Skip to content
2000
Volume 18, Issue 1
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Background

is frequently used in Mediterranean cuisine and is known for its possible medicinal properties. These properties are usually related to the presence of specific bioactive compounds present in the leaves of the artichoke. On the other hand, the root parts of the artichoke have not been subjected to extensive studies so far.

Objective

The main objective of this study was to conduct a chemical analysis of the root part of the hexane extract of subsp. and subsp. sylvestris, while exploring their antioxidant, anti-inflammatory, and hemolytic effects.

Methods

The chemical composition of the extracts of both species was analyzed using gas chromatography (GC) and gas chromatography coupled with mass spectroscopy (GC/MS). The antioxidant properties were evaluated using the DPPH radical scavenging method. The anti-inflammatory activity was evaluated through the protein denaturation method using diclofenac as a positive control. The hemolytic effect was examined on a suspension of erythrocytes in human blood.

Results

The main constituents of the hexane extract of and were aplotaxene (70.5% and 56.3%, respectively) and hexadecanoic acid (10.2% and 13.2%, respectively). The hexane extracts of and showed positive antioxidant activity with the DPPH test by comparing them with the BHT control. However, it should be noted that the extract of showed the best performance, with an IC of 4.3 μg/mL, while the extract of presented an IC of 5.6 μg/mL. The hexane extracts of and showed good anti-inflammatory activity with ICs of 17.3 μg/mL and 23.8 μg/mL compared to diclofenac (IC= 13.3 μg/mL), respectively. The toxicity assessment on human erythrocytes shows that both extracts of roots of and have a very low hemolysis rate (1.4% and 11.1%, respectively), even at high concentrations (2000 μg/mL).

Conclusion

The extracts obtained from hexane from the plants and , during the tests, revealed particularly promising antioxidant, anti-inflammatory, and hemolytic properties. These results offer an interesting perspective for the creation and development of new antioxidant and anti-inflammatory agents for the pharmaceutical and cosmetic industry.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968309078240815053526
2024-08-22
2025-05-07
Loading full text...

Full text loading...

