Skip to content
2000
image of Evaluation of Anti-Proliferative and Apoptosis-Inducing Activities of the New Ciprofloxacin Derivative on Human Leukemia NB4 Cells

Abstract

Backgrounds

Leukemic stem cells are considered to be the main cause of treatment failure and disease recurrence due to their resistance to most common therapies. Apoptosis induction is one of the highly effective methods for treating cancer. Ciprofloxacin is among the compounds whose antitumor effects have been confirmed.

Objectives

In this study, we investigated the anti-proliferative effect and induction of apoptosis by one of the derivatives of this family called (ICH-CP) on NB4 cell line as an model of Acute promyelocytic leukemia (APL). NB4 cells were treated using the ICH-CP combination in various concentrations.

Methods

The viability of NB4 cells was evaluated by MTT assay, and their morphology of apoptosis was examined by fluorescence microscopy. Flow cytometry and Annexin V/PI staining were used to quantify apoptosis. Finally, the expression of three genes, Bax, Bcl-2, and Survivin was inquired by real-time PCR.

Results

According to the results, ICH-CP was able to destroy about 60% of NB4 cells in a dose and time-dependent manner. Light microscopy and fluorescence microscopy studies on treated cells confirmed the induction of apoptosis. Also, the real-time PCR analysis showed that ICH-CP induces apoptosis in the NB4 cell line the down-regulation of Survivin and Bcl-2, in contrast to the up-regulation of the Bax gene.

Conclusion

Based on the present data, it seems that the novel compound can be a good candidate for the treatment of acute myeloid leukemia. Furthermore, it is recommended to evaluate the qualification of ICH-CP as an adjunctive agent for other cancer cell lines.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968280272240925103621
2024-10-11
2024-11-22
Loading full text...

Full text loading...

