Skip to content
2000
image of Protective Role of Ovothiol-A against Muscle and Kidney Injuries in Obese Rats

Abstract

Background

Obesity is a serious chronic metabolic disease impairing health damaging many organs such as kidneys and muscles. Ovothiol-A (Ovo-A) has been found to keep the redox balance normal in sea urchins indicating its antioxidant characteristics.

Aim

This study aims to investigate the protective effects of Ovo-A on kidneys and muscles in obese rats.

Methods

studies were performed on lactate dehydrogenase (LDH) and creatine kinase (CK) with Ovo-A to compute their binding affinities. Obesity was induced by high-fat diet (HFD) for 4 weeks. Wistar rats were used in this study as 6 rats per group as control, HFD, Ovo-A (200 and 400 mg/Kg, p.o) groups.

Results

Docking results have revealed that Ovo-A has affinities to bind to LDH (-8.5 kcal/mol) and CK (-17.7 kcal/mol). Ovo-A reduced the levels of uric acid, urea, creatinine, LDH, CK, malondialdehyde (MDA), and nitric oxide (NO), while increasing the levels of glutathione (GSH), catalase (CAT), and glutathione-S-transferase (GST). Histopathological investigations have revealed that Ovo-A restored the renal and muscular structure.

Conclusion

The current study showed that Ovo-A has a protective effect on kidneys and muscles in obese rats. Ovo-A enhances renal and muscular functions by inhibiting LDH and CK activities and improving the antioxidant system. Ovo-A is more effective in the high dose.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968306623240830071012
2024-09-12
2024-11-26
Loading full text...

Full text loading...