References

  1. CollinsL.M. ToulouseA. ConnorT.J. NolanY.M. Contributions of central and systemic inflammation to the pathophysiology of Parkinson’s disease.Neuropharmacology20126272154216810.1016/j.neuropharm.2012.01.02822361232
    [Google Scholar]
  2. DinhQ.N. DrummondG.R. SobeyC.G. ChrissobolisS. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension.BioMed Res. Int.2014201411110.1155/2014/40696025136585
    [Google Scholar]
  3. GogoiR. LoyingR. SarmaN. MundaS. Kumar PandeyS. LalM. A comparative study on antioxidant, anti-inflammatory, genotoxicity, anti-microbial activities and chemical composition of fruit and leaf essential oils of Litsea cubeba Pers from North-east India.Ind. Crops Prod.2018125113113910.1016/j.indcrop.2018.08.052
    [Google Scholar]
  4. VelezZ. CampinhoM. GuerraÂ. GarcíaL. RamosP. GuerreiroO. FelícioL. SchmittF. DuarteM. Biological characterization of Cynara cardunculus L. methanolic extracts: Antioxidant, anti-proliferative, anti-migratory and anti-angiogenic activities.Agriculture20122447249210.3390/agriculture2040472
    [Google Scholar]
  5. PignoneD. SonnanteG. Wild artichokes of south Italy: did the story begin here?Genet. Resour. Crop Evol.200451657758010.1023/B:GRES.0000024786.01004.71
    [Google Scholar]
  6. AcquavivaR. MalfaG.A. SantangeloR. BianchiS. PappalardoF. TavianoM.F. MiceliN. Di GiacomoC. TomaselloB. Wild artichoke (cynara cardunculus subsp. sylvestris, asteraceae) leaf extract: phenolic profile and oxidative stress inhibitory effects on hepg2 cells.Molecules2023286247510.3390/molecules2806247536985448
    [Google Scholar]
  7. MandimF. PetropoulosS.A. PinelaJ. DiasM.I. GiannoulisK.D. KostićM. SokovićM. QueijoB. Santos-BuelgaC. FerreiraI.C.F.R. BarrosL. Chemical composition and biological activity of cardoon (Cynara cardunculus L. var. altilis) seeds harvested at different maturity stages.Food Chem.2022369130875.10.1016/j.foodchem.2021.13087534438342
    [Google Scholar]
  8. O’MahonyJ.A. SousaM.J. McsweeneyP.L.H. Proteolysis in miniature Cheddar-type cheeses made using blends of chymosin and Cynara cardunculus proteinases as coagulant.Int. J. Dairy Technol.2003561525810.1046/j.1471‑0307.2003.00078.x
    [Google Scholar]
  9. GostinA.I. WaisundaraV.Y. Edible flowers as functional food: A review on artichoke (Cynara cardunculus L.) Trends Food Sci. Technol.20198638139110.1016/j.tifs.2019.02.015
    [Google Scholar]
  10. Ben SalemM. AffesH. AthmouniK. KsoudaK. DhouibiR. SahnounZ. HammamiS. ZeghalK.M. Chemicals compositions, antioxidant and anti-inflammatory activity of Cynara scolymus leaves extracts, and analysis of major bioactive polyphenols by HPLC.Evid. Based Complement. Alternat. Med.2017201711410.1155/2017/495193728539965
    [Google Scholar]
  11. PetropoulosS.A. PereiraC. TzortzakisN. BarrosL. FerreiraI.C.F.R. Nutritional value and bioactive compounds characterization of plant parts from Cynara cardunculus L. (Asteraceae) cultivated in central Greece.Front. Plant Sci.2018945910.3389/fpls.2018.0045929692792
    [Google Scholar]
  12. PetropoulosS.A. PereiraC. NtatsiG. DanalatosN. BarrosL. FerreiraI.C.F.R. Nutritional value and chemical composition of Greek artichoke genotypes.Food Chem.201826729630210.1016/j.foodchem.2017.01.15929934171
    [Google Scholar]
  13. ChihoubW. DiasM.I. BarrosL. CalhelhaR.C. AlvesM.J. Harzallah-SkhiriF. FerreiraI.C.F.R. Valorisation of the green waste parts from turnip, radish and wild cardoon: nutritional value, phenolic profile and bioactivity evaluation.Food Res. Int.201912610865110.1016/j.foodres.2019.10865131732057
    [Google Scholar]
  14. SalekzamaniS. Ebrahimi-MameghaniM. RezazadehK. The antioxidant activity of artichoke Cynara scolymus ): A systematic review and meta‐analysis of animal studies.Phytother. Res.2019331557110.1002/ptr.621330345589
    [Google Scholar]
  15. BabushokV.I. LinstromP.J. ReedJ.J. ZenkevichI.G. BrownR.L. MallardW.G. SteinS.E. Development of a database of gas chromatographic retention properties of organic compounds.J. Chromatogr. A200711571-241442110.1016/j.chroma.2007.05.04417543315
    [Google Scholar]
  16. KnorrA. MongeA. StueberM. StratmannA. ArndtD. MartinE. PospisilP. Computer-assisted structure identification (CASI)--an automated platform for high-throughput identification of small molecules by two-dimensional gas chromatography coupled to mass spectrometry.Anal. Chem.20138523112161122410.1021/ac401195224160557
    [Google Scholar]
  17. JohnstonC. StaufferD. DouglasB. The wiley / nbs registry of mass spectral data, volumes 1-7 (mclafferty, fred w.; stauffer, douglas b.).J. Chem. Educ.19896610A25610.1021/ed066pA256.3
    [Google Scholar]
  18. NIST mass spectrometry data center standard reference libraries and softwareJ. Forensic Sci.20236851484149310.1111/1556‑4029.1528437203286
    [Google Scholar]
  19. QueF. MaoL. PanX. Antioxidant activities of five Chinese rice wines and the involvement of phenolic compounds.Food Res. Int.200639558158710.1016/j.foodres.2005.12.001
    [Google Scholar]
