Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Backgrounds

Leukemic stem cells are considered to be the main cause of treatment failure and disease recurrence due to their resistance to most common therapies. Apoptosis induction is one of the highly effective methods for treating cancer. Ciprofloxacin is among the compounds whose antitumor effects have been confirmed.

Objectives

In this study, we investigated the anti-proliferative effect and induction of apoptosis by one of the derivatives of this family called (ICH-CP) on NB4 cell line as an model of Acute promyelocytic leukemia (APL). NB4 cells were treated using the ICH-CP combination in various concentrations.

Methods

The viability of NB4 cells was evaluated by MTT assay, and their morphology of apoptosis was examined by fluorescence microscopy. Flow cytometry and Annexin V/PI staining were used to quantify apoptosis. Finally, the expression of three genes, Bax, Bcl-2, and Survivin was inquired by real-time PCR.

Results

According to the results, ICH-CP was able to destroy about 60% of NB4 cells in a dose and time-dependent manner. Light microscopy and fluorescence microscopy studies on treated cells confirmed the induction of apoptosis. Also, the real-time PCR analysis showed that ICH-CP induces apoptosis in the NB4 cell line the down-regulation of Survivin and Bcl-2, in contrast to the up-regulation of the Bax gene.

Conclusion

Based on the present data, it seems that the novel compound can be a good candidate for the treatment of acute myeloid leukemia. Furthermore, it is recommended to evaluate the qualification of ICH-CP as an adjunctive agent for other cancer cell lines.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968280272240925103621
2024-10-11
2025-04-11
Loading full text...

Full text loading...