References

  1. Juliusson G. Lazarevic V. Hörstedt A.S. Hagberg O. Höglund M. Acute myeloid leukemia in the real world: Why population-based registries are needed. Blood 2012 119 17 3890 3899 10.1182/blood‑2011‑12‑379008 22383796
    [Google Scholar]
  2. Lightfoot T. Smith A. Roman E. Leukemia. International Encyclopedia of Public Health 2016 10.1016/B978‑0‑12‑803678‑5.00253‑8
    [Google Scholar]
  3. Ratley A. Minj J. Patre P. Leukemia disease detection and classification using machine learning approaches: A review. First International Conference on Power, Control and Computing Technologies (ICPC2T) Raipur, India 2020 161 165 10.1109/ICPC2T48082.2020.9071471
    [Google Scholar]
  4. Gonçalves A. Rocha F. Estevinho B.N. Pharmaceutical/Clinical Strategies in the Treatment of Acute Promyelocytic Leukemia: All-Trans Retinoic Acid Encapsulation by Spray-Drying Technology as an Innovative Approach–Comprehensive Overview. Pharmaceuticals (Basel) 2023 16 2 180 10.3390/ph16020180 37259328
    [Google Scholar]
  5. Eckardt J.N. Schmittmann T. Riechert S. Kramer M. Sulaiman A.S. Sockel K. Kroschinsky F. Schetelig J. Wagenführ L. Schuler U. Platzbecker U. Thiede C. Stölzel F. Röllig C. Bornhäuser M. Wendt K. Middeke J.M. Deep learning identifies Acute Promyelocytic Leukemia in bone marrow smears. BMC Cancer 2022 22 1 201 10.1186/s12885‑022‑09307‑8 35193533
    [Google Scholar]
  6. Mansoori G.A. Mohazzabi P. McCormack P. Jabbari S. Nanotechnology in cancer prevention, detection and treatment: bright future lies ahead. World Rev. Sci. Technol. Sustain. Dev. 2007 4 2/3 226 10.1504/WRSTSD.2007.013584
    [Google Scholar]
  7. Adams J. Nassiri M. Acute promyelocytic leukemia a review and discussion of variant translocations. Arch. Pathol. Lab. Med. 2015 139 10 1308 1313 10.5858/arpa.2013‑0345‑RS 26414475
    [Google Scholar]
  8. Korsos V. Miller W.H. Jr How retinoic acid and arsenic transformed acute promyelocytic leukemia therapy. J. Mol. Endocrinol. 2022 69 4 T69 T83 10.1530/JME‑22‑0141 36112505
    [Google Scholar]
  9. Stahl M. Tallman M.S. Acute promyelocytic leukemia (APL): Remaining challenges towards a cure for all. Leuk. Lymphoma 2019 60 13 3107 3115 10.1080/10428194.2019.1613540 31842650
    [Google Scholar]
  10. Ferrara F. Molica M. Bernardi M. Drug treatment options for acute promyelocytic leukemia. Expert Opin. Pharmacother. 2022 23 1 117 127 10.1080/14656566.2021.1961744 34348549
    [Google Scholar]
  11. de Almeida T.D. Evangelista F.C.G. de Paulo Sabino A. Acute Promyelocytic Leukemia (APL): A review of the classic and emerging target therapies towards molecular heterogeneity. Future Pharmacol 2023 3 1 162 179 10.3390/futurepharmacol3010012
    [Google Scholar]
  12. Khalil K.D. Bashal A.H. Habeeb T. Abu-Dief A.M. Synergistic antibacterial and anticancer activity in gadolinium–chitosan nanocomposite films: A novel approach for biomedical applications. Appl. Organomet. Chem. 2024 38 8 e7531 10.1002/aoc.7531
    [Google Scholar]
  13. Bashal A.H. Khalil K.D. Abu-Dief A.M. El-Atawy M.A. Cobalt oxide-chitosan based nanocomposites: Synthesis, characterization and their potential pharmaceutical applications. Int. J. Biol. Macromol. 2023 253 Pt 4 126856 10.1016/j.ijbiomac.2023.126856 37714231
    [Google Scholar]
  14. Mahbub S. Mia M.L. Roy T. Akter P. Uddin A.K.M.R. Rub M.A. Hoque M.A. Asiri A.M. Influence of ammonium salts on the interaction of fluoroquinolone antibiotic drug with sodium dodecyl sulfate at different temperatures and compositions. J. Mol. Liq. 2020 297 111583 10.1016/j.molliq.2019.111583
    [Google Scholar]
  15. Chugunova E. Akylbekov N. Bulatova A. Gavrilov N. Voloshina A. Kulik N. Zobov V. Dobrynin A. Syakaev V. Burilov A. Synthesis and biological evaluation of novel structural hybrids of benzofuroxan derivatives and fluoroquinolones. Eur. J. Med. Chem. 2016 116 165 172 10.1016/j.ejmech.2016.03.086 27061980
    [Google Scholar]