References

  1. Lu M. Wan Y. Yang B. Huggins C.E. Li D. Effects of low-fat compared with high-fat diet on cardiometabolic indicators in people with overweight and obesity without overt metabolic disturbance: A systematic review and meta-analysis of randomised controlled trials. Br. J. Nutr. 2018 119 1 96 108 10.1017/S0007114517002902 29212558
    [Google Scholar]
  2. Ghanemi A. Melouane A. Yoshioka M. St-Amand J. Exercise and high-fat diet in obesity: Functional genomics perspectives of two energy homeostasis pillars. Genes (Basel) 2020 11 8 875 10.3390/genes11080875 32752100
    [Google Scholar]
  3. Ghanemi A. Yoshioka M. St-Amand J. Broken energy homeostasis and obesity pathogenesis: the surrounding concepts. J. Clin. Med. 2018 7 11 453 10.3390/jcm7110453 30463389
    [Google Scholar]
  4. World obesity day 2022 – Accelerating action to stop obesity. 2022 Available from: https://www.who.int/news/item/04-03-2022-world-obesity-day-2022-accelerating-action-to-stop-obesity
  5. Obesity and overweight. 2024 Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight#:~:text=For%20adults%2C%20WHO%20defines%20overweight,than%20or%20equal%20to%2030.
  6. Mehrzad R. The global impact of obesity. Obesity Elsevier 2020 55 72 10.1016/B978‑0‑12‑818839‑2.00005‑3
    [Google Scholar]
  7. Corkey B. E. Reactive oxygen species: Role in obesity and mitochondrial energy efficiency. Philos Trans R Soc Lond B Biol Sci. 2023 378 1885 20220210 10.1098/rstb.2022.0210
    [Google Scholar]
  8. Catalán V. Frühbeck G. Gómez-Ambrosi J. Inflammatory and oxidative stress markers in skeletal muscle of obese subjects. Obesity. Academic Press 2018 163 189 10.1016/B978‑0‑12‑812504‑5.00008‑8
    [Google Scholar]
  9. Laurentius T. Raffetseder U. Fellner C. Kob R. Nourbakhsh M. Floege J. Bertsch T. Bollheimer L.C. Ostendorf T. High-fat diet-induced obesity causes an inflammatory microenvironment in the kidneys of aging long-evans rats. J. Inflamm. (Lond.) 2019 16 1 14 10.1186/s12950‑019‑0219‑x 31289451
    [Google Scholar]
  10. Liu S. Yang D. Yu L. Aluo Z. Zhang Z. Qi Y. Li Y. Song Z. Xu G. Zhou L. Effects of lycopene on skeletal muscle-fiber type and high-fat diet-induced oxidative stress. J. Nutr. Biochem. 2021 87 108523 10.1016/j.jnutbio.2020.108523 33039582
    [Google Scholar]
  11. Vasquez C.R. DiSanto T. Reilly J.P. Forker C.M. Holena D.N. Wu Q. Lanken P.N. Christie J.D. Shashaty M.G.S. Relationship of body mass index, serum creatine kinase, and acute kidney injury after severe trauma. J. Trauma Acute Care Surg. 2020 89 1 179 185 10.1097/TA.0000000000002714 32282754
    [Google Scholar]
  12. Tallis J. Hill C. James R.S. Cox V.M. Seebacher F. The effect of obesity on the contractile performance of isolated mouse soleus, EDL, and diaphragm muscles. J. Appl. Physiol. 2017 122 1 170 181 10.1152/japplphysiol.00836.2016 27856719
    [Google Scholar]
  13. Tallis J. James R.S. Seebacher F. The effects of obesity on skeletal muscle contractile function. J. Exp. Biol. 2018 221 13 jeb163840 10.1242/jeb.163840 29980597
    [Google Scholar]
  14. Chen S. Chen J. Li S. Guo F. Li A. Wu H. Chen J. Pan Q. Liao S. Liu H. Pan Q. High-fat diet-induced renal proximal tubular inflammatory injury: Emerging risk factor of chronic kidney disease. Front. Physiol. 2021 12 786599 10.3389/fphys.2021.786599 34950058
    [Google Scholar]
  15. Zimmerman B. Kundu P. Rooney W.D. Raber J. The effect of high fat diet on cerebrovascular health and pathology: A species comparative review. Molecules 2021 26 11 3406 10.3390/molecules26113406 34199898
    [Google Scholar]
  16. Muhamad Adyab N.S. Rahmat A. Abdul Kadir N.A.A. Jaafar H. Shukri R. Ramli N.S. Mangosteen ( Garcinia mangostana ) flesh supplementation attenuates biochemical and morphological changes in the liver and kidney of high fat diet-induced obese rats. BMC Complement. Altern. Med. 2019 19 1 344 10.1186/s12906‑019‑2764‑5 31791316
    [Google Scholar]
  17. Rosa-Gonçalves P. Majerowicz D. Pharmacotherapy of obesity: Limits and perspectives. Am. J. Cardiovasc. Drugs 2019 19 4 349 364 10.1007/s40256‑019‑00328‑6 30793263
    [Google Scholar]
  18. Srivastava G. Apovian C.M. Current pharmacotherapy for obesity. Nat. Rev. Endocrinol. 2018 14 1 12 24 10.1038/nrendo.2017.122 29027993
    [Google Scholar]
