Skip to content
2000
Volume 18, Issue 1
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Background

Obesity is a serious chronic metabolic disease impairing health damaging many organs such as kidneys and muscles. Ovothiol-A (Ovo-A) has been found to keep the redox balance normal in sea urchins indicating its antioxidant characteristics.

Aim

This study aims to investigate the protective effects of Ovo-A on kidneys and muscles in obese rats.

Methods

studies were performed on lactate dehydrogenase (LDH) and creatine kinase (CK) with Ovo-A to compute their binding affinities. Obesity was induced by high-fat diet (HFD) for 4 weeks. Wistar rats were used in this study as 6 rats per group as control, HFD, Ovo-A (200 and 400 mg/Kg, p.o) groups.

Results

Docking results have revealed that Ovo-A has affinities to bind to LDH (-8.5 kcal/mol) and CK (-17.7 kcal/mol). Ovo-A reduced the levels of uric acid, urea, creatinine, LDH, CK, malondialdehyde (MDA), and nitric oxide (NO), while increasing the levels of glutathione (GSH), catalase (CAT), and glutathione-S-transferase (GST). Histopathological investigations have revealed that Ovo-A restored the renal and muscular structure.

Conclusion

The current study showed that Ovo-A has a protective effect on kidneys and muscles in obese rats. Ovo-A enhances renal and muscular functions by inhibiting LDH and CK activities and improving the antioxidant system. Ovo-A is more effective in the high dose.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968306623240830071012
2024-09-12
2025-04-12
Loading full text...

Full text loading...