  16. Ezelarab H.A.A. Abbas S.H. Hassan H.A. Abuo-Rahma G.E.D.A. Recent updates of fluoroquinolones as antibacterial agents. Arch. Pharm. (Weinheim) 2018 351 9 1800141 10.1002/ardp.201800141 30048015
    [Google Scholar]
  17. Mandell L. Tillotson G. Safety of fluoroquinolones: An update. Can. J. Infect. Dis. Med. Microbiol. 2002 13 1 54 61 10.1155/2002/864789 18159374
    [Google Scholar]
  18. Rama Rao P. Recent progress in the development of materials. Curr. Opin. Chem. Eng. 2014 3 13 17 10.1016/j.coche.2013.08.012
    [Google Scholar]
  19. Witvrouw M. Daelemans D. Pannecouque C. Neyts J. Andrei G. Snoeck R. Vandamme A-M. Balzarini J. Desmyter J. Baba M. De Clercq E. Broad-spectrum antiviral activity and mechanism of antiviral action of the fluoroquinolone derivative K-12. Antivir. Chem. Chemother. 1998 9 5 403 411 10.1177/095632029800900504 9875393
    [Google Scholar]
  20. Dalhoff A. Antiviral, antifungal, and antiparasitic activities of fluoroquinolones optimized for treatment of bacterial infections: A puzzling paradox or a logical consequence of their mode of action? Eur. J. Clin. Microbiol. Infect. Dis. 2015 34 4 661 668 10.1007/s10096‑014‑2296‑3 25515946
    [Google Scholar]
  21. Vergalli J. Atzori A. Pajovic J. Dumont E. Malloci G. Masi M. Vargiu A.V. Winterhalter M. Réfrégiers M. Ruggerone P. Pagès J.M. The challenge of intracellular antibiotic accumulation, a function of fluoroquinolone influx versus bacterial efflux. Commun. Biol. 2020 3 1 198 10.1038/s42003‑020‑0929‑x 32346058
    [Google Scholar]
  22. Idowu T. Schweizer F. Ubiquitous nature of fluoroquinolones: The oscillation between antibacterial and anticancer activities. Antibiotics (Basel) 2017 6 4 26 10.3390/antibiotics6040026 29112154
    [Google Scholar]
  23. Zhou Y. Xu X. Sun Y. Wang H. Sun H. You Q. Synthesis, cytotoxicity and topoisomerase II inhibitory activity of lomefloxacin derivatives. Bioorg. Med. Chem. Lett. 2013 23 10 2974 2978 10.1016/j.bmcl.2013.03.037 23566520
    [Google Scholar]
  24. Beberok A. Wrześniok D. Minecka A. Rok J. Delijewski M. Rzepka Z. Respondek M. Buszman E. Ciprofloxacin-mediated induction of S-phase cell cycle arrest and apoptosis in COLO829 melanoma cells. Pharmacol. Rep. 2018 70 1 6 13 10.1016/j.pharep.2017.07.007 29306115
    [Google Scholar]
  25. Sharma P.C. Jain A. Jain S. Pahwa R. Yar M.S. Ciprofloxacin: Review on developments in synthetic, analytical, and medicinal aspects. J. Enzyme Inhib. Med. Chem. 2010 25 4 577 589 10.3109/14756360903373350 20235755
    [Google Scholar]
  26. Yadav V. Varshney P. Sultana S. Yadav J. Saini N. Moxifloxacin and ciprofloxacin induces S-phase arrest and augments apoptotic effects of cisplatin in human pancreatic cancer cells via ERK activation. BMC Cancer 2015 15 1 581 10.1186/s12885‑015‑1560‑y 26260159
    [Google Scholar]
  27. Chrzanowska A. Roszkowski P. Bielenica A. Olejarz W. Stępień K. Struga M. Anticancer and antimicrobial effects of novel ciprofloxacin fatty acids conjugates. Eur. J. Med. Chem. 2020 185 111810 10.1016/j.ejmech.2019.111810 31678743
    [Google Scholar]
  28. Kloskowski T. Olkowska J. Nazlica A. Drewa T. The influence of ciprofloxacin on hamster ovarian cancer cell line CHO AA8. Acta Pol. Pharm. 2010 67 4 345 349 20635529
    [Google Scholar]
  29. Eslami F. Mahdavi M. Babaei E. Hussen B.M. Mostafavi H. Shahbazi A. Hidayat H.J. Down-regulation of Survivin and Bcl-2 concomitant with the activation of caspase-3 as a mechanism of apoptotic death in KG1a and K562 cells upon exposure to a derivative from ciprofloxacin family. Toxicol. Appl. Pharmacol. 2020 409 115331 10.1016/j.taap.2020.115331 33171188
    [Google Scholar]
  30. Herold C. Ocker M. Ganslmayer M. Gerauer H. Hahn E.G. Schuppan D. Ciprofloxacin induces apoptosis and inhibits proliferation of human colorectal carcinoma cells. Br. J. Cancer 2002 86 3 443 448 10.1038/sj.bjc.6600079 11875713
    [Google Scholar]
