Skip to content
2000
image of Ginsenosides as Promising Therapeutic Agents for Glioma: Mechanisms of Action and Future Perspectives

Abstract

Brain cancers, particularly gliomas, are a significant cause of mortality worldwide. Gliomas are primary tumors of the central nervous system (CNS) and are characterized by diverse clinical and biological features. Despite advancements in clinical approaches and surgical techniques, the treatment of high-grade gliomas still poses multiple challenges. This article focuses on a key active substance found in called Ginsenosides. Ginsenosides belong to a specific class of triterpenoid saponins and have demonstrated various therapeutic effects, including neuroprotective, anticancer, anti-inflammatory, and neuroprotective functions. These compounds have shown potential in the treatment of gliomas and other cancers. Several pathways associated with ginsenosides, such as Rg3, Rh2, Rd, and Rb1, have been extensively studied, and these compounds have been proposed as potential targets in glioma treatment. The precise mechanisms of action of ginsenosides in gliomas are still being investigated, but their ability to modulate various signalling pathways and exert multiple therapeutic effects makes them promising candidates for further research and development. Clinical trials and additional studies are necessary to validate their therapeutic benefits and determine the optimal dosage, administration route, and potential combination with other treatment modalities. In summary, ginsenosides, the active compounds found in , exhibit various therapeutic effects, including potential anti-cancer properties in gliomas. Their ability to modulate multiple pathways makes them promising targets for further research in the field of glioma treatment. However, more studies are required to establish their effectiveness and safety in clinical settings.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968305352240929154003
2024-10-17
2024-11-22
Loading full text...

Full text loading...

References

  1. Ebad Ur Rehman M. Faraz F. Cheema H.A. Ashruf O.S. Raheel H. Naqvi S.Z.A. Jabeen N. Abid A. Mumtaz Malik H. Iftikhar A. Ibrahim A. Swed S. Impact of prior cancer history on survival in brain malignancy: A propensity score‐adjusted, population‐based study. Cancer Rep. 2024 7 2 e1984 10.1002/cnr2.1984 38389401
    [Google Scholar]
  2. Moftakhar A. Khoshnam S.E. Farzaneh M. The pathogenic roles of lncRNAs in glioma. Curr. Cancer Ther. Rev. 2024 20 1 12 17 10.2174/1573394719666230316112549
    [Google Scholar]
  3. Siegel R.L. Miller K.D. Fuchs H.E. Jemal A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021 71 1 7 33 10.3322/caac.21654 33433946
    [Google Scholar]
  4. An Y. Fan F. Jiang X. Sun K. Recent advances in liquid biopsy of brain cancers. Front. Genet. 2021 12 720270 10.3389/fgene.2021.720270 34603383
    [Google Scholar]
  5. Perla A. Fratini L. Cardoso P.S. Nör C. Brunetto A.T. Brunetto A.L. de Farias C.B. Jaeger M. Roesler R. Histone deacetylase inhibitors in pediatric brain cancers: Biological activities and therapeutic potential. Front. Cell Dev. Biol. 2020 8 546 10.3389/fcell.2020.00546 32754588