References

  1. LuM. WanY. YangB. HugginsC.E. LiD. Effects of low-fat compared with high-fat diet on cardiometabolic indicators in people with overweight and obesity without overt metabolic disturbance: A systematic review and meta-analysis of randomised controlled trials.Br. J. Nutr.201811919610810.1017/S000711451700290229212558
    [Google Scholar]
  2. GhanemiA. MelouaneA. YoshiokaM. St-AmandJ. Exercise and high-fat diet in obesity: Functional genomics perspectives of two energy homeostasis pillars.Genes (Basel)202011887510.3390/genes1108087532752100
    [Google Scholar]
  3. GhanemiA. YoshiokaM. St-AmandJ. Broken energy homeostasis and obesity pathogenesis: the surrounding concepts.J. Clin. Med.201871145310.3390/jcm711045330463389
    [Google Scholar]
  4. World obesity day 2022 – Accelerating action to stop obesity.2022Available from: https://www.who.int/news/item/ 04-03-2022-world-obesity-day-2022-accelerating-action-to-stop-obesity
  5. Obesity and overweight.2024Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight#:~:text=For%20adults%2C%20WHO%20defines%20overweight,than%20or%20equal%20to%2030.
  6. MehrzadR. The global impact of obesity.ObesityElsevier2020557210.1016/B978‑0‑12‑818839‑2.00005‑3
    [Google Scholar]
  7. CorkeyB. E. Reactive oxygen species: Role in obesity and mitochondrial energy efficiency.Philos Trans R Soc Lond B Biol Sci.202337818852022021010.1098/rstb.2022.0210
    [Google Scholar]
  8. CatalánV. FrühbeckG. Gómez-AmbrosiJ. Inflammatory and oxidative stress markers in skeletal muscle of obese subjects.Obesity.Academic Press201816318910.1016/B978‑0‑12‑812504‑5.00008‑8
    [Google Scholar]
  9. LaurentiusT. RaffetsederU. FellnerC. KobR. NourbakhshM. FloegeJ. BertschT. BollheimerL.C. OstendorfT. High-fat diet-induced obesity causes an inflammatory microenvironment in the kidneys of aging long-evans rats.J. Inflamm. (Lond.)20191611410.1186/s12950‑019‑0219‑x31289451
    [Google Scholar]
  10. LiuS. YangD. YuL. AluoZ. ZhangZ. QiY. LiY. SongZ. XuG. ZhouL. Effects of lycopene on skeletal muscle-fiber type and high-fat diet-induced oxidative stress.J. Nutr. Biochem.20218710852310.1016/j.jnutbio.2020.10852333039582
    [Google Scholar]
  11. VasquezC.R. DiSantoT. ReillyJ.P. ForkerC.M. HolenaD.N. WuQ. LankenP.N. ChristieJ.D. ShashatyM.G.S. Relationship of body mass index, serum creatine kinase, and acute kidney injury after severe trauma.J. Trauma Acute Care Surg.202089117918510.1097/TA.000000000000271432282754
    [Google Scholar]
  12. TallisJ. HillC. JamesR.S. CoxV.M. SeebacherF. The effect of obesity on the contractile performance of isolated mouse soleus, EDL, and diaphragm muscles.J. Appl. Physiol.2017122117018110.1152/japplphysiol.00836.201627856719
    [Google Scholar]
  13. TallisJ. JamesR.S. SeebacherF. The effects of obesity on skeletal muscle contractile function.J. Exp. Biol.201822113jeb16384010.1242/jeb.16384029980597
    [Google Scholar]
  14. ChenS. ChenJ. LiS. GuoF. LiA. WuH. ChenJ. PanQ. LiaoS. LiuH. PanQ. High-fat diet-induced renal proximal tubular inflammatory injury: Emerging risk factor of chronic kidney disease.Front. Physiol.20211278659910.3389/fphys.2021.78659934950058
    [Google Scholar]
  15. ZimmermanB. KunduP. RooneyW.D. RaberJ. The effect of high fat diet on cerebrovascular health and pathology: A species comparative review.Molecules20212611340610.3390/molecules2611340634199898
    [Google Scholar]
  16. Muhamad AdyabN.S. RahmatA. Abdul KadirN.A.A. JaafarH. ShukriR. RamliN.S. Mangosteen ( Garcinia mangostana ) flesh supplementation attenuates biochemical and morphological changes in the liver and kidney of high fat diet-induced obese rats.BMC Complement. Altern. Med.201919134410.1186/s12906‑019‑2764‑531791316
    [Google Scholar]
  17. Rosa-GonçalvesP. MajerowiczD. Pharmacotherapy of obesity: Limits and perspectives.Am. J. Cardiovasc. Drugs201919434936410.1007/s40256‑019‑00328‑630793263
    [Google Scholar]
  18. SrivastavaG. ApovianC.M. Current pharmacotherapy for obesity.Nat. Rev. Endocrinol.2018141122410.1038/nrendo.2017.12229027993
    [Google Scholar]
