Skip to content
2000
Volume 18, Issue 1
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Background

Dandruff is not a disease in the traditional sense but rather a common scalp condition. It is usually a mild and harmless issue characterized by the flaking of dead skin cells from the scalp. Although it may not be a serious health concern, it can be a source of discomfort and embarrassment for some individuals. This study aimed to determine the antimicrobial potential and phytochemical analysis of peel.

Methods

The methanol extract of the peel was fractionated using column chromatography. The antimicrobial activity was assayed by and methods against the microbes that are dominantly found in dandruff sufferers . and .

Results

Aqueous fraction (Fr-V) and its hexane sub-fraction (Va) were most active with the maximum zone of Inhibition (ZOI) in a range of 36-42 mm at <0.05. Minimum Inhibitory Concentration (MIC) of sample fractions was in the range of 0.05-0.81 mg/mL. GC-MS analysis determined that methyl palmitate, 1-hexacosene, 1-heneicosyl formate, and 7-tetradecene in Fr-V, whereas methyl oleate and methyl stearate in Fr-Va, were the major phytoconstituents. Among all 1-Heneicosyl formate, 10-Heneicosene, and 1-Hexacosene showed the best docking score against Mflip1 lipase of ., -7.76, -7.43 and -7.34 kcal/mol.

Conclusion

Treatment for dandruff involves anti-dandruff shampoos containing active ingredients like pyrithione zinc, salicylic acid, ketoconazole, or selenium sulfide. People consider plant-based ingredients and natural remedies as alternatives to chemical ingredients for various purposes including skincare and haircare. Thereby, bioactive compounds identified in peel fractions could be used in anti-dandruff products.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968301442240802112802
2024-08-07
2025-04-15
Loading full text...

Full text loading...

References

  1. SuvithaS. AbilashaR. General awareness about seborrheic dermatitis/dandruff among dental students – A questionnaire-based study.Drug Invention Today20191151245
    [Google Scholar]
  2. GrimshawS.G. SmithA.M. ArnoldD.S. XuE. HoptroffM. MurphyB. The diversity and abundance of fungi and bacteria on the healthy and dandruff affected human scalp.PLoS One20191412e022579610.1371/journal.pone.022579631851674
    [Google Scholar]
  3. SchwartzJ.R. DeAngelisY.M. DawsonT.L. Dandruff and Seborrheic dermatitis: A head scratcher.Practical Modern Hair ScienceAllured Press2012389413
    [Google Scholar]
  4. MishraR.C. KumariR. YadavJ.P. Screening of antimicrobial efficacy of traditionally used Indian plants against microorganisms associated with dandruff.Indian J. Tradit. Knowl.2021204934939
    [Google Scholar]
  5. Polak-WitkaK. RudnickaL. Blume-PeytaviU. VogtA. The role of the microbiome in scalp hair follicle biology and disease.Exp. Dermatol.202029328629410.1111/exd.1393530974503
    [Google Scholar]
  6. HobiS. CafarchiaC. RomanoV. BarrsV.R. Malassezia: zoonotic implications, parallels and differences in colonization and disease in humans and animals.J. Fungi (Basel)20228770810.3390/jof807070835887463
    [Google Scholar]
  7. AzzamS.Z. CaymeG.J. MartinezL.R. Polymicrobial interactions involving fungi and their importance for the environment and in human disease.Microb. Pathog.202014010394210.1016/j.micpath.2019.10394231881258
    [Google Scholar]