  31. Kowalski T. Gurtowska N. Nowak M. Joachimiak R. Bajek A. Olkowska J. Drewa T. The influence of ciprofloxacin on viability of A549, HepG2, A375.S2, B16 and C6 cell lines in vitro . Acta Pol Pharm 2011 68 6 859 865 10.5506/APhysPolB.42.859 22125950
    [Google Scholar]
  32. Kloskowski T. Gurtowska N. Olkowska J. Nowak J.M. Adamowicz J. Tworkiewicz J. Dębski R. Grzanka A. Drewa T. Ciprofloxacin is a potential topoisomerase II inhibitor for the treatment of NSCLC. Int. J. Oncol. 2012 41 6 1943 1949 10.3892/ijo.2012.1653 23042104
    [Google Scholar]
  33. Beberok A. Rok J. Rzepka Z. Marciniec K. Boryczka S. Wrześniok D. The role of MITF and Mcl-1 proteins in the antiproliferative and proapoptotic effect of ciprofloxacin in amelanotic melanoma cells: In silico and in vitro study. Toxicol. In Vitro 2020 66 104884 10.1016/j.tiv.2020.104884 32437906
    [Google Scholar]
  34. Pommier Y. Leo E. Zhang H. Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 2010 17 5 421 433 10.1016/j.chembiol.2010.04.012 20534341
    [Google Scholar]
  35. Mohammed H.H.H. Abd El-Hafeez A.A. Abbas S.H. Abdelhafez E.S.M.N. Abuo-Rahma G.E.D.A. New antiproliferative 7-(4-(N-substituted carbamoylmethyl)piperazin-1-yl) derivatives of ciprofloxacin induce cell cycle arrest at G2/M phase. Bioorg. Med. Chem. 2016 24 19 4636 4646 10.1016/j.bmc.2016.07.070 27555286
    [Google Scholar]
  36. Golovnev N.N. Molokeev M.S. Lesnikov M.K. Atuchin V.V. Two salts and the salt cocrystal of ciprofloxacin with thiobarbituric and barbituric acids: The structure and properties. J. Phys. Org. Chem. 2018 31 3 e3773 10.1002/poc.3773
    [Google Scholar]
  37. Kloskowski T. Gurtowska N. Drewa T. Does ciprofloxacin have an obverse and a reverse? Pulm. Pharmacol. Ther. 2010 23 5 373 375 10.1016/j.pupt.2010.02.005 20211752
    [Google Scholar]
  38. Esfandiari Mazandaran K. Mirshokraee S.A. Didehban K. Houshdar Tehrani M.H. Design, synthesis and biological evaluation of ciprofloxacin-peptide conjugates as anticancer agents. Iran. J. Pharm. Res. 2019 18 4 1823 1830 10.22037/ijpr.2019.111721.13319 32184849
    [Google Scholar]
  39. Chabannon C. Calmels B. Leukemic stem cells as models of tumour stem cells. Hematologie 2007 13 77 81
    [Google Scholar]
  40. She M. Niu X. Chen X. Li J. Zhou M. He Y. Le Y. Guo K. Resistance of leukemic stem-like cells in AML cell line KG1a to natural killer cell-mediated cytotoxicity. Cancer Lett. 2012 318 2 173 179 10.1016/j.canlet.2011.12.017 22198207
    [Google Scholar]
  41. Hassan M. Watari H. AbuAlmaaty A. Ohba Y. Sakuragi N. Apoptosis and molecular targeting therapy in cancer. BioMed Res. Int. 2014 2014 1 23 10.1155/2014/150845 25013758
    [Google Scholar]
  42. Carneiro B.A. El-Deiry W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol. 2020 17 7 395 417 10.1038/s41571‑020‑0341‑y 32203277
    [Google Scholar]
  43. Shahbazi A. Mostafavi H. Zarrini G. Mahdavi M. Novel N-4-Piperazinyl Ciprofloxacin-Ester Hybrids: Synthesis, Biological Evaluation, and Molecular Docking Studies. Russ. J. Gen. Chem. 2020 90 8 1558 1565 10.1134/S1070363220080265
    [Google Scholar]
  44. Mahdavi M. Yazdanparast R. Gnidilatimonoein fromDaphne mucronata induces differentiation and apoptosis in leukemia cell lines. Arch. Pharm. Res. 2007 30 2 177 181 10.1007/BF02977692 17366739
    [Google Scholar]
  45. Saddik M.S. Elsayed M.M.A. Abdelkader M.S.A. El-Mokhtar M.A. Abdel-Aleem J.A. Abu-Dief A.M. Al-Hakkani M.F. Farghaly H.S. Abou-Taleb H.A. Novel green biosynthesis of 5-fluorouracil chromium nanoparticles using Harpullia pendula extract for treatment of colorectal cancer. Pharmaceutics 2021 13 2 226 10.3390/pharmaceutics13020226.
    [Google Scholar]
  46. Rostampour S. Eslami F. Babaei E. Mostafavi H. Mahdavi M. An Active Compound from the Pyrazine Family Induces Apoptosis by Targeting the Bax/Bcl2 and Survivin Expression in Chronic Myeloid Leukemia K562 Cells. Anticancer. Agents Med. Chem. 2024 24 3 203 212 10.2174/0118715206272359231121105713 38038011
    [Google Scholar]