  19. GogineniV. HamannM.T. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology.Biochim. Biophys. Acta, Gen. Subj.2018186218119610.1016/j.bbagen.2017.08.01428844981
    [Google Scholar]
  20. KhalifaS.A.M. EliasN. FaragM.A. ChenL. SaeedA. HegazyM.E.F. MoustafaM.S. Abd El-WahedA. Al-MousawiS.M. MusharrafS.G. ChangF.R. IwasakiA. SuenagaK. AlajlaniM. GöranssonU. El-SeediH.R. Marine natural products: A source of novel anticancer drugs.Mar. Drugs201917949110.3390/md1709049131443597
    [Google Scholar]
  21. PalumboA. CastellanoI. NapolitanoA. Ovothiol: A potent natural antioxidant from marine organisms. Blue Biotechnology201858361010.1002/9783527801718.ch18
    [Google Scholar]
  22. CastellanoI. Di TomoP. Di PietroN. MandatoriD. PipinoC. FormosoG. NapolitanoA. PalumboA. PandolfiA. Anti-inflammatory activity of marine ovothiol a in an in vitro model of endothelial dysfunction induced by hyperglycemia.Oxid Med Cell Longev.20182018208737310.1155/2018/2087373
    [Google Scholar]
  23. MilitoA. CocurulloM. ColumbroA. NonnisS. TedeschiG. CastellanoI. ArnoneM.I. PalumboA. Ovothiol ensures the correct developmental programme of the sea urchin Paracentrotus lividus embryo.Open Biol.202212121026210.1098/rsob.21026235042403
    [Google Scholar]
  24. CastellanoI. SeebeckF.P. On ovothiol biosynthesis and biological roles: from life in the ocean to therapeutic potential.Nat. Prod. Rep.201835121241125010.1039/C8NP00045J30052250
    [Google Scholar]
  25. MadanyN.M.K. ShehataM.R. MohamedA.S. Ovothiol-A isolated from sea urchin eggs suppress oxidative stress, inflammation, and dyslipidemia resulted in restoration of liver activity in cholestatic rats.Biointerface Res. Appl. Chem.20221281528162
    [Google Scholar]
  26. MohammedE.N. SolimanA.M. MohamedA.S. Modulatory effect of Ovothiol-A on myocardial infarction induced by epinephrine in rats.J. Food Biochem.2022469e1429610.1111/jfbc.1429635791516
    [Google Scholar]
  27. RussoG. RussoM. CastellanoI. NapolitanoA. PalumboA. Ovothiol isolated from sea urchin oocytes induces autophagy in the Hep-G2 cell line.Mar. Drugs20141274069408510.3390/md1207406925003791
    [Google Scholar]
  28. NguyenT.V. Preparation of artificial seawater (ASW) for culturing marine bacteria.Available from: https://www.researchgate.net/profile/Thao-Nguyen-43/publication/323971616_Preparation_of_Artificial_Sea_Water_ASW_for_Culturing_Marine_Bacteria/links/5ab5896d45851515f59a7a5b/Preparation-of-Artificial-Sea-Water-ASW-for-Culturing-Marine-Bacteria.pdf 2018
  29. Hamza HasanM. Effect of climate change on the reproduction pattern of sea urchin Echinometra mathaei at the Gulf of Suez, Red Sea, Egypt.Egypt. J. Aquat.201923252754410.21608/ejabf.2019.35918
    [Google Scholar]
  30. ZhangX-Y. GuoC-C. YuY-X. XieL. ChangC-Q. [Establishment of high-fat diet-induced obesity and insulin resistance model in rats].Beijing Da Xue Xue Bao Yi Xue Ban.2020523557563
    [Google Scholar]
  31. CarreresL. JílkováZ.M. VialG. MarcheP.N. DecaensT. LeratH. Modeling diet-induced NAFLD and NASH in rats: A comprehensive review.Biomedicines20219437810.3390/biomedicines904037833918467
    [Google Scholar]
  32. SuvarnaK. S. LaytonC. BancroftJ. D. Bancroft's theory and practice of histological techniques.Elsevier2018
    [Google Scholar]
  33. CallegariG.A. NovaesJ.S. NetoG.R. DiasI. GarridoN.D. DaniC. Creatine kinase and lactate dehydrogenase responses after different resistance and aerobic exercise protocols.J. Hum. Kinet.2017581657210.1515/hukin‑2017‑007128828078
    [Google Scholar]
  34. KristjanssonR.P. OddssonA. HelgasonH. SveinbjornssonG. ArnadottirG.A. JenssonB.O. JonasdottirA. JonasdottirA. Bragi WaltersG. SulemG. OskarsdottirA. BenonisdottirS. DavidssonO.B. MassonG. Th MagnussonO. HolmH. SigurdardottirO. JonsdottirI. EyjolfssonG.I. OlafssonI. GudbjartssonD.F. ThorsteinsdottirU. SulemP. StefanssonK. Common and rare variants associating with serum levels of creatine kinase and lactate dehydrogenase.Nat. Commun.2016711057210.1038/ncomms1057226838040
    [Google Scholar]
  35. SprietL.L. HowlettR.A. HeigenhauserG.J.F. An enzymatic approach to lactate production in human skeletal muscle during exercise.Med. Sci. Sports Exerc.200032475676310.1097/00005768‑200004000‑0000710776894