    [Google Scholar]
  6. Schaff L.R. Mellinghoff I.K. Glioblastoma and other primary brain malignancies in adults: A review. JAMA 2023 329 7 574 587 10.1001/jama.2023.0023 36809318
    [Google Scholar]
  7. Moftakhar A. Najafi S. Anbiyaee O. Farzaneh M. Khoshnam S.E. Functional roles of the lncRNA MALAT1 in glioma. Curr. Cancer Ther. Rev. 2024 20 2 166 176 10.2174/1573394719666230720164009
    [Google Scholar]
  8. Ganapathy S. Venkataramana N.K. Rao S.A. Nagaraj A. Panayotou G. Panotopoulos C. Ronquist G. Post-resection cavity lavage of high grade glioma with a novel drug combination: A case report. Anticancer Res. 2023 43 8 3583 3588 10.21873/anticanres.16537 37500132
    [Google Scholar]
  9. Xu S. Tang L. Li X. Fan F. Liu Z. Immunotherapy for glioma: Current management and future application. Cancer Lett. 2020 476 1 12 10.1016/j.canlet.2020.02.002 32044356
    [Google Scholar]
  10. Śledzińska P. Bebyn M.G. Furtak J. Kowalewski J. Lewandowska M.A. Prognostic and predictive biomarkers in gliomas. Int. J. Mol. Sci. 2021 22 19 10373 10.3390/ijms221910373 34638714
    [Google Scholar]
  11. Jin W. Fatehi M. Abhishek K. Mallya M. Toyota B. Hamarneh G. Artificial intelligence in glioma imaging: Challenges and advances. J. Neural Eng. 2020 17 2 021002 10.1088/1741‑2552/ab8131 32191935
    [Google Scholar]
  12. Feng Q. Dong Z. Nie R. Wang X. Identifying diffuse glioma subtypes based on pathway enrichment evaluation. Interdiscip. Sci. 2024 ••• 1 14 10.1007/s12539‑024‑00627‑w 38637440
    [Google Scholar]
  13. Malta T.M. de Souza C.F. Sabedot T.S. Silva T.C. Mosella M.S. Kalkanis S.N. Snyder J. Castro A.V.B. Noushmehr H. Glioma CpG island methylator phenotype (G-CIMP): Biological and clinical implications. Neuro-oncol. 2018 20 5 608 620 10.1093/neuonc/nox183 29036500
    [Google Scholar]
  14. Liu Z. Liu T. Li W. Li J. Wang C. Zhang K. Insights into the antitumor mechanism of ginsenosides Rg3. Mol. Biol. Rep. 2021 48 3 2639 2652 10.1007/s11033‑021‑06187‑2 33661439
    [Google Scholar]
  15. Hou M. Wang R. Zhao S. Wang Z. Ginsenosides in Panax genus and their biosynthesis. Acta Pharm. Sin. B 2021 11 7 1813 1834 10.1016/j.apsb.2020.12.017 34386322
    [Google Scholar]
  16. Ashrafizadeh M. Ahmadi Z. Yaribeygi H. Sathyapalan T. Jamialahmadi T. Sahebkar A. The effects of ginsenosides on the Nrf2 signaling pathway. Adv. Exp. Med. Biol. 2021 1328 307 322 10.1007/978‑3‑030‑73234‑9_20 34981486
    [Google Scholar]
  17. Luong Huynh D. Nguyen N.H. Nguyen C.T. Pharmacological properties of ginsenosides in inflammation-derived cancers. Mol. Cell. Biochem. 2021 476 9 3329 3340 10.1007/s11010‑021‑04162‑w 33900512
    [Google Scholar]
  18. Shi L. Luo J. Wei X. Xu X. Tu L. The protective role of ginsenoside Rg3 in heart diseases and mental disorders. Front. Pharmacol. 2024 15 1327033 10.3389/fphar.2024.1327033 38469409
    [Google Scholar]
  19. Hong H. Baatar D. Hwang S.G. Anticancer activities of ginsenosides, the main active components of ginseng. Evid. Based Complement. Alternat. Med. 2021 2021 1 10 10.1155/2021/8858006 33623532