  8. KumariK.M.U. YadavN.P. LuqmanS. Promising essential oils/plant extracts in the prevention and treatment of dandruff pathogenesis.Curr. Top. Med. Chem.202222131104113310.2174/156802662266622053112022635642120
    [Google Scholar]
  9. TrüebR.M. Gavazzoni DiasM.F. Fungal diseases of the hair and scalp.Hair in infectious diseaseChamSpringer International Publishing202315119510.1007/978‑3‑031‑30754‑6_5
    [Google Scholar]
  10. YinC.S. Minh NguyenT.T. YiE.J. ZhengS. BellereA.D. ZhengQ. JinX. KimM. ParkS. OhS. YiT.H. Efficacy of probiotics in hair growth and dandruff control: A systematic review and meta-analysis.Heliyon2024109e2953910.1016/j.heliyon.2024.e2953938698995
    [Google Scholar]
  11. KovitwanichkanontT. ChongA. Superficial fungal infections.Aust. J. Gen. Pract.2019481070671110.31128/AJGP‑05‑19‑493031569324
    [Google Scholar]
  12. da CostaI.M. dos SantosA.J. BergaminiT.A. UrasakiN.A. NakaoL.Y. ScandorieiroS. dos ReisM.G. MorandiD.H. AlvesN.C. ReisG.F. PanagioL.A. Pityriasis versicolor: Causes and new active ingredients as a potential treatment.Uniting Knowledge Integrated Scientific Research For Global Development202314910.56238/uniknowindevolp‑149
    [Google Scholar]
  13. MehtaA. GuleriaS. SharmaR. GuptaR. The lipases and their applications with emphasis on food industry.Microbial Biotechnology in Food and HealthAcademic Press202114316410.1016/B978‑0‑12‑819813‑1.00006‑2
    [Google Scholar]
  14. LimS.Y. SteinerJ.M. CridgeH. Lipases: It’s not just pancreatic lipase!Am. J. Vet. Res.2022838ajvr.22.03.004810.2460/ajvr.22.03.004835895796
    [Google Scholar]
  15. HeathR.S. RuscoeR.E. TurnerN.J. The beauty of biocatalysis: Sustainable synthesis of ingredients in cosmetics.Nat. Prod. Rep.202239233538810.1039/D1NP00027F34879125
    [Google Scholar]
  16. KimS. ShinS. KimS.N. NaY. Understanding the characteristics of the scalp for developing scalp care products.Journal of Cosmetics Dermatological Sciences and Applications202111320421610.1136/bmjopen‑2021‑053137
    [Google Scholar]
  17. CoderchL. AlonsoC. GarcíaM.T. PérezL. MartíM. Hair lipid structure: Effect of surfactants.Cosmetics202310410710.3390/cosmetics10040107
    [Google Scholar]
  18. ShamloulG. KhachemouneA. An updated review of the sebaceous gland and its role in health and diseases Part 1: Embryology, evolution, structure, and function of sebaceous glands.Dermatol. Ther.2021341e1469510.1111/dth.1469533354858
    [Google Scholar]
  19. TorresM. de CockH. Celis RamírezA.M. In vitro or in vivo models, the next frontier for unraveling interactions between Malassezia spp. and hosts. How much do we know?J. Fungi20206315510.3390/jof603015532872112
    [Google Scholar]
  20. IaniriG. LeibundGut-LandmannS. DawsonT.L.Jr Malassezia: a commensal, pathogen, and mutualist of human and animal skin.Annu. Rev. Microbiol.202276175778210.1146/annurev‑micro‑040820‑01011436075093
    [Google Scholar]
  21. VanderwolfK. KyleC. DavyC. A review of sebum in mammals in relation to skin diseases, skin function, and the skin microbiome.PeerJ202311e1668010.7717/peerj.1668038144187
    [Google Scholar]
  22. WilsonM. WilsonP.J. Close Encounters of the microbial kind.ChamSpringer202110.1007/978‑3‑030‑56978‑5
    [Google Scholar]
  23. Vijaya ChandraS.H. SrinivasR. DawsonT.L.Jr CommonJ.E. Cutaneous Malassezia: commensal, pathogen, or protector?Front. Cell. Infect. Microbiol.20211061444610.3389/fcimb.2020.61444633575223
    [Google Scholar]