    [Google Scholar]
  36. KashaniA. KeshavarzS.A. Jafari-VayghanH. AzamK. HozooriM. AlinavazM. DjafarianK. Preventive effects of Spirulina platensis on exercise-induced muscle damage, oxidative stress and inflammation in taekwondo athletes: a randomized cross-over trial.Pharm. Sci.202228358959510.34172/PS.2022.9
    [Google Scholar]
  37. OwensD.J. TwistC. CobleyJ.N. HowatsonG. CloseG.L. Exercise-induced muscle damage: What is it, what causes it and what are the nutritional solutions?Eur. J. Sport Sci.2019191718510.1080/17461391.2018.150595730110239
    [Google Scholar]
  38. WilliamsonL. NewD. How the use of creatine supplements can elevate serum creatinine in the absence of underlying kidney pathology.BMJ Case Rep.20142014bcr201420475410.1136/bcr‑2014‑204754.
    [Google Scholar]
  39. WangM. WangZ. ChenY. DongY. Kidney damage caused by obesity and its feasible treatment drugs.Int. J. Mol. Sci.202223274710.3390/ijms2302074735054932
    [Google Scholar]
  40. MohamedA. S. IbrahimW. M. ZakiN. I. AliS. B. SolimanA. M. Effectiveness of coelatura aegyptiaca extract combination with atorvastatin on experimentally induced hyperlipidemia in rats.Evid Based Complement Alternat Med.20192019972613710.1155/2019/9726137.
    [Google Scholar]
  41. HohosN.M. Skaznik-WikielM.E. High-fat diet and female fertility.Endocrinology201715882407241910.1210/en.2017‑0037128586412
    [Google Scholar]
  42. SalaheldinA.T. ShehataM.R. SakrH.I. AtiaT. MohamedA.S. Therapeutic potency of ovothiol A on ethanol-induced gastric ulcers in wistar rats.Mar. Drugs20222112510.3390/md2101002536662198
    [Google Scholar]
  43. SiesH. BelousovV.V. ChandelN.S. DaviesM.J. JonesD.P. MannG.E. MurphyM.P. YamamotoM. WinterbournC. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology.Nat. Rev. Mol. Cell Biol.202223749951510.1038/s41580‑022‑00456‑z35190722
    [Google Scholar]
  44. EpingeacM.E. GamanM.A. DiaconuC.C. GadM. GamanA.M. The evaluation of oxidative stress levels in obesity.Revista de Chimie20197062241224410.37358/RC.19.6.7314
    [Google Scholar]
  45. HuangY. ChenH. LiuQ. HuJ. HuD. HuangZ. XuZ. WanR. Obesity difference on association blood malondialdehyde level and diastolic hypertension in the elderly population: a cross-sectional analysis.Eur. J. Med. Res.20232814410.1186/s40001‑022‑00983‑736694211
    [Google Scholar]
  46. MasschelinP.M. CoxA.R. ChernisN. HartigS.M. The impact of oxidative stress on adipose tissue energy balance.Front. Physiol.202010163810.3389/fphys.2019.0163832038305
    [Google Scholar]
  47. SantanaM.M. GonzalezJ.M. CruzC. Nitric oxide accumulation: The evolutionary trigger for phytopathogenesis.Front. Microbiol.20178194710.3389/fmicb.2017.0194729067010
    [Google Scholar]
  48. MijatovićS. Savić-RadojevićA. Plješa-ErcegovacM. SimićT. NicolettiF. Maksimović-IvanićD. The double-faced role of nitric oxide and reactive oxygen species in solid tumors.Antioxidants20209537410.3390/antiox905037432365852
    [Google Scholar]
  49. AdamsL. FrancoM.C. EstevezA.G. Reactive nitrogen species in cellular signaling.Exp. Biol. Med.2015240671171710.1177/153537021558131425888647
    [Google Scholar]
  50. RamanaK. V. ReddyA. MajetiN. SinghalS. S. Therapeutic potential of natural antioxidants.Oxid Med Cell Longev.20182018947105110.1155/2018/9471051
    [Google Scholar]
  51. OsikN.A. ZelentsovaE.A. TsentalovichY.P. Kinetic studies of antioxidant properties of ovothiol A.Antioxidants2021109147010.3390/antiox1009147034573105
    [Google Scholar]
  52. MirzahosseiniA. OrgovánG. HosztafiS. NoszálB. The complete microspeciation of ovothiol A, the smallest octafarious antioxidant biomolecule.Anal. Bioanal. Chem.20144069-102377238710.1007/s00216‑014‑7631‑024510213
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968306623240830071012
Loading
/content/journals/ccb/10.2174/0122127968306623240830071012
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): docking; high-fat diet; kidney; muscles; obesity; Ovothiol-A; oxidative stress
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test