. Banegas-LunaA.J. ConstantinouA. Pérez-SánchezH. BarboutiA. Computation screening of multi-target antidiabetic properties of phytochemicals in common edible mediterranean plants.Plants20221113163710.3390/plants1113163735807588
    [Google Scholar]
  30. SharmaP. JoshiT. JoshiT. ChandraS. TamtaS. In silico screening of potential antidiabetic phytochemicals from Phyllanthus emblica against therapeutic targets of type 2 diabetes.J. Ethnopharmacol.202024811226810.1016/j.jep.2019.11226831593813
    [Google Scholar]
  31. WahabM. BhattiA. JohnP. Evaluation of antidiabetic activity of biogenic silver nanoparticles using thymus serpyllum on streptozotocin-induced diabetic balb/c mice.Polymers20221415313810.3390/polym1415313835956652
    [Google Scholar]
  32. AjayiA. LarayetanR. YahayaA. FalolaO.O. UdeN.A. AdamuH. OgucheS.M. AbrahamK. EgbagbaA.O. EgwumahC. OjochegbeS.O. BalogunJ.O. UkanuP.I. Biogenic synthesis of silver nanoparticles with bitter leaf (vernonia amygdalina) aqueous extract and its effects on testosterone-induced benign prostatic hyperplasia (bph) in wistar rat.Chemistry Africa20214479180710.1007/s42250‑021‑00272‑6
    [Google Scholar]
  33. Abdel-RaoufN. Al-EnaziN.M. IbraheemI.B.M. AlharbiR.M. AlkhulaifiM.M. Biosynthesis of silver nanoparticles by using of the marine brown alga Padina pavonia and their characterization.Saudi J. Biol. Sci.20192661207121510.1016/j.sjbs.2018.01.00731516350
    [Google Scholar]
  34. LarayetanR.A. AyeniG. YahayaA. AjayiA. OmaleS. IshaqU. AbiodunD.J. OlisahC. AigbogunJ. Enyioma-AlozieS. Chemical composition of gossypium herbaceum linn and its antioxidant, antibacterial, cytotoxic and antimalarial activities.Clin. Complement. Med. Pharmacol.20211110000810.1016/j.ccmp.2021.100008
    [Google Scholar]
  35. SimelaneM.B.C. LawalO.A. DjarovaT.G. OpokuA.R. In vitro antioxidant and cytotoxic activity of Gunnera perpensa L. (Gunneraceae) from South Africa.J. Med. Plants Res.201042121812188
    [Google Scholar]
  36. BashalA.H. KhalilK.D. HabeebT. Abu-DiefA.M. Exploring the biomedical potential of chitosan‐ceria nanocomposites: Synthesis and characterizations.Appl. Organomet. Chem.2024386e746710.1002/aoc.7467
    [Google Scholar]
  37. BashalA.H. KhalilK.D. Abu-DiefA.M. El-AtawyM.A. Cobalt oxide-chitosan based nanocomposites: Synthesis, characterization and their potential pharmaceutical applications.Int. J. Biol. Macromol.2023253Pt 412685610.1016/j.ijbiomac.2023.12685637714231
    [Google Scholar]
  38. Abu-DiefA.M. El-KhatibR.M. AljohaniF.S. Al-AbdulkarimH.A. AlzahraniS. El-SarragG. IsmaelM. Synthesis, structural elucidation, DFT calculation, biological studies and DNA interaction of some aryl hydrazone Cr3+, Fe3+, and Cu2+ chelates.Comput. Biol. Chem.20229710764310.1016/j.compbiolchem.2022.10764335189479
    [Google Scholar]
  39. SalauV.F. ErukainureO.L. AyeniG. IbejiC.U. IslamM.S. Modulatory effect of ursolic acid on neurodegenerative activities in oxidative brain injury: An ex vivo study.J. Food Biochem.2021452e1359710.1111/jfbc.1359733368405
    [Google Scholar]
  40. DingS. LiM. GongH. ZhuQ. ShiG. ZhuA. Sensitive and selective measurement of hydroxyl radicals at subcellular level with tungsten nanoelectrodes.Anal. Chem.20209232543254910.1021/acs.analchem.9b0413931927939
    [Google Scholar]
  41. RatheeJ.S. HassarajaniS.A. ChattopadhyayS. Antioxidant activity of Nyctanthes arbor-tristis leaf extract.Food Chem.200710341350135710.1016/j.foodchem.2006.10.048
    [Google Scholar]
  42. FilippiA. LiuF. WilsonJ. LelieveldS. KorscheltK. WangT. WangY. ReichT. PöschlU. TremelW. TongH. Antioxidant activity of cerium dioxide nanoparticles and nanorods in scavenging hydroxyl radicals.RSC Advances2019920110771108110.1039/C9RA00642G35520271
    [Google Scholar]
  43. SpiegelM. KapustaK. KołodziejczykW. SaloniJ. ŻbikowskaB. HillG.A. SrokaZ. Antioxidant activity of selected phenolic acids–ferric reducing antioxidant power assay and QSAR analysis of the structural features.Molecules20202513308810.3390/molecules2513308832645868
    [Google Scholar]
  44. JiniD. SharmilaS. Green synthesis of silver nanoparticles from Allium cepa and its in vitro antidiabetic activity.Mater. Today Proc.20202243243810.1016/j.matpr.2019.07.672
    [Google Scholar]
  45. JiniD. SharmilaS. AnithaA. PandianM. RajapakshaR.M.H. In vitro and in silico studies of silver nanoparticles (AgNPs) from Allium sativum against diabetes.Sci. Rep.20221212210910.1038/s41598‑022‑24818‑x36543812
    [Google Scholar]
  46. OguntibejuO.O. Type 2 diabetes mellitus, oxidative stress and inflammation: Examining the links.Int. J. Physiol. Pathophysiol. Pharmacol.2019113456331333808
    [Google Scholar]
  47. LucK. Schramm-LucA. GuzikT.J. MikolajczykT.P. Oxidative stress and inflammatory markers in prediabetes and diabetes.J. Physiol. Pharmacol.201970680982432084643
    [Google Scholar]
  48. ParhoferK.G. Interaction between glucose and lipid metabolism: More than diabetic dyslipidemia.Diabetes Metab. J.201539535336210.4093/dmj.2015.39.5.35326566492
    [Google Scholar]
  49. Santos-GallegoC.G. RosensonR.S. Role of HDL in those with diabetes.Curr. Cardiol. Rep.201416951210.1007/s11886‑014‑0512‑5
    [Google Scholar]
  50. XepapadakiE. ZvintzouE. KalogeropoulouC. FilouS. KypreosK.E. The antioxidant function of HDL in atherosclerosis.Angiology202071211212110.1177/000331971985460931185723
    [Google Scholar]
  51. AhmadM.N. FarahA.I. Al-QirimT.M. The cardiovascular complications of diabetes: A striking link through protein glycation.Rom. J. Intern. Med.202058418819810.2478/rjim‑2020‑002132759408
    [Google Scholar]
  52. WangW. WuS. WangJ. LiZ. CuiH. LinS. ZhuJ. ChenQ. Superoxide dismutase transcellular shuttle constructed from dendritic MOF and charge reversible protein derivatives.Chem. Sci.201910164476448510.1039/C8SC04160A31057775
    [Google Scholar]
  53. KaushalJ. MehandiaS. SinghG. RainaA. AryaS.K. Catalase enzyme: Application in bioremediation and food industry.Biocatal. Agric. Biotechnol.20181619219910.1016/j.bcab.2018.07.035
    [Google Scholar]
  54. ChangL. XuJ.X. ZhaoJ. PangY-Z. TangC-S. QiY.F. Taurine antagonized oxidative stress injury induced by homocysteine in rat vascular smooth muscle cells.Acta Pharmacol. Sin.200425334134615000888
    [Google Scholar]
  55. NarayanankuttyA. JobJ.T. NarayanankuttyV. Glutathione, an antioxidant tripeptide: Dual roles in carcinogenesis and chemoprevention.Curr. Protein Pept. Sci.201920990791710.2174/138920372066619020613000330727890
    [Google Scholar]
  56. MishraS. MishraB. Study of lipid peroxidation, nitric oxide end product, and trace element status in type 2 diabetes mellitus with and without complications.Int. J. Appl. Basic Med. Res.201772889310.4103/2229‑516X.20581328584737
    [Google Scholar]
  57. Ul HaqM.N. ShahG.M. MenaaF. KhanR.A. AlthobaitiN.A. AlbalawiA.E. AlkreathyH.M. Green silver nanoparticles synthesized from Taverniera couneifolia elicits effective anti-diabetic effect in alloxan-induced diabetic wistar rats.Nanomaterials2022127103510.3390/nano1207103535407153
    [Google Scholar]
  58. PerumalsamyR. KrishnadhasL. Anti-diabetic activity of silver nanoparticles synthesized from the hydroethanolic extract of Myristica fragrans seeds.Appl. Biochem. Biotechnol.202219431136114810.1007/s12010‑022‑03825‑835091876
    [Google Scholar]
  59. PonnanikajamideenM. RajeshkumarS. VanajaM. AnnaduraiG. In vivo type 2 diabetes and wound-healing effects of antioxidant gold nanoparticles synthesized using the insulin plant Chamaecostus cuspidatus in albino rats.Can. J. Diabetes20194328289.e610.1016/j.jcjd.2018.05.00630413371
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968284847240920103341
Loading
/content/journals/ccb/10.2174/0122127968284847240920103341
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test