  24. MangionS.E. MackenzieL. RobertsM.S. HolmesA.M. Seborrheic dermatitis: Topical therapeutics and formulation design.Eur. J. Pharm. Biopharm.202318514816410.1016/j.ejpb.2023.01.02336842718
    [Google Scholar]
  25. KeymerA. PimprikarP. WewerV. HuberC. BrandsM. BuceriusS.L. DelauxP.M. KlinglV. Röpenack-LahayeE. WangT.L. EisenreichW. DörmannP. ParniskeM. GutjahrC. Lipid transfer from plants to arbuscular mycorrhiza fungi.eLife20176e2910710.7554/eLife.2910728726631
    [Google Scholar]
  26. PoojaryP.V. SarkarS. PoojaryA.A. MallyaP. SelvarajR. KoteshwaraA. AranjaniJ.M. LewisS. Novel anti‐dandruff shampoo incorporated with ketoconazole‐coated zinc oxide nanoparticles using green tea extract.J. Cosmet. Dermatol.202423256357510.1111/jocd.1602737909853
    [Google Scholar]
  27. AroraP. NainwalL.M. JainS. Essential oils as potential source of anti-dandruff agents: A review.Comb. Chem. High Throughput Screen.20222591411142610.2174/138620732466621071209414834254910
    [Google Scholar]
  28. GebremedhinG. TesfayT. ChaithanyaK.K. KamalakararaoK. KamalakararaoK. Phytochemical screening and in vitro anti-dandruff activities of bark extracts of neem ( Azadirachta indica )Drug Invention Today2020135707713
    [Google Scholar]
  29. HoeniglM. ArastehfarA. ArendrupM.C. BrüggemannR. CarvalhoA. ChillerT. ChenS. EggerM. FeysS. GangneuxJ.P. GoldJ.A.W. GrollA.H. HeylenJ. JenksJ.D. KrauseR. LagrouK. LamothF. PrattesJ. SedikS. WautersJ. WiederholdN.P. ThompsonG.R.III Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease.Clin. Microbiol. Rev.2024372e00074-2310.1128/cmr.00074‑2338602408
    [Google Scholar]
  30. BhattacharyaS. Sae-TiaS. FriesB.C. Candidiasis and mechanisms of antifungal resistance.Antibiotics20209631210.3390/antibiotics906031232526921
    [Google Scholar]
  31. ShethU. DandeP. Pityriasis capitis : Causes, pathophysiology, current modalities, and future approach.J. Cosmet. Dermatol.2021201354710.1111/jocd.1348832416039
    [Google Scholar]
  32. PatidarK. Polyherbal anti-dandruff shampoo: basic concept, benefits, and challenges.Asian J. Pharm.201812385085710.22377/ajp.v12i03.2619
    [Google Scholar]
  33. GebasheF.C. NaidooD. AmooS.O. MasondoN.A. Cosmeceuticals: A newly expanding industry in South Africa.Cosmetics2022947710.3390/cosmetics9040077
    [Google Scholar]
  34. GhazalH. AdamY. Idrissi AzamiA. SehliS. NyarkoH.N. ChaouniB. OlasehindeG. IsewonI. AdebiyiM. AjaniO. MatovuE. ObembeO. AjammaY. KuzamunuG. Pandam SalifuS. KayondoJ. BenkahlaA. AdebiyiE. Plant genomics in Africa: Present and prospects.Plant J.20211071213610.1111/tpj.1527233837593
    [Google Scholar]
  35. BalatoA. CaiazzoG. Di CaprioR. ScalaE. FabbrociniG. GrangerC. Exploring anti-fungal, anti-microbial and anti-inflammatory properties of a topical non-steroidal barrier cream in face and chest seborrheic dermatitis.Dermatol. Ther. (Heidelb.)2020101879810.1007/s13555‑019‑00339‑w31705438
    [Google Scholar]
  36. GebremariamA. GebrezgabherB.G. DestaK.T. SbhatuD.B. BerheG.G. AbdirkadirM. TsegayE. Aloe adigratana Reynolds: Preliminary phytochemical screening, proximate content, essential oil analysis, and in vitro antifungal activity studies of its leaf peels and gel.J. Exp. Pharmacol.20231532133210.2147/JEP.S42099037664179
    [Google Scholar]
  37. YasinM. YounisA. JavedT. AkramA. AhsanM. ShabbirR. AliM.M. TahirA. El-BallatE.M. SheteiwyM.S. SammourR.H. HanoC. AlhumaydhiF.A. El-EsawiM.A. River tea tree oil: Composition, antimicrobial and antioxidant activities, and potential applications in agriculture.Plants20211010210510.3390/plants1010210534685914
    [Google Scholar]
  38. Corona-GómezL. Hernández-AndradeL. Mendoza-ElviraS. SuazoF.M. Ricardo-GonzálezD.I. Quintanar-GuerreroD. In vitro antimicrobial effect of essential tea tree oil( Melaleuca alternifolia ), thymol, and carvacrol on microorganisms isolated from cases of bovine clinical mastitis.Int. J. Vet. Sci. Med.2022101727910.1080/23144599.2022.212308236259046
    [Google Scholar]
  39. AbelanU.S. de OliveiraA.C. CacociÉ.S.P. MartinsT.E.A. GiaconV.M. VelascoM.V.R. LimaC.R.R.C. Potential use of essential oils in cosmetic and dermatological hair products: A review.J. Cosmet. Dermatol.20222141407141810.1111/jocd.1428634129742
    [Google Scholar]
  40. LimD.Z.J. LimF.C. TeyH.L. Clinical efficacy of a gentle anti‐dandruff itch‐relieving shampoo formulation.Int. J. Cosmet. Sci.202345676977410.1111/ics.1288537539788
    [Google Scholar]
  41. AyatollahiA. FiroozA. LotfaliE. MojabF. FattahiM. Herbal therapy for the management of seborrheic dermatitis: A narrative review.Recent Advances in Anti-Infective Drug Discovery202116320922610.2174/277243441666621102911321335026970
    [Google Scholar]
  42. GalloM. FerraraL. CalogeroA. MontesanoD. NaviglioD. Relationships between food and diseases: What to know to ensure food safety.Food Res. Int.202013710941410.1016/j.foodres.2020.10941433233102
    [Google Scholar]
  43. KumarM. DeviA. SharmaM. KaurP. MandalU.K. Review on perfume and present status of its associated allergens.J. Cosmet. Dermatol.202120239139910.1111/jocd.1350732445606
    [Google Scholar]
  44. OkoleB. PillaiS.K. NdzotoyiP. PhashaV. Use of herbal extract-based nanoemulsions for hair care application.Nanotechnology for the preparation of cosmetics using plant-Based extracts.Elsevier202220323310.1016/B978‑0‑12‑822967‑5.00007‑2
    [Google Scholar]
  45. GeS. DuoL. WangJ. GegenZhula YangJ. LiZ. TuY. A unique understanding of traditional medicine of pomegranate, Punica granatum L. and its current research status.J. Ethnopharmacol.202127111387710.1016/j.jep.2021.11387733515685
    [Google Scholar]
  46. RanjhaM.M. ShafiqueB. WangL. IrfanS. SafdarM.N. MurtazaM.A. NadeemM. MahmoodS. A comprehensive review on phytochemistry, bioactivity and medicinal value of bioactive compounds of pomegranate (Punica granatum )Adv. Tradit. Med.202123112110.1007/s13596‑021‑00566‑7
    [Google Scholar]
  47. RuanJ.H. LiJ. AdiliG. SunG.Y. AbuduainiM. AbdullaR. MaiwulanjiangM. AisaH.A. Phenolic compounds and bioactivities from pomegranate (Punica granatum L.) peels.J. Agric. Food Chem.202270123678368610.1021/acs.jafc.1c0834135312314
    [Google Scholar]
  48. BhingeS.D. BhutkarM.A. RandiveD.S. WadkarG.H. TodkarS.S. SavaliA.S. ChittapurkarH.R. Screening of hair growth promoting activity of Punica granatum L. (pomegranate) leaves extracts and its potential to exhibit antidandruff and anti-lice effect.Heliyon202174e0690310.1016/j.heliyon.2021.e0690333997417
    [Google Scholar]
  49. AkbarnejadF. Dermatology benefits of Punica granatum: A Review of the potential benefits of Punica granatum in skin disorders.Asian Journal of Green Chemistry2023720822210.22034/ajgc.2023.388077.1388
    [Google Scholar]
  50. BenedettiG. ZabiniF. TagliaventoL. MeneguzzoF. CalderoneV. TestaiL. An overview of the health benefits, extraction methods and improving the properties of pomegranate.Antioxidants2023127135110.3390/antiox1207135137507891
    [Google Scholar]
  51. DimitrijevicJ. TomovicM. BradicJ. PetrovicA. JakovljevicV. AndjicM. ŽivkovićJ. MiloševićS.Đ. SimanicI. DragicevicN. Punica granatum L.(Pomegranate) extracts and their effects on healthy and diseased skin.Pharmaceutics202416445810.3390/pharmaceutics1604045838675119
    [Google Scholar]
  52. MaphetuN. UnuofinJ.O. MasukuN.P. OlisahC. LebeloS.L. Medicinal uses, pharmacological activities, phytochemistry, and the molecular mechanisms of Punica granatum L. (pomegranate) plant extracts: A review.Biomed. Pharmacother.202215311325610.1016/j.biopha.2022.11325636076615
    [Google Scholar]
  53. MarcelinoS. MandimF. TaofiqO. PiresT.C.S.P. FinimundyT.C. PrietoM.A. BarrosL. Valorization of Punica granatum L. leaves extracts as a source of bioactive molecules.Pharmaceuticals202316334210.3390/ph1603034236986442
    [Google Scholar]
  54. ChandrasekarR. A comprehensive review on herbal cosmetics in the management of skin diseases.Res. J. Top. Cosmet. Sci.2020111324410.5958/2321‑5844.2020.00007.2
    [Google Scholar]
  55. ThombareS. ShirsathP. Herbal Cosmetics and skin care formulations.Int. J. Pharma Sci.202311011510.5281/zenodo.8422885
    [Google Scholar]
  56. De OliveiraF.L. ArrudaT.Y.P. Da Silva LimaR. CasarottiS.N. MorzelleM.C. Pomegranate as a natural source of phenolic antioxidants.J. Food Bioact.2020910.31665/JFB.2020.9214
    [Google Scholar]
  57. JacobJ. LakshmanapermalsamyP. IlluriR. BhosleD. SangliG.K. MundkinajedduD. In vitro evaluation of antioxidant potential of isolated compounds and various extracts of peel of Punica granatum L.Pharmacognosy Res.2018101444810.4103/pr.pr_36_1729568186
    [Google Scholar]
  58. BalliD. CecchiL. KhatibM. BellumoriM. CaironeF. CarradoriS. ZenginG. CesaS. InnocentiM. MulinacciN. Characterization of arils juice and peel decoction of fifteen varieties of Punica granatum L.: A focus on anthocyanins, ellagitannins and polysaccharides.Antioxidants20209323810.3390/antiox903023832183156
    [Google Scholar]
  59. KumariR. MishraR.C. SheoranR. YadavJ.P. Fractionation of antimicrobial compounds from Acacia nilotica twig extract against oral pathogens.Biointerface Res. Appl. Chem.20201067097710510.33263/BRIAC106.70977105
    [Google Scholar]
  60. KumariR. MishraR.C. YadavA. YadavJ.P. Screening of traditionally used medicinal plants for their antimicrobial efficacy against oral pathogens and GC-MS analysis of Acacia nilotica extract.Indian J. Tradit. Knowl.2019181162168
    [Google Scholar]
  61. RajaV. AhmadS.I. IrshadM. WaniW.A. SiddiqiW.A. ShreazS. Anticandidal activity of ethanolic root extract of Juglans regia (L.): Effect on growth, cell morphology, and key virulence factors.J. Mycol. Med.201727447648610.1016/j.mycmed.2017.07.00228784433
    [Google Scholar]
  62. MishraR.C. KumariR. YadavJ.P. Comparative antidandruff efficacy of plant extracts prepared from conventional and supercritical fluid extraction method and chemical profiling using GCMS.J. Dermatolog. Treat.202233298999510.1080/09546634.2020.179991932691649
    [Google Scholar]
  63. MishraR.C. KumariR. YadavJ.P. Comparative study of antidandruff efficacy of Punica granatum peel and its biosynthesized silver nanoparticles. J. Bionanosci.201812450851410.1166/jbns.2018.1562
    [Google Scholar]
  64. ZazharskyiV. DavydenkoP. KulishenkoO. BorovikI. BrygadyrenkoV. ZazharskaN. Gyógynövényfőzetek in vitro antibakteriális hatása Staphylococcus aureus, Staphylococcus epidermidis és Pseudomonas aeruginosa.Magy. Állatorv. Lapja2019141693704