  19. Gogineni V. Hamann M.T. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology. Biochim. Biophys. Acta, Gen. Subj. 2018 1862 1 81 196 10.1016/j.bbagen.2017.08.014 28844981
    [Google Scholar]
  20. Khalifa S.A.M. Elias N. Farag M.A. Chen L. Saeed A. Hegazy M.E.F. Moustafa M.S. Abd El-Wahed A. Al-Mousawi S.M. Musharraf S.G. Chang F.R. Iwasaki A. Suenaga K. Alajlani M. Göransson U. El-Seedi H.R. Marine natural products: A source of novel anticancer drugs. Mar. Drugs 2019 17 9 491 10.3390/md17090491 31443597
    [Google Scholar]
  21. Palumbo A. Castellano I. Napolitano A. Ovothiol: A potent natural antioxidant from marine organisms. Blue Biotechnology 2018 583 610 10.1002/9783527801718.ch18
    [Google Scholar]
  22. Castellano I. Di Tomo P. Di Pietro N. Mandatori D. Pipino C. Formoso G. Napolitano A. Palumbo A. Pandolfi A. Anti-inflammatory activity of marine ovothiol a in an in vitro model of endothelial dysfunction induced by hyperglycemia. Oxid Med Cell Longev. 2018 2018 2087373 10.1155/2018/2087373.
    [Google Scholar]
  23. Milito A. Cocurullo M. Columbro A. Nonnis S. Tedeschi G. Castellano I. Arnone M.I. Palumbo A. Ovothiol ensures the correct developmental programme of the sea urchin Paracentrotus lividus embryo. Open Biol. 2022 12 1 210262 10.1098/rsob.210262 35042403
    [Google Scholar]
  24. Castellano I. Seebeck F.P. On ovothiol biosynthesis and biological roles: from life in the ocean to therapeutic potential. Nat. Prod. Rep. 2018 35 12 1241 1250 10.1039/C8NP00045J 30052250
    [Google Scholar]
  25. Madany N.M.K. Shehata M.R. Mohamed A.S. Ovothiol-A isolated from sea urchin eggs suppress oxidative stress, inflammation, and dyslipidemia resulted in restoration of liver activity in cholestatic rats. Biointerface Res. Appl. Chem. 2022 12 8152 8162
    [Google Scholar]
  26. Mohammed E.N. Soliman A.M. Mohamed A.S. Modulatory effect of Ovothiol-A on myocardial infarction induced by epinephrine in rats. J. Food Biochem. 2022 46 9 e14296 10.1111/jfbc.14296 35791516
    [Google Scholar]
  27. Russo G. Russo M. Castellano I. Napolitano A. Palumbo A. Ovothiol isolated from sea urchin oocytes induces autophagy in the Hep-G2 cell line. Mar. Drugs 2014 12 7 4069 4085 10.3390/md12074069 25003791
    [Google Scholar]
  28. Nguyen T.V. Preparation of artificial seawater (ASW) for culturing marine bacteria. Available from: https://www.researchgate.net/profile/Thao-Nguyen-43/publication/323971616_Preparation_of_Artificial_Sea_Water_ASW_for_Culturing_Marine_Bacteria/links/5ab5896d45851515f59a7a5b/Preparation-of-Artificial-Sea-Water-ASW-for-Culturing-Marine-Bacteria.pdf 2018
  29. Hamza Hasan M. Effect of climate change on the reproduction pattern of sea urchin Echinometra mathaei at the Gulf of Suez, Red Sea, Egypt. Egypt. J. Aquat. 2019 23 2 527 544 10.21608/ejabf.2019.35918
    [Google Scholar]
  30. Zhang X-Y. Guo C-C. Yu Y-X. Xie L. Chang C-Q. [Establishment of high-fat diet-induced obesity and insulin resistance model in rats]. Beijing Da Xue Xue Bao Yi Xue Ban. 2020 52 3 557 563
    [Google Scholar]
  31. Carreres L. Jílková Z.M. Vial G. Marche P.N. Decaens T. Lerat H. Modeling diet-induced NAFLD and NASH in rats: A comprehensive review. Biomedicines 2021 9 4 378 10.3390/biomedicines9040378 33918467
    [Google Scholar]
  32. Suvarna K. S. Layton C. Bancroft J. D. Bancroft's theory and practice of histological techniques.Elsevier 2018
    [Google Scholar]
  33. Callegari G.A. Novaes J.S. Neto G.R. Dias I. Garrido N.D. Dani C. Creatine kinase and lactate dehydrogenase responses after different resistance and aerobic exercise protocols. J. Hum. Kinet. 2017 58 1 65 72 10.1515/hukin‑2017‑0071 28828078
    [Google Scholar]
  34. Kristjansson R.P. Oddsson A. Helgason H. Sveinbjornsson G. Arnadottir G.A. Jensson B.O. Jonasdottir A. Jonasdottir A. Bragi Walters G. Sulem G. Oskarsdottir A. Benonisdottir S. Davidsson O.B. Masson G. Th Magnusson O. Holm H. Sigurdardottir O. Jonsdottir I. Eyjolfsson G.I. Olafsson I. Gudbjartsson D.F. Thorsteinsdottir U. Sulem P. Stefansson K. Common and rare variants associating with serum levels of creatine kinase and lactate dehydrogenase. Nat. Commun. 2016 7 1 10572 10.1038/ncomms10572 26838040
    [Google Scholar]
  35. Spriet L.L. Howlett R.A. Heigenhauser G.J.F. An enzymatic approach to lactate production in human skeletal muscle during exercise. Med. Sci. Sports Exerc. 2000 32 4 756 763 10.1097/00005768‑200004000‑00007 10776894