    [Google Scholar]
  20. Gantait S. Mitra M. Chen J.T. Biotechnological interventions for ginsenosides production. Biomolecules 2020 10 4 538 10.3390/biom10040538 32252467
    [Google Scholar]
  21. Lou T. Huang Q. Su H. Zhao D. Li X. Targeting Sirtuin 1 signaling pathway by ginsenosides. J. Ethnopharmacol. 2021 268 113657 10.1016/j.jep.2020.113657 33276056
    [Google Scholar]
  22. Lu Y. Feng S. Zhao Y. Wang Y. Diao M. Liang Y. Zhang T. Comparison of interactions between alpha-lactalbumin and three protopanaxadiol ginsenosides: Impacts on the structure and antitumor properties. Food Chem. 2024 439 138046 10.1016/j.foodchem.2023.138046 38029562
    [Google Scholar]
  23. Wang F. Roh Y.S. Mitochondrial connection to ginsenosides. Arch. Pharm. Res. 2020 43 10 1031 1045 10.1007/s12272‑020‑01279‑2 33113096
    [Google Scholar]
  24. Zheng M. Xu F. Li Y. Xi X. Cui X. Han C. Zhang X. Study on transformation of ginsenosides in different methods. BioMed Res. Int. 2017 2017 1 10 10.1155/2017/8601027 29387726
    [Google Scholar]
  25. Murugesan M. Mathiyalagan R. Boopathi V. Kong B.M. Choi S.K. Lee C.S. Yang D.C. Kang S.C. Thambi T. Production of minor ginsenoside CK from major ginsenosides by biotransformation and its advances in targeted delivery to tumor tissues using nanoformulations. Nanomaterials 2022 12 19 3427 10.3390/nano12193427 36234555
    [Google Scholar]
  26. Im D.S. Pro-resolving effect of ginsenosides as an anti-inflammatory mechanism of Panax ginseng. Biomolecules 2020 10 3 444 10.3390/biom10030444 32183094
    [Google Scholar]
  27. Fan W. Huang Y. Zheng H. Li S. Li Z. Yuan L. Cheng X. He C. Sun J. Ginsenosides for the treatment of metabolic syndrome and cardiovascular diseases: Pharmacology and mechanisms. Biomed. Pharmacother. 2020 132 110915 10.1016/j.biopha.2020.110915 33254433
    [Google Scholar]
  28. Wan X. Jin X. Wu X. Dong D. Yang H. Tan R. Sun Y. Liu X. Sun K. Wu W. Chen C. Ginsenoside Rd reduces cell proliferation of non-small cell lung cancer cells by p53-mitochondrial apoptotic pathway. Heliyon 2024 10 11 e32483 10.1016/j.heliyon.2024.e32483 38933967
    [Google Scholar]
  29. Chopra P. Chhillar H. Kim Y.J. Jo I.H. Kim S.T. Gupta R. Phytochemistry of ginsenosides: Recent advancements and emerging roles. Crit. Rev. Food Sci. Nutr. 2021 ••• 1 28 34278879
    [Google Scholar]
  30. Tang M. Deng H. Zheng K. He J. Yang J. Li Y. Ginsenoside 3β-O-Glc-DM (C3DM) suppressed glioma tumor growth by downregulating the EGFR/PI3K/AKT/mTOR signaling pathway and modulating the tumor microenvironment. Toxicol. Appl. Pharmacol. 2023 460 116378 10.1016/j.taap.2023.116378 36641037
    [Google Scholar]
  31. Bai Y. Liu Y. Lin L. Liu X. Wan X. Wu X. Ginsenoside CK induces the mitochondrial apoptosis in glioma cells through the activation of the p53-Bax-caspase pathway. Pharmacogn. Mag. 2024 20 2 505 515 10.1177/09731296231203457
    [Google Scholar]
  32. Wu L. Bai L. Dai W. Wu Y. Xi P. Zhang J. Zheng L. Ginsenoside Rg3: A review of its anticancer mechanisms and potential therapeutic applications. Curr. Top. Med. Chem. 2024 24 10 869 884 10.2174/0115680266283661240226052054 38441023