References

  1. JuliussonG. LazarevicV. HörstedtA.S. HagbergO. HöglundM. Acute myeloid leukemia in the real world: Why population-based registries are needed.Blood2012119173890389910.1182/blood‑2011‑12‑37900822383796
    [Google Scholar]
  2. LightfootT. SmithA. RomanE. Leukemia.International Encyclopedia of Public Health201610.1016/B978‑0‑12‑803678‑5.00253‑8
    [Google Scholar]
  3. RatleyA. MinjJ. PatreP. Leukemia disease detection and classification using machine learning approaches: A review.First International Conference on Power, Control and Computing Technologies (ICPC2T)Raipur, India202016116510.1109/ICPC2T48082.2020.9071471
    [Google Scholar]
  4. GonçalvesA. RochaF. EstevinhoB.N. Pharmaceutical/Clinical Strategies in the Treatment of Acute Promyelocytic Leukemia: All-Trans Retinoic Acid Encapsulation by Spray-Drying Technology as an Innovative Approach–Comprehensive Overview.Pharmaceuticals (Basel)202316218010.3390/ph1602018037259328
    [Google Scholar]
  5. EckardtJ.N. SchmittmannT. RiechertS. KramerM. SulaimanA.S. SockelK. KroschinskyF. ScheteligJ. WagenführL. SchulerU. PlatzbeckerU. ThiedeC. StölzelF. RölligC. BornhäuserM. WendtK. MiddekeJ.M. Deep learning identifies Acute Promyelocytic Leukemia in bone marrow smears.BMC Cancer202222120110.1186/s12885‑022‑09307‑835193533
    [Google Scholar]
  6. MansooriG.A. MohazzabiP. McCormackP. JabbariS. Nanotechnology in cancer prevention, detection and treatment: bright future lies ahead.World Rev. Sci. Technol. Sustain. Dev.200742/322610.1504/WRSTSD.2007.013584
    [Google Scholar]
  7. AdamsJ. NassiriM. Acute promyelocytic leukemia a review and discussion of variant translocations.Arch. Pathol. Lab. Med.2015139101308131310.5858/arpa.2013‑0345‑RS26414475
    [Google Scholar]
  8. KorsosV. MillerW.H.Jr How retinoic acid and arsenic transformed acute promyelocytic leukemia therapy.J. Mol. Endocrinol.2022694T69T8310.1530/JME‑22‑014136112505
    [Google Scholar]
  9. StahlM. TallmanM.S. Acute promyelocytic leukemia (APL): Remaining challenges towards a cure for all.Leuk. Lymphoma201960133107311510.1080/10428194.2019.161354031842650
    [Google Scholar]
  10. FerraraF. MolicaM. BernardiM. Drug treatment options for acute promyelocytic leukemia.Expert Opin. Pharmacother.202223111712710.1080/14656566.2021.196174434348549
    [Google Scholar]
  11. de AlmeidaT.D. EvangelistaF.C.G. de Paulo SabinoA. Acute Promyelocytic Leukemia (APL): A review of the classic and emerging target therapies towards molecular heterogeneity.Future Pharmacol.20233116217910.3390/futurepharmacol3010012
    [Google Scholar]
  12. KhalilK.D. BashalA.H. HabeebT. Abu-DiefA.M. Synergistic antibacterial and anticancer activity in gadolinium–chitosan nanocomposite films: A novel approach for biomedical applications.Appl. Organomet. Chem.2024388e753110.1002/aoc.7531
    [Google Scholar]
  13. BashalA.H. KhalilK.D. Abu-DiefA.M. El-AtawyM.A. Cobalt oxide-chitosan based nanocomposites: Synthesis, characterization and their potential pharmaceutical applications.Int. J. Biol. Macromol.2023253Pt 412685610.1016/j.ijbiomac.2023.12685637714231
    [Google Scholar]
  14. MahbubS. MiaM.L. RoyT. AkterP. UddinA.K.M.R. RubM.A. HoqueM.A. AsiriA.M. Influence of ammonium salts on the interaction of fluoroquinolone antibiotic drug with sodium dodecyl sulfate at different temperatures and compositions.J. Mol. Liq.202029711158310.1016/j.molliq.2019.111583
    [Google Scholar]
  15. ChugunovaE. AkylbekovN. BulatovaA. GavrilovN. VoloshinaA. KulikN. ZobovV. DobryninA. SyakaevV. BurilovA. Synthesis and biological evaluation of novel structural hybrids of benzofuroxan derivatives and fluoroquinolones.Eur. J. Med. Chem.201611616517210.1016/j.ejmech.2016.03.08627061980
    [Google Scholar]