    [Google Scholar]
  36. Kashani A. Keshavarz S.A. Jafari-Vayghan H. Azam K. Hozoori M. Alinavaz M. Djafarian K. Preventive effects of Spirulina platensis on exercise-induced muscle damage, oxidative stress and inflammation in taekwondo athletes: a randomized cross-over trial. Pharm. Sci. 2022 28 3 589 595 10.34172/PS.2022.9
    [Google Scholar]
  37. Owens D.J. Twist C. Cobley J.N. Howatson G. Close G.L. Exercise-induced muscle damage: What is it, what causes it and what are the nutritional solutions? Eur. J. Sport Sci. 2019 19 1 71 85 10.1080/17461391.2018.1505957 30110239
    [Google Scholar]
  38. Williamson L. New D. How the use of creatine supplements can elevate serum creatinine in the absence of underlying kidney pathology. BMJ Case Rep. 2014 2014 bcr2014204754 10.1136/bcr‑2014‑204754.
    [Google Scholar]
  39. Wang M. Wang Z. Chen Y. Dong Y. Kidney damage caused by obesity and its feasible treatment drugs. Int. J. Mol. Sci. 2022 23 2 747 10.3390/ijms23020747 35054932
    [Google Scholar]
  40. Mohamed A. S. Ibrahim W. M. Zaki N. I. Ali S. B. Soliman A. M. Effectiveness of coelatura aegyptiaca extract combination with atorvastatin on experimentally induced hyperlipidemia in rats. Evid Based Complement Alternat Med. 2019 2019 9726137 10.1155/2019/9726137.
    [Google Scholar]
  41. Hohos N.M. Skaznik-Wikiel M.E. High-fat diet and female fertility. Endocrinology 2017 158 8 2407 2419 10.1210/en.2017‑00371 28586412
    [Google Scholar]
  42. Salaheldin A.T. Shehata M.R. Sakr H.I. Atia T. Mohamed A.S. Therapeutic potency of ovothiol A on ethanol-induced gastric ulcers in wistar rats. Mar. Drugs 2022 21 1 25 10.3390/md21010025 36662198
    [Google Scholar]
  43. Sies H. Belousov V.V. Chandel N.S. Davies M.J. Jones D.P. Mann G.E. Murphy M.P. Yamamoto M. Winterbourn C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 2022 23 7 499 515 10.1038/s41580‑022‑00456‑z 35190722
    [Google Scholar]
  44. Epingeac M.E. Gaman M.A. Diaconu C.C. Gad M. Gaman A.M. The evaluation of oxidative stress levels in obesity. Revista de Chimie 2019 70 6 2241 2244 10.37358/RC.19.6.7314
    [Google Scholar]
  45. Huang Y. Chen H. Liu Q. Hu J. Hu D. Huang Z. Xu Z. Wan R. Obesity difference on association blood malondialdehyde level and diastolic hypertension in the elderly population: a cross-sectional analysis. Eur. J. Med. Res. 2023 28 1 44 10.1186/s40001‑022‑00983‑7 36694211
    [Google Scholar]
  46. Masschelin P.M. Cox A.R. Chernis N. Hartig S.M. The impact of oxidative stress on adipose tissue energy balance. Front. Physiol. 2020 10 1638 10.3389/fphys.2019.01638 32038305
    [Google Scholar]
  47. Santana M.M. Gonzalez J.M. Cruz C. Nitric oxide accumulation: The evolutionary trigger for phytopathogenesis. Front. Microbiol. 2017 8 1947 10.3389/fmicb.2017.01947 29067010
    [Google Scholar]
  48. Mijatović S. Savić-Radojević A. Plješa-Ercegovac M. Simić T. Nicoletti F. Maksimović-Ivanić D. The double-faced role of nitric oxide and reactive oxygen species in solid tumors. Antioxidants 2020 9 5 374 10.3390/antiox9050374 32365852
    [Google Scholar]
  49. Adams L. Franco M.C. Estevez A.G. Reactive nitrogen species in cellular signaling. Exp. Biol. Med. 2015 240 6 711 717 10.1177/1535370215581314 25888647
    [Google Scholar]
  50. Ramana K. V. Reddy A. Majeti N. Singhal S. S. Therapeutic potential of natural antioxidants. Oxid Med Cell Longev. 2018 2018 9471051 10.1155/2018/9471051
    [Google Scholar]
  51. Osik N.A. Zelentsova E.A. Tsentalovich Y.P. Kinetic studies of antioxidant properties of ovothiol A. Antioxidants 2021 10 9 1470 10.3390/antiox10091470 34573105
    [Google Scholar]
  52. Mirzahosseini A. Orgován G. Hosztafi S. Noszál B. The complete microspeciation of ovothiol A, the smallest octafarious antioxidant biomolecule. Anal. Bioanal. Chem. 2014 406 9-10 2377 2387 10.1007/s00216‑014‑7631‑0 24510213
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968306623240830071012
Loading
/content/journals/ccb/10.2174/0122127968306623240830071012
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: high-fat diet ; obesity ; kidney ; Ovothiol-A ; muscles ; docking ; oxidative stress
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test