    [Google Scholar]
  65. BhoreP.B. KhanvilkarV.V. Silica gel: A keystone in chromatographic techniques.Int. J. Pharm. Sci. Res.2019101122210.13040/IJPSR.0975‑8232.10(1).12‑22
    [Google Scholar]
  66. ChandrasekaranM. SenthilkumarA. VenkatesaluV. Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L.Eur. Rev. Med. Pharmacol. Sci.201115777578021780546
    [Google Scholar]
  67. JavedS. JavaidA. Al-TaieA.H. QureshiM.Z. Identification of antimicrobial compounds from n-hexane stem extract of Kochia indica by GC-MS analysis.Mycopath20201625155
    [Google Scholar]
  68. ZhaoF. WangP. LucardiR. SuZ. LiS. Natural sources and bioactivities of 2, 4-di-tert-butylphenol and its analogs.Toxins20201213510.3390/toxins1201003531935944
    [Google Scholar]
  69. SilvaK. JadhavD.Y. RathnayakaR.M.U.S.K. SahooA.K. Investigation of nutrient content, phytochemical content, antioxidant activity and antibacterial activity of inedible portion of pomegranate (Punica granatum L.).European J. Med. Plants20144561062210.9734/EJMP/2014/7561
    [Google Scholar]
  70. PintoM.A. AraújoS.G. MoraisM. SáN.P. LimaC.M. RosaC.A. SiqueiraE.P. JohannS. LimaL.A.R.S. Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils.An. Acad. Bras. Cienc.20178931671168110.1590/0001‑376520172016090828876392
    [Google Scholar]
  71. ShawkyB.T. NagahM. GhareebM.A. El-SherbinyG.M. MoghannemS.A. Abdel-AzizM.S. Evaluation of antioxidants, total phenolics and antimicrobial activities of ethyl acetate extracts from Fungi grown on rice straw.J. Renew. Mater.20197766267710.32604/jrm.2019.04524
    [Google Scholar]
  72. DeyG.R. DasT.N. Septum bleed during GC-MS analysis: Utility of septa of various makes.J. Chromatogr. Sci.201351211712110.1093/chromsci/bms11422781185
    [Google Scholar]
  73. CaoL. CoventryB. GoreshnikI. HuangB. ShefflerW. ParkJ.S. JudeK.M. MarkovićI. KadamR.U. VerschuerenK.H.G. VerstraeteK. WalshS.T.R. BennettN. PhalA. YangA. KozodoyL. DeWittM. PictonL. MillerL. StrauchE.M. DeBouverN.D. PiresA. BeraA.K. HalabiyaS. HammersonB. YangW. BernardS. StewartL. WilsonI.A. Ruohola-BakerH. SchlessingerJ. LeeS. SavvidesS.N. GarciaK.C. BakerD. Design of protein-binding proteins from the target structure alone.Nature2022605791055156010.1038/s41586‑022‑04654‑935332283
    [Google Scholar]
  74. ZaibS. RanaN. AliH.S. HussainN. Areeba OgalyH.A. Al-ZahraniF.A.M. KhanI. Discovery of druggable potent inhibitors of serine proteases and farnesoid X receptor by ligand-based virtual screening to obstruct SARS-CoV-2.Int. J. Biol. Macromol.2023253Pt 712737910.1016/j.ijbiomac.2023.12737937838109
    [Google Scholar]
  75. DecherchiS. CavalliA. Thermodynamics and kinetics of drug-target binding by molecular simulation.Chem. Rev.202012023127881283310.1021/acs.chemrev.0c0053433006893
    [Google Scholar]
  76. GulweA. MishraD. GomareK. Docking studies of lipase (Mflip1) from Malassezia furfur (Robin) with propanamide, n-methyl-2-amino and 1-propanol, 3-(dimethylamino) predicting inhibitory activity.Int. J. Pharm. Res.20201211510.31838/ijpr/2020.12.01.011
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968301442240802112802
Loading
/content/journals/ccb/10.2174/0122127968301442240802112802
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Anti-dandruff; column chromatography; GC-MS; MIC; molecular docking; Punica granatum peel
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test