  16. EzelarabH.A.A. AbbasS.H. HassanH.A. Abuo-RahmaG.E.D.A. Recent updates of fluoroquinolones as antibacterial agents.Arch. Pharm. (Weinheim)20183519180014110.1002/ardp.20180014130048015
    [Google Scholar]
  17. MandellL. TillotsonG. Safety of fluoroquinolones: An update.Can. J. Infect. Dis. Med. Microbiol.2002131546110.1155/2002/86478918159374
    [Google Scholar]
  18. Rama RaoP. Recent progress in the development of materials.Curr. Opin. Chem. Eng.20143131710.1016/j.coche.2013.08.012
    [Google Scholar]
  19. WitvrouwM. DaelemansD. PannecouqueC. NeytsJ. AndreiG. SnoeckR. VandammeA-M. BalzariniJ. DesmyterJ. BabaM. De ClercqE. Broad-spectrum antiviral activity and mechanism of antiviral action of the fluoroquinolone derivative K-12.Antivir. Chem. Chemother.19989540341110.1177/0956320298009005049875393
    [Google Scholar]
  20. DalhoffA. Antiviral, antifungal, and antiparasitic activities of fluoroquinolones optimized for treatment of bacterial infections: A puzzling paradox or a logical consequence of their mode of action?Eur. J. Clin. Microbiol. Infect. Dis.201534466166810.1007/s10096‑014‑2296‑325515946
    [Google Scholar]
  21. VergalliJ. AtzoriA. PajovicJ. DumontE. MallociG. MasiM. VargiuA.V. WinterhalterM. RéfrégiersM. RuggeroneP. PagèsJ.M. The challenge of intracellular antibiotic accumulation, a function of fluoroquinolone influx versus bacterial efflux.Commun. Biol.20203119810.1038/s42003‑020‑0929‑x32346058
    [Google Scholar]
  22. IdowuT. SchweizerF. Ubiquitous nature of fluoroquinolones: The oscillation between antibacterial and anticancer activities.Antibiotics (Basel)2017642610.3390/antibiotics604002629112154
    [Google Scholar]
  23. ZhouY. XuX. SunY. WangH. SunH. YouQ. Synthesis, cytotoxicity and topoisomerase II inhibitory activity of lomefloxacin derivatives.Bioorg. Med. Chem. Lett.201323102974297810.1016/j.bmcl.2013.03.03723566520
    [Google Scholar]
  24. BeberokA. WrześniokD. MineckaA. RokJ. DelijewskiM. RzepkaZ. RespondekM. BuszmanE. Ciprofloxacin-mediated induction of S-phase cell cycle arrest and apoptosis in COLO829 melanoma cells.Pharmacol. Rep.201870161310.1016/j.pharep.2017.07.00729306115
    [Google Scholar]
  25. SharmaP.C. JainA. JainS. PahwaR. YarM.S. Ciprofloxacin: Review on developments in synthetic, analytical, and medicinal aspects.J. Enzyme Inhib. Med. Chem.201025457758910.3109/1475636090337335020235755
    [Google Scholar]
  26. YadavV. VarshneyP. SultanaS. YadavJ. SainiN. Moxifloxacin and ciprofloxacin induces S-phase arrest and augments apoptotic effects of cisplatin in human pancreatic cancer cells via ERK activation.BMC Cancer201515158110.1186/s12885‑015‑1560‑y26260159
    [Google Scholar]
  27. ChrzanowskaA. RoszkowskiP. BielenicaA. OlejarzW. StępieńK. StrugaM. Anticancer and antimicrobial effects of novel ciprofloxacin fatty acids conjugates.Eur. J. Med. Chem.202018511181010.1016/j.ejmech.2019.11181031678743
    [Google Scholar]
  28. KloskowskiT. OlkowskaJ. NazlicaA. DrewaT. The influence of ciprofloxacin on hamster ovarian cancer cell line CHO AA8.Acta Pol. Pharm.201067434534920635529
    [Google Scholar]
  29. EslamiF. MahdaviM. BabaeiE. HussenB.M. MostafaviH. ShahbaziA. HidayatH.J. Down-regulation of Survivin and Bcl-2 concomitant with the activation of caspase-3 as a mechanism of apoptotic death in KG1a and K562 cells upon exposure to a derivative from ciprofloxacin family.Toxicol. Appl. Pharmacol.202040911533110.1016/j.taap.2020.11533133171188
    [Google Scholar]
  30. HeroldC. OckerM. GanslmayerM. GerauerH. HahnE.G. SchuppanD. Ciprofloxacin induces apoptosis and inhibits proliferation of human colorectal carcinoma cells.Br. J. Cancer200286344344810.1038/sj.bjc.660007911875713
    [Google Scholar]
  31. KowalskiT. GurtowskaN. NowakM. JoachimiakR. BajekA. OlkowskaJ. DrewaT. The influence of ciprofloxacin on viability of A549, HepG2, A375.S2, B16 and C6 cell lines in vitro.Acta Pol. Pharm.201168685986510.5506/APhysPolB.42.85922125950