  47. Mahdavi M. Lavi M.M. Yekta R. Moosavi M.A. Nobarani M. Balalaei S. Arami S. Rashidi M.R. Evaluation of the cytotoxic, apoptosis inducing activity and molecular docking of spiroquinazolinone benzamide derivatives in MCF-7 breast cancer cells. Chem. Biol. Interact. 2016 260 232 242 10.1016/j.cbi.2016.10.004 27712999
    [Google Scholar]
  48. Al-Trawneh S.A. Zahra J.A. Kamal M.R. El-Abadelah M.M. Zani F. Incerti M. Cavazzoni A. Alfieri R.R. Petronini P.G. Vicini P. Synthesis and biological evaluation of tetracyclic fluoroquinolones as antibacterial and anticancer agents. Bioorg. Med. Chem. 2010 18 16 5873 5884 10.1016/j.bmc.2010.06.098 20667744
    [Google Scholar]
  49. Jun Y.T. Kim H.J. Song M.J. Lim J.H. Lee D.G. Han K.J. Choi S.M. Yoo J.H. Shin W.S. Choi J.H. In vitro effects of ciprofloxacin and roxithromycin on apoptosis of jurkat T lymphocytes. Antimicrob. Agents Chemother. 2003 47 3 1161 1164 10.1128/AAC.47.3.1161‑1164.2003 12604563
    [Google Scholar]
  50. El-Rayes B. Grignon R. Aslam N. Aranha O. Sarkar F. Ciprofloxacin inhibits cell growth and synergises the effect of etoposide in hormone resistant prostate cancer cells. Int. J. Oncol. 2002 21 1 207 211 10.3892/ijo.21.1.207 12063570
    [Google Scholar]
  51. Abdolreza Esmaeilzadeh Influence of ciprofloxacin on glioma cell line GL26: A new application for an old antibiotic. Afr. J. Microbiol. Res. 2012 6 23 10.5897/AJMR11.1145
    [Google Scholar]
  52. Lim E.J. Yoon Y.J. Heo J. Lee T.H. Kim Y.H. Ciprofloxacin enhances TRAIL-induced apoptosis in lung cancer cells by upregulating the expression and protein stability of death receptors through CHOP expression. Int. J. Mol. Sci. 2018 19 10 3187 10.3390/ijms19103187 30332761
    [Google Scholar]
  53. Aranha O. Wood D.P. Jr Sarkar F.H. Ciprofloxacin mediated cell growth inhibition, S/G2-M cell cycle arrest, and apoptosis in a human transitional cell carcinoma of the bladder cell line. Clin. Cancer Res. 2000 6 3 891 900 10741713
    [Google Scholar]
  54. Engeler D.S. Scandella E. Ludewig B. Schmid H.P. Ciprofloxacin and epirubicin synergistically induce apoptosis in human urothelial cancer cell lines. Urol. Int. 2012 88 3 343 349 10.1159/000336130 22378292
    [Google Scholar]
  55. Pessina A. Raimondi A. Croera C. Acchini M. Mineo E. Foti P. Neri M.G. Altered DNA-cleavage activity of topoisomerase II from WEHI-3B leukemia cells with specific resistance to ciprofloxacin. Anticancer Drugs 2001 12 5 441 451 10.1097/00001813‑200106000‑00005 11395572
    [Google Scholar]
  56. Abdel-Aziz M. Park S.E. Abuo-Rahma G.E.D.A.A. Sayed M.A. Kwon Y. Novel N-4-piperazinyl-ciprofloxacin-chalcone hybrids: Synthesis, physicochemical properties, anticancer and topoisomerase I and II inhibitory activity. Eur. J. Med. Chem. 2013 69 427 438 10.1016/j.ejmech.2013.08.040 24090914
    [Google Scholar]
  57. Beberok A. Wrześniok D. Rok J. Rzepka Z. Respondek M. Buszman E. Ciprofloxacin triggers the apoptosis of human triple-negative breast cancer MDA-MB-231 cells via the p53/Bax/Bcl-2 signaling pathway. Int. J. Oncol. 2018 52 5 1727 1737 10.3892/ijo.2018.4310 29532860
    [Google Scholar]
  58. Kassab A.E. Gedawy E.M. Novel ciprofloxacin hybrids using biology oriented drug synthesis (BIODS) approach: Anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis, topoisomerase II inhibition, and antibacterial activity. Eur. J. Med. Chem. 2018 150 403 418 10.1016/j.ejmech.2018.03.026 29547830
    [Google Scholar]
  59. Aranha O. Grignon R. Fernandes N. McDonnell T. Wood D. Jr Sarkar F. Suppression of human prostate cancer cell growth by ciprofloxacin is associated with cell cycle arrest and apoptosis. Int. J. Oncol. 2003 22 4 787 794 10.3892/ijo.22.4.787 12632069
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968280272240925103621
Loading
/content/journals/ccb/10.2174/0122127968280272240925103621
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: survivin ; NB4 cells ; cell cycle ; Apoptosis ; Bcl-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test