  20. OyaizuM. Studies on product of browning reaction prepared from glucose amine. JPN.J. Nutr. Diet.198644630731510.5264/eiyogakuzashi.44.307
    [Google Scholar]
  21. ChandraS. ChatterjeeP. DeyP. BhattacharyaS. Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein.Asian Pac. J. Trop. Biomed.201221S178S18010.1016/S2221‑1691(12)60154‑3
    [Google Scholar]
  22. MizushimaY. KobayashiM. Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins.J. Pharm. Pharmacol.201120316917310.1111/j.2042‑7158.1968.tb09718.x4385045
    [Google Scholar]
  23. AndräJ. JakovkinI. GrötzingerJ. HechtO. KrasnosdembskayaA.D. GoldmannT. GutsmannT. LeippeM. AndräJ. Structure and mode of action of the antimicrobial peptide arenicin.Biochem. J.2008410111312210.1042/BJ2007105117935487
    [Google Scholar]
  24. Babu ShankarP. SathiyamoorthyS. PalanisamyP. BoopathiS. RajaramV. Antioxidant and antimicrobial properties of Glycine Max-A review.Int. J. Cur. Bio. Med. Sci2011124962
    [Google Scholar]
  25. GrancaiD. NagyM. SuchyV. UbikK. Constituents of cynara cardunculus 1.1. sterols and pentacyclic triterpenes.Farm. Obz.199261577580
    [Google Scholar]
  26. GrancaiD. NagyM. MucajiP. SuchyV. UbikK. Constituents of cynara cardunculus L. 111. coomarins.Farm. Obz.199463447449
    [Google Scholar]
  27. GrancaiD. NagyM. SuchyV. UbikK. Constituents of cynara cardunculus 1. 11. flavonoids.Farm. Obz.1993623134
    [Google Scholar]
  28. GrancaiD. NagyM. MucajiP. UbikK. Constitoents of cynara cardunculus l. iv. flavonoid glycosides.Farm. Obz.199664255256
    [Google Scholar]
  29. MucajiP. GrancaiD. NagyM. BudesinskyM. UbikK. Triterpenoid saponins from Cynara cardunculus L.Pharmazie1999199954714716
    [Google Scholar]
  30. PandinoG. CourtsF.L. LombardoS. MauromicaleG. WilliamsonG. Caffeoylquinic acids and flavonoids in the immature inflorescence of globe artichoke, wild cardoon, and cultivated cardoon.J. Agric. Food Chem.20105821026103110.1021/jf903311j20028012
    [Google Scholar]
  31. WangM. SimonJ.E. AvilesI.F. HeK. ZhengQ.Y. TadmorY. Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.).J. Agric. Food Chem.200351360160810.1021/jf020792b12537429
    [Google Scholar]
  32. BenhamidatL. DibM.A. BensaidO. Tabet ZatlaA. KenicheA. El OuarI. DjabouN. MuselliA. A. chemical composition and antioxidant, anti-inflammatory and anticholinesterase properties of the aerial and root parts of centaurea acaulis essential oils: study of the combinatorial activities of aplotaxene with reference standards.J. Essent. Oil-Bear. Plants.2022231126146
    [Google Scholar]
  33. BenhamidatL. DibM.E.A. BensaidO. KenicheA. ouarI.E. MuselliA. MuselliA. Chemical composition and antioxidant, anti-inflammatory and neuroprotective properties of hexane extracts from the roots of centaurea acaulis and centaurea pullata. Antiinfect. Agents2022205e10062220583110.2174/2211352520666220610113750
    [Google Scholar]
  34. SiswadiS. SaragihG.S. Phytochemical analysis of bioactive compounds in ethanolic extract of sterculia quadrifida R.Br.AIP Conf. Proc.20212023235303009810.1063/5.0053057
    [Google Scholar]
  35. MazumderK. NabilaA. AktarA. FarahnakyA. Bioactive variability and in vitro and in vivo antioxidant activity of unprocessed and processed flour of nine cultivars of australian lupin species: a comprehensive substantiation.Antioxidants20209428210.3390/antiox904028232230703
    [Google Scholar]
  36. BounatirouS. SmitiS. MiguelM. FaleiroL. RejebM. NeffatiM. CostaM. FigueiredoA. BarrosoJ. PedroL. Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link.Food Chem.2007105114615510.1016/j.foodchem.2007.03.059
    [Google Scholar]
  37. VisioliF. PoliA. GallC. Antioxidant and other biological activities of phenols from olives and olive oil.Med. Res. Rev.2002221657510.1002/med.102811746176
    [Google Scholar]
  38. GhadermaziR. KeramatJ. GoliS.A.H. Antioxidant activity of clove (Eugenia caryophyllata Thunb), oregano (Oringanum vulgare L) and sage (Salvia officinalis L) essential oils in various model systems.Int. Food Res. J.201724416281635
    [Google Scholar]
  39. RajeswariG. MuruganM. MohanV.R. GC-MS analysis of bioactive components of Hugonia mystax L. (Linaceae).Res. J. Pharm. Biol. Chem. Sci.201234301
    [Google Scholar]
  40. AparnaV. DileepK.V. MandalP.K. KartheP. SadasivanC. HaridasM. Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment.Chem. Biol. Drug Des.201280343443910.1111/j.1747‑0285.2012.01418.x22642495
    [Google Scholar]
  41. AggarwalB.B. HarikumarK.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases.Int. J. Biochem. Cell Biol.2009411405910.1016/j.biocel.2008.06.01018662800
    [Google Scholar]
  42. PeanaA.T. D’AquilaP.S. PaninF. SerraG. PippiaP. MorettiM.D.L. Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils.Phytomedicine20029872172610.1078/09447110232162132212587692
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968309078240815053526
Loading
/content/journals/ccb/10.2174/0122127968309078240815053526
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test