Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Brain cancers, particularly gliomas, are a significant cause of mortality worldwide. Gliomas are primary tumors of the central nervous system (CNS) and are characterized by diverse clinical and biological features. Despite advancements in clinical approaches and surgical techniques, the treatment of high-grade gliomas still poses multiple challenges. This article focuses on a key active substance found in called Ginsenosides. Ginsenosides belong to a specific class of triterpenoid saponins and have demonstrated various therapeutic effects, including neuroprotective, anticancer, anti-inflammatory, and neuroprotective functions. These compounds have shown potential in the treatment of gliomas and other cancers. Several pathways associated with ginsenosides, such as Rg3, Rh2, Rd, and Rb1, have been extensively studied, and these compounds have been proposed as potential targets in glioma treatment. The precise mechanisms of action of ginsenosides in gliomas are still being investigated, but their ability to modulate various signalling pathways and exert multiple therapeutic effects makes them promising candidates for further research and development. Clinical trials and additional studies are necessary to validate their therapeutic benefits and determine the optimal dosage, administration route, and potential combination with other treatment modalities. In summary, ginsenosides, the active compounds found in , exhibit various therapeutic effects, including potential anti-cancer properties in gliomas. Their ability to modulate multiple pathways makes them promising targets for further research in the field of glioma treatment. However, more studies are required to establish their effectiveness and safety in clinical settings.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968305352240929154003
2024-10-14
2025-04-09
Loading full text...

Full text loading...

References

  1. Ebad Ur RehmanM. FarazF. CheemaH.A. AshrufO.S. RaheelH. NaqviS.Z.A. JabeenN. AbidA. Mumtaz MalikH. IftikharA. IbrahimA. SwedS. Impact of prior cancer history on survival in brain malignancy: A propensity score‐adjusted, population‐based study.Cancer Rep.202472e198410.1002/cnr2.198438389401
    [Google Scholar]
  2. MoftakharA. KhoshnamS.E. FarzanehM. The pathogenic roles of lncRNAs in glioma.Curr. Cancer Ther. Rev.2024201121710.2174/1573394719666230316112549
    [Google Scholar]
  3. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer Statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.2165433433946
    [Google Scholar]
  4. AnY. FanF. JiangX. SunK. Recent advances in liquid biopsy of brain cancers.Front. Genet.20211272027010.3389/fgene.2021.72027034603383
    [Google Scholar]
  5. PerlaA. FratiniL. CardosoP.S. NörC. BrunettoA.T. BrunettoA.L. de FariasC.B. JaegerM. RoeslerR. Histone deacetylase inhibitors in pediatric brain cancers: Biological activities and therapeutic potential.Front. Cell Dev. Biol.2020854610.3389/fcell.2020.0054632754588
    [Google Scholar]
  6. SchaffL.R. MellinghoffI.K. Glioblastoma and other primary brain malignancies in adults: A review.JAMA2023329757458710.1001/jama.2023.002336809318
    [Google Scholar]
  7. MoftakharA. NajafiS. AnbiyaeeO. FarzanehM. KhoshnamS.E. Functional roles of the lncRNA MALAT1 in glioma.Curr. Cancer Ther. Rev.202420216617610.2174/1573394719666230720164009
    [Google Scholar]
  8. GanapathyS. VenkataramanaN.K. RaoS.A. NagarajA. PanayotouG. PanotopoulosC. RonquistG. Post-resection cavity lavage of high grade glioma with a novel drug combination: A case report.Anticancer Res.20234383583358810.21873/anticanres.1653737500132
    [Google Scholar]
  9. XuS. TangL. LiX. FanF. LiuZ. Immunotherapy for glioma: Current management and future application.Cancer Lett.202047611210.1016/j.canlet.2020.02.00232044356
    [Google Scholar]
  10. ŚledzińskaP. BebynM.G. FurtakJ. KowalewskiJ. LewandowskaM.A. Prognostic and predictive biomarkers in gliomas.Int. J. Mol. Sci.202122191037310.3390/ijms22191037334638714
    [Google Scholar]
  11. JinW. FatehiM. AbhishekK. MallyaM. ToyotaB. HamarnehG. Artificial intelligence in glioma imaging: Challenges and advances.J. Neural Eng.202017202100210.1088/1741‑2552/ab813132191935