    [Google Scholar]
  33. Zhu Y. Liang J. Gao C. Wang A. Xia J. Hong C. Zhong Z. Zuo Z. Kim J. Ren H. Li S. Wang Q. Zhang F. Wang J. Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy. J. Control. Release 2021 330 641 657 10.1016/j.jconrel.2020.12.036 33359582
    [Google Scholar]
  34. Orihuela R. McPherson C.A. Harry G.J. Microglial M1/M2 polarization and metabolic states. Br. J. Pharmacol. 2016 173 4 649 665 10.1111/bph.13139 25800044
    [Google Scholar]
  35. Witherel C.E. Sao K. Brisson B.K. Han B. Volk S.W. Petrie R.J. Han L. Spiller K.L. Regulation of extracellular matrix assembly and structure by hybrid M1/M2 macrophages. Biomaterials 2021 269 120667 10.1016/j.biomaterials.2021.120667 33450585
    [Google Scholar]
  36. Reina-Campos M. Scharping N.E. Goldrath A.W. CD8+ T cell metabolism in infection and cancer. Nat. Rev. Immunol. 2021 21 11 718 738 10.1038/s41577‑021‑00537‑8 33981085
    [Google Scholar]
  37. Su X. Zhang D. Zhang H. Zhao K. Hou W. Preparation and characterization of angiopep-2 functionalized Ginsenoside-Rg3 loaded nanoparticles and the effect on C6 Glioma cells. Pharm. Dev. Technol. 2020 25 3 385 395 10.1080/10837450.2018.1551901 30601070
    [Google Scholar]
  38. Gu B. Wang J. Song Y. Wang Q. Wu Q. The inhibitory effects of ginsenoside Rd on the human glioma U251 cells and its underlying mechanisms. J. Cell. Biochem. 2019 120 3 4444 4450 10.1002/jcb.27732 30260020
    [Google Scholar]
  39. Ebrahim A.S. Sabbagh H. Liddane A. Raufi A. Kandouz M. Al-Katib A. Hematologic malignancies: Newer strategies to counter the BCL-2 protein. J. Cancer Res. Clin. Oncol. 2016 142 9 2013 2022 10.1007/s00432‑016‑2144‑1 27043233
    [Google Scholar]
  40. Gutiérrezpuente Y. Zapatabenavides P. Tari A. Lópezberestein G. Bcl-2–related antisense therapy. Semin. Oncol. 2002 29 3 Suppl. 11 71 76 10.1016/S0093‑7754(02)70129‑2 12138400
    [Google Scholar]
  41. Taheri M. Ghafouri-Fard S. Najafi S. Kallenbach J. Keramatfar E. Atri Roozbahani G. Heidari Horestani M. Hussen B.M. Baniahmad A. Hormonal regulation of telomerase activity and hTERT expression in steroid-regulated tissues and cancer. Cancer Cell Int. 2022 22 1 258 10.1186/s12935‑022‑02678‑9 35974340
    [Google Scholar]
  42. Ludlow A.T. Slusher A.L. Sayed M.E. Insights into Telomerase/hTERT alternative splicing regulation using bioinformatics and network analysis in cancer. Cancers 2019 11 5 666 10.3390/cancers11050666 31091669
    [Google Scholar]
  43. Huang Q. Li F. Liu X. Li W. Shi W. Liu F.F. O’Sullivan B. He Z. Peng Y. Tan A.C. Zhou L. Shen J. Han G. Wang X.J. Thorburn J. Thorburn A. Jimeno A. Raben D. Bedford J.S. Li C.Y. Caspase 3–mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat. Med. 2011 17 7 860 866 10.1038/nm.2385 21725296
    [Google Scholar]
  44. Hamilton E. Infante J.R. Targeting CDK4/6 in patients with cancer. Cancer Treat. Rev. 2016 45 129 138 10.1016/j.ctrv.2016.03.002 27017286
    [Google Scholar]
  45. Li K.F. Kang C.M. Yin X.F. Li H.X. Chen Z.Y. Li Y. Zhang Q. Qiu Y.R. Ginsenoside Rh2 inhibits human A172 glioma cell proliferation and induces cell cycle arrest status via modulating Akt signaling pathway. Mol. Med. Rep. 2018 17 2 3062 3068 29207171