    [Google Scholar]
  32. KloskowskiT. GurtowskaN. OlkowskaJ. NowakJ.M. AdamowiczJ. TworkiewiczJ. DębskiR. GrzankaA. DrewaT. Ciprofloxacin is a potential topoisomerase II inhibitor for the treatment of NSCLC.Int. J. Oncol.20124161943194910.3892/ijo.2012.165323042104
    [Google Scholar]
  33. BeberokA. RokJ. RzepkaZ. MarciniecK. BoryczkaS. WrześniokD. The role of MITF and Mcl-1 proteins in the antiproliferative and proapoptotic effect of ciprofloxacin in amelanotic melanoma cells: In silico and in vitro study.Toxicol. In Vitro20206610488410.1016/j.tiv.2020.10488432437906
    [Google Scholar]
  34. PommierY. LeoE. ZhangH. MarchandC. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs.Chem. Biol.201017542143310.1016/j.chembiol.2010.04.01220534341
    [Google Scholar]
  35. MohammedH.H.H. Abd El-HafeezA.A. AbbasS.H. AbdelhafezE.S.M.N. Abuo-RahmaG.E.D.A. New antiproliferative 7-(4-(N-substituted carbamoylmethyl)piperazin-1-yl) derivatives of ciprofloxacin induce cell cycle arrest at G2/M phase.Bioorg. Med. Chem.201624194636464610.1016/j.bmc.2016.07.07027555286
    [Google Scholar]
  36. GolovnevN.N. MolokeevM.S. LesnikovM.K. AtuchinV.V. Two salts and the salt cocrystal of ciprofloxacin with thiobarbituric and barbituric acids: The structure and properties.J. Phys. Org. Chem.2018313e377310.1002/poc.3773
    [Google Scholar]
  37. KloskowskiT. GurtowskaN. DrewaT. Does ciprofloxacin have an obverse and a reverse?Pulm. Pharmacol. Ther.201023537337510.1016/j.pupt.2010.02.00520211752
    [Google Scholar]
  38. Esfandiari MazandaranK. MirshokraeeS.A. DidehbanK. Houshdar TehraniM.H. Design, synthesis and biological evaluation of ciprofloxacin-peptide conjugates as anticancer agents.Iran. J. Pharm. Res.20191841823183010.22037/ijpr.2019.111721.1331932184849
    [Google Scholar]
  39. ChabannonC. CalmelsB. Leukemic stem cells as models of tumour stem cells.Hematologie2007137781
    [Google Scholar]
  40. SheM. NiuX. ChenX. LiJ. ZhouM. HeY. LeY. GuoK. Resistance of leukemic stem-like cells in AML cell line KG1a to natural killer cell-mediated cytotoxicity.Cancer Lett.2012318217317910.1016/j.canlet.2011.12.01722198207
    [Google Scholar]
  41. HassanM. WatariH. AbuAlmaatyA. OhbaY. SakuragiN. Apoptosis and molecular targeting therapy in cancer.BioMed Res. Int.2014201412310.1155/2014/15084525013758
    [Google Scholar]
  42. CarneiroB.A. El-DeiryW.S. Targeting apoptosis in cancer therapy.Nat. Rev. Clin. Oncol.202017739541710.1038/s41571‑020‑0341‑y32203277
    [Google Scholar]
  43. ShahbaziA. MostafaviH. ZarriniG. MahdaviM. Novel N-4-Piperazinyl Ciprofloxacin-Ester Hybrids: Synthesis, Biological Evaluation, and Molecular Docking Studies.Russ. J. Gen. Chem.20209081558156510.1134/S1070363220080265
    [Google Scholar]
  44. MahdaviM. YazdanparastR. Gnidilatimonoein fromDaphne mucronata induces differentiation and apoptosis in leukemia cell lines.Arch. Pharm. Res.200730217718110.1007/BF0297769217366739
    [Google Scholar]
  45. SaddikM.S. ElsayedM.M.A. AbdelkaderM.S.A. El-MokhtarM.A. Abdel-AleemJ.A. Abu-DiefA.M. Al-HakkaniM.F. FarghalyH.S. Abou-TalebH.A. Novel green biosynthesis of 5-fluorouracil chromium nanoparticles using Harpullia pendula extract for treatment of colorectal cancer.Pharmaceutics202113222610.3390/pharmaceutics13020226
    [Google Scholar]
  46. RostampourS. EslamiF. BabaeiE. MostafaviH. MahdaviM. An Active Compound from the Pyrazine Family Induces Apoptosis by Targeting the Bax/Bcl2 and Survivin Expression in Chronic Myeloid Leukemia K562 Cells.Anticancer. Agents Med. Chem.202424320321210.2174/011871520627235923112110571338038011
    [Google Scholar]
  47. MahdaviM. LaviM.M. YektaR. MoosaviM.A. NobaraniM. BalalaeiS. AramiS. RashidiM.R. Evaluation of the cytotoxic, apoptosis inducing activity and molecular docking of spiroquinazolinone benzamide derivatives in MCF-7 breast cancer cells.Chem. Biol. Interact.201626023224210.1016/j.cbi.2016.10.00427712999
    [Google Scholar]
  48. Al-TrawnehS.A. ZahraJ.A. KamalM.R. El-AbadelahM.M. ZaniF. IncertiM. CavazzoniA. AlfieriR.R. PetroniniP.G. ViciniP. Synthesis and biological evaluation of tetracyclic fluoroquinolones as antibacterial and anticancer agents.Bioorg. Med. Chem.201018165873588410.1016/j.bmc.2010.06.09820667744
    [Google Scholar]
  49. JunY.T. KimH.J. SongM.J. LimJ.H. LeeD.G. HanK.J. ChoiS.M. YooJ.H. ShinW.S. ChoiJ.H. In vitro effects of ciprofloxacin and roxithromycin on apoptosis of jurkat T lymphocytes.Antimicrob. Agents Chemother.20034731161116410.1128/AAC.47.3.1161‑1164.200312604563
    [Google Scholar]
  50. El-RayesB. GrignonR. AslamN. AranhaO. SarkarF. Ciprofloxacin inhibits cell growth and synergises the effect of etoposide in hormone resistant prostate cancer cells.Int. J. Oncol.200221120721110.3892/ijo.21.1.20712063570
    [Google Scholar]
  51. Abdolreza Esmaeilzadeh Influence of ciprofloxacin on glioma cell line GL26: A new application for an old antibiotic.Afr. J. Microbiol. Res.201262310.5897/AJMR11.1145
    [Google Scholar]
  52. LimE.J. YoonY.J. HeoJ. LeeT.H. KimY.H. Ciprofloxacin enhances TRAIL-induced apoptosis in lung cancer cells by upregulating the expression and protein stability of death receptors through CHOP expression.Int. J. Mol. Sci.20181910318710.3390/ijms1910318730332761
    [Google Scholar]
  53. AranhaO. WoodD.P.Jr SarkarF.H. Ciprofloxacin mediated cell growth inhibition, S/G2-M cell cycle arrest, and apoptosis in a human transitional cell carcinoma of the bladder cell line.Clin. Cancer Res.20006389190010741713
    [Google Scholar]
  54. EngelerD.S. ScandellaE. LudewigB. SchmidH.P. Ciprofloxacin and epirubicin synergistically induce apoptosis in human urothelial cancer cell lines.Urol. Int.201288334334910.1159/00033613022378292
    [Google Scholar]
  55. PessinaA. RaimondiA. CroeraC. AcchiniM. MineoE. FotiP. NeriM.G. Altered DNA-cleavage activity of topoisomerase II from WEHI-3B leukemia cells with specific resistance to ciprofloxacin.Anticancer Drugs200112544145110.1097/00001813‑200106000‑0000511395572
    [Google Scholar]
  56. Abdel-AzizM. ParkS.E. Abuo-RahmaG.E.D.A.A. SayedM.A. KwonY. Novel N-4-piperazinyl-ciprofloxacin-chalcone hybrids: Synthesis, physicochemical properties, anticancer and topoisomerase I and II inhibitory activity.Eur. J. Med. Chem.20136942743810.1016/j.ejmech.2013.08.04024090914
    [Google Scholar]
  57. BeberokA. WrześniokD. RokJ. RzepkaZ. RespondekM. BuszmanE. Ciprofloxacin triggers the apoptosis of human triple-negative breast cancer MDA-MB-231 cells via the p53/Bax/Bcl-2 signaling pathway.Int. J. Oncol.20185251727173710.3892/ijo.2018.431029532860
    [Google Scholar]
  58. KassabA.E. GedawyE.M. Novel ciprofloxacin hybrids using biology oriented drug synthesis (BIODS) approach: Anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis, topoisomerase II inhibition, and antibacterial activity.Eur. J. Med. Chem.201815040341810.1016/j.ejmech.2018.03.02629547830
    [Google Scholar]
  59. AranhaO. GrignonR. FernandesN. McDonnellT. WoodD.Jr SarkarF. Suppression of human prostate cancer cell growth by ciprofloxacin is associated with cell cycle arrest and apoptosis.Int. J. Oncol.200322478779410.3892/ijo.22.4.78712632069
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968280272240925103621
Loading
/content/journals/ccb/10.2174/0122127968280272240925103621
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Apoptosis; Bax; Bcl-2; cell cycle; ciprofloxacin; leukemia; NB4 cells; survivin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test