    [Google Scholar]
  12. FengQ. DongZ. NieR. WangX. Identifying diffuse glioma subtypes based on pathway enrichment evaluation.Interdiscip. Sci.20241672774010.1007/s12539‑024‑00627‑w38637440
    [Google Scholar]
  13. MaltaT.M. de SouzaC.F. SabedotT.S. SilvaT.C. MosellaM.S. KalkanisS.N. SnyderJ. CastroA.V.B. NoushmehrH. Glioma CpG island methylator phenotype (G-CIMP): Biological and clinical implications.Neuro-oncol.201820560862010.1093/neuonc/nox18329036500
    [Google Scholar]
  14. LiuZ. LiuT. LiW. LiJ. WangC. ZhangK. Insights into the antitumor mechanism of ginsenosides Rg3.Mol. Biol. Rep.20214832639265210.1007/s11033‑021‑06187‑233661439
    [Google Scholar]
  15. HouM. WangR. ZhaoS. WangZ. Ginsenosides in Panax genus and their biosynthesis.Acta Pharm. Sin. B20211171813183410.1016/j.apsb.2020.12.01734386322
    [Google Scholar]
  16. AshrafizadehM. AhmadiZ. YaribeygiH. SathyapalanT. JamialahmadiT. SahebkarA. The effects of ginsenosides on the Nrf2 signaling pathway.Adv. Exp. Med. Biol.2021132830732210.1007/978‑3‑030‑73234‑9_2034981486
    [Google Scholar]
  17. Luong HuynhD. NguyenN.H. NguyenC.T. Pharmacological properties of ginsenosides in inflammation-derived cancers.Mol. Cell. Biochem.202147693329334010.1007/s11010‑021‑04162‑w33900512
    [Google Scholar]
  18. ShiL. LuoJ. WeiX. XuX. TuL. The protective role of ginsenoside Rg3 in heart diseases and mental disorders.Front. Pharmacol.202415132703310.3389/fphar.2024.132703338469409
    [Google Scholar]
  19. HongH. BaatarD. HwangS.G. Anticancer activities of ginsenosides, the main active components of ginseng.Evid. Based Complement. Alternat. Med.2021202111010.1155/2021/885800633623532
    [Google Scholar]
  20. GantaitS. MitraM. ChenJ.T. Biotechnological interventions for ginsenosides production.Biomolecules202010453810.3390/biom1004053832252467
    [Google Scholar]
  21. LouT. HuangQ. SuH. ZhaoD. LiX. Targeting Sirtuin 1 signaling pathway by ginsenosides.J. Ethnopharmacol.202126811365710.1016/j.jep.2020.11365733276056
    [Google Scholar]
  22. LuY. FengS. ZhaoY. WangY. DiaoM. LiangY. ZhangT. Comparison of interactions between alpha-lactalbumin and three protopanaxadiol ginsenosides: Impacts on the structure and antitumor properties.Food Chem.202443913804610.1016/j.foodchem.2023.13804638029562
    [Google Scholar]
  23. WangF. RohY.S. Mitochondrial connection to ginsenosides.Arch. Pharm. Res.202043101031104510.1007/s12272‑020‑01279‑233113096
    [Google Scholar]
  24. ZhengM. XuF. LiY. XiX. CuiX. HanC. ZhangX. Study on transformation of ginsenosides in different methods.BioMed Res. Int.2017201711010.1155/2017/860102729387726
    [Google Scholar]
  25. MurugesanM. MathiyalaganR. BoopathiV. KongB.M. ChoiS.K. LeeC.S. YangD.C. KangS.C. ThambiT. Production of minor ginsenoside CK from major ginsenosides by biotransformation and its advances in targeted delivery to tumor tissues using nanoformulations.Nanomaterials20221219342710.3390/nano1219342736234555
    [Google Scholar]
  26. ImD.S. Pro-resolving effect of ginsenosides as an anti-inflammatory mechanism of Panax ginseng.Biomolecules202010344410.3390/biom1003044432183094
    [Google Scholar]
  27. FanW. HuangY. ZhengH. LiS. LiZ. YuanL. ChengX. HeC. SunJ. Ginsenosides for the treatment of metabolic syndrome and cardiovascular diseases: Pharmacology and mechanisms.Biomed. Pharmacother.202013211091510.1016/j.biopha.2020.11091533254433
    [Google Scholar]
  28. WanX. JinX. WuX. DongD. YangH. TanR. SunY. LiuX. SunK. WuW. ChenC. Ginsenoside Rd reduces cell proliferation of non-small cell lung cancer cells by p53-mitochondrial apoptotic pathway.Heliyon20241011e3248310.1016/j.heliyon.2024.e3248338933967
    [Google Scholar]
  29. ChopraP. ChhillarH. KimY.J. JoI.H. KimS.T. GuptaR. Phytochemistry of ginsenosides: Recent advancements and emerging roles.Crit. Rev. Food Sci. Nutr.202363561364010.1080/10408398.2021.195215934278879
    [Google Scholar]
  30. TangM. DengH. ZhengK. HeJ. YangJ. LiY. Ginsenoside 3β-O-Glc-DM (C3DM) suppressed glioma tumor growth by downregulating the EGFR/PI3K/AKT/mTOR signaling pathway and modulating the tumor microenvironment.Toxicol. Appl. Pharmacol.202346011637810.1016/j.taap.2023.11637836641037
    [Google Scholar]