    [Google Scholar]
  46. Abeyrathna P. Su Y. The critical role of Akt in cardiovascular function. Vascul. Pharmacol. 2015 74 38 48 10.1016/j.vph.2015.05.008 26025205
    [Google Scholar]
  47. Revathidevi S. Munirajan A.K. Akt in cancer: Mediator and more. Semin. Cancer Biol. 2019 59 80 91 10.1016/j.semcancer.2019.06.002 31173856
    [Google Scholar]
  48. Sun C. Yu Y. Wang L. Wu B. Xia L. Feng F. Ling Z. Wang S. Additive antiangiogenesis effect of ginsenoside Rg3 with low-dose metronomic temozolomide on rat glioma cells both in vivo and in vitro. J. Exp. Clin. Cancer Res. 2016 35 1 32 10.1186/s13046‑015‑0274‑y 26872471
    [Google Scholar]
  49. Mamer S.B. Wittenkeller A. Imoukhuede P.I. VEGF-A splice variants bind VEGFRs with differential affinities. Sci. Rep. 2020 10 1 14413 10.1038/s41598‑020‑71484‑y 32879419
    [Google Scholar]
  50. Fujii T. Hirakata T. Kurozumi S. Tokuda S. Nakazawa Y. Obayashi S. Yajima R. Oyama T. Shirabe K. VEGF-A is associated with the degree of TILs and PD-L1 expression in primary breast cancer. In Vivo 2020 34 5 2641 2646 10.21873/invivo.12082 32871794
    [Google Scholar]
  51. Gangenahalli G.U. Singh V.K. Verma Y.K. Gupta P. Sharma R.K. Chandra R. Luthra P.M. Hematopoietic stem cell antigen CD34: Role in adhesion or homing. Stem Cells Dev. 2006 15 3 305 313 10.1089/scd.2006.15.305 16846369
    [Google Scholar]
  52. Lortie K. Maheux C. Gendron D. Langlois A. Beaulieu M.J. Marsolais D. Bossé Y. Blanchet M.R. CD34 differentially regulates contractile and noncontractile elements of airway reactivity. Am. J. Respir. Cell Mol. Biol. 2018 58 1 79 88 10.1165/rcmb.2017‑0008OC 28850257
    [Google Scholar]
  53. Sin S. Kim S.Y. Kim S.S. Chronic treatment with ginsenoside Rg3 induces Akt-dependent senescence in human glioma cells. Int. J. Oncol. 2012 41 5 1669 1674 10.3892/ijo.2012.1604 22922739
    [Google Scholar]
  54. Shamloo B. Usluer S. p21 in cancer research. Cancers 2019 11 8 1178 10.3390/cancers11081178 31416295
    [Google Scholar]
  55. Stein Y. Rotter V. Aloni-Grinstein R. Gain-of-function mutant p53: All the roads lead to tumorigenesis. Int. J. Mol. Sci. 2019 20 24 6197 10.3390/ijms20246197 31817996
    [Google Scholar]
  56. Parrales A. Iwakuma T. Targeting oncogenic mutant p53 for cancer therapy. Front. Oncol. 2015 5 288 10.3389/fonc.2015.00288 26732534
    [Google Scholar]
  57. Wu N. Wu G. Hu R. Li M. Feng H. Ginsenoside Rh2 inhibits glioma cell proliferation by targeting microRNA-128. Acta Pharmacol. Sin. 2011 32 3 345 353 10.1038/aps.2010.220 21372826
    [Google Scholar]
  58. Liang R.F. Li M. Yang Y. Wang X. Mao Q. Liu Y.H. Circulating miR-128 as a potential diagnostic biomarker for glioma. Clin. Neurol. Neurosurg. 2017 160 88 91 10.1016/j.clineuro.2017.06.020 28704779
    [Google Scholar]
  59. Zhang Y. Chao T. Li R. Liu W. Chen Y. Yan X. Gong Y. Yin B. Liu W. Qiang B. Zhao J. Yuan J. Peng X. MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J. Mol. Med. 2009 87 1 43 51 10.1007/s00109‑008‑0403‑6 18810376
    [Google Scholar]
  60. Ahlander J. Bosco G. The RB/E2F pathway and regulation of RNA processing. Biochem. Biophys. Res. Commun. 2009 384 3 280 283 10.1016/j.bbrc.2009.04.107 19401190
    [Google Scholar]
  61. Cates H.M. Lardner C.K. Bagot R.C. Neve R.L. Nestler E.J. Fosb induction in nucleus accumbens by cocaine is regulated by E2F3a. eNeuro 2019 6 2 ENEURO.0325-18.2019 10.1523/ENEURO.0325‑18.2019 30963104
    [Google Scholar]
  62. Liang Y.Y. Wang B. Qian D.M. Li L. Wang Z.H. Hu M. Song X.X. Inhibitory effects of Ginsenoside Rb1 on apoptosis caused by HSV-1 in human glioma cells. Virol. Sin. 2012 27 1 19 25 10.1007/s12250‑012‑3220‑6 22270803
    [Google Scholar]
  63. Spitz A.Z. Gavathiotis E. Physiological and pharmacological modulation of BAX. Trends Pharmacol. Sci. 2022 43 3 206 220 10.1016/j.tips.2021.11.001 34848097
    [Google Scholar]
  64. Jensen K. WuWong D.J. Wong S. Matsuyama M. Matsuyama S. Pharmacological inhibition of Bax-induced cell death: Bax-inhibiting peptides and small compounds inhibiting Bax. Exp. Biol. Med. 2019 244 8 621 629 10.1177/1535370219833624 30836793
    [Google Scholar]
  65. Pal P. Thummuri D. Lv D. Liu X. Zhang P. Hu W. Poddar S.K. Hua N. Khan S. Yuan Y. Zhang X. Zhou D. Zheng G. Discovery of a novel BCL-X L PROTAC degrader with enhanced BCL-2 inhibition. J. Med. Chem. 2021 64 19 14230 14246 10.1021/acs.jmedchem.1c00517 34533954
    [Google Scholar]
  66. Kim H.E. Oh J.H. Lee S.K. Oh Y.J. Ginsenoside RH-2 induces apoptotic cell death in rat C6 glioma via a reactive oxygen- and caspase-dependent but Bcl-XL-independent pathway. Life Sci. 1999 65 3 PL33 PL40 10.1016/S0024‑3205(99)00252‑0 10447219
    [Google Scholar]
  67. Choi S.S. Lee J.K. Han E.J. Han K.J. Lee H.K. Lee J. Suh H.W. effect of ginsenoside Rd on nitric oxide system induced by lipopolysaccharide plus TNF-α in C6 rat glioma cells. Arch. Pharm. Res. 2003 26 5 375 382 10.1007/BF02976694 12785733
    [Google Scholar]
  68. Yang D. Xiao C. Long F. Wu W. Huang M. Qu L. Liu X. Zhu Y. Fra‐1 plays a critical role in angiotensin II—induced vascular senescence. FASEB J. 2019 33 6 7603 7614 10.1096/fj.201801671RRRR 30892941
    [Google Scholar]
  69. Wutschka J. Kast B. Sator-Schmitt M. Appak-Baskoy S. Hess J. Sinn H.P. Angel P. Schorpp-Kistner M. JUNB suppresses distant metastasis by influencing the initial metastatic stage. Clin. Exp. Metastasis 2021 38 4 411 423 10.1007/s10585‑021‑10108‑9 34282521
    [Google Scholar]
  70. Shaulian E. Karin M. AP-1 as a regulator of cell life and death. Nat. Cell Biol. 2002 4 5 E131 E136 10.1038/ncb0502‑e131 11988758
    [Google Scholar]
  71. Gazon H. Barbeau B. Mesnard J.M. Peloponese J.M. Jr Hijacking of the AP-1 signaling pathway during development of ATL. Front. Microbiol. 2018 8 2686 10.3389/fmicb.2017.02686 29379481
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968305352240929154003
Loading
/content/journals/ccb/10.2174/0122127968305352240929154003
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: anti-cancer ; glioma ; neuroprotective ; brain cancer ; targeted therapy ; Ginsenoside
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test