  31. BaiY. LiuY. LinL. LiuX. WanX. WuX. Ginsenoside CK induces the mitochondrial apoptosis in glioma cells through the activation of the p53-Bax-caspase pathway.Pharmacogn. Mag.202420250551510.1177/09731296231203457
    [Google Scholar]
  32. WuL. BaiL. DaiW. WuY. XiP. ZhangJ. ZhengL. Ginsenoside Rg3: A review of its anticancer mechanisms and potential therapeutic applications.Curr. Top. Med. Chem.2024241086988410.2174/011568026628366124022605205438441023
    [Google Scholar]
  33. ZhuY. LiangJ. GaoC. WangA. XiaJ. HongC. ZhongZ. ZuoZ. KimJ. RenH. LiS. WangQ. ZhangF. WangJ. Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy.J. Control. Release202133064165710.1016/j.jconrel.2020.12.03633359582
    [Google Scholar]
  34. OrihuelaR. McPhersonC.A. HarryG.J. Microglial M1/M2 polarization and metabolic states.Br. J. Pharmacol.2016173464966510.1111/bph.1313925800044
    [Google Scholar]
  35. WitherelC.E. SaoK. BrissonB.K. HanB. VolkS.W. PetrieR.J. HanL. SpillerK.L. Regulation of extracellular matrix assembly and structure by hybrid M1/M2 macrophages.Biomaterials202126912066710.1016/j.biomaterials.2021.12066733450585
    [Google Scholar]
  36. Reina-CamposM. ScharpingN.E. GoldrathA.W. CD8+ T cell metabolism in infection and cancer.Nat. Rev. Immunol.2021211171873810.1038/s41577‑021‑00537‑833981085
    [Google Scholar]
  37. SuX. ZhangD. ZhangH. ZhaoK. HouW. Preparation and characterization of angiopep-2 functionalized Ginsenoside-Rg3 loaded nanoparticles and the effect on C6 Glioma cells.Pharm. Dev. Technol.202025338539510.1080/10837450.2018.155190130601070
    [Google Scholar]
  38. GuB. WangJ. SongY. WangQ. WuQ. The inhibitory effects of ginsenoside Rd on the human glioma U251 cells and its underlying mechanisms.J. Cell. Biochem.201912034444445010.1002/jcb.2773230260020
    [Google Scholar]
  39. EbrahimA.S. SabbaghH. LiddaneA. RaufiA. KandouzM. Al-KatibA. Hematologic malignancies: Newer strategies to counter the BCL-2 protein.J. Cancer Res. Clin. Oncol.201614292013202210.1007/s00432‑016‑2144‑127043233
    [Google Scholar]
  40. GutiérrezpuenteY. ZapatabenavidesP. TariA. LópezberesteinG. Bcl-2–related antisense therapy.Semin. Oncol.2002293Suppl. 11717610.1016/S0093‑7754(02)70129‑212138400
    [Google Scholar]
  41. TaheriM. Ghafouri-FardS. NajafiS. KallenbachJ. KeramatfarE. Atri RoozbahaniG. Heidari HorestaniM. HussenB.M. BaniahmadA. Hormonal regulation of telomerase activity and hTERT expression in steroid-regulated tissues and cancer.Cancer Cell Int.202222125810.1186/s12935‑022‑02678‑935974340
    [Google Scholar]
  42. LudlowA.T. SlusherA.L. SayedM.E. Insights into Telomerase/hTERT alternative splicing regulation using bioinformatics and network analysis in cancer.Cancers201911566610.3390/cancers1105066631091669
    [Google Scholar]
  43. HuangQ. LiF. LiuX. LiW. ShiW. LiuF.F. O’SullivanB. HeZ. PengY. TanA.C. ZhouL. ShenJ. HanG. WangX.J. ThorburnJ. ThorburnA. JimenoA. RabenD. BedfordJ.S. LiC.Y. Caspase 3–mediated stimulation of tumor cell repopulation during cancer radiotherapy.Nat. Med.201117786086610.1038/nm.238521725296
    [Google Scholar]
  44. HamiltonE. InfanteJ.R. Targeting CDK4/6 in patients with cancer.Cancer Treat. Rev.20164512913810.1016/j.ctrv.2016.03.00227017286
    [Google Scholar]
  45. LiK.F. KangC.M. YinX.F. LiH.X. ChenZ.Y. LiY. ZhangQ. QiuY.R. Ginsenoside Rh2 inhibits human A172 glioma cell proliferation and induces cell cycle arrest status via modulating Akt signaling pathway.Mol. Med. Rep.20181723062306829207171
    [Google Scholar]
  46. AbeyrathnaP. SuY. The critical role of Akt in cardiovascular function.Vascul. Pharmacol.201574384810.1016/j.vph.2015.05.00826025205
    [Google Scholar]
  47. RevathideviS. MunirajanA.K. Akt in cancer: Mediator and more.Semin. Cancer Biol.201959809110.1016/j.semcancer.2019.06.00231173856
    [Google Scholar]
  48. SunC. YuY. WangL. WuB. XiaL. FengF. LingZ. WangS. Additive antiangiogenesis effect of ginsenoside Rg3 with low-dose metronomic temozolomide on rat glioma cells both in vivo and in vitro.J. Exp. Clin. Cancer Res.20163513210.1186/s13046‑015‑0274‑y26872471
    [Google Scholar]
  49. MamerS.B. WittenkellerA. ImoukhuedeP.I. VEGF-A splice variants bind VEGFRs with differential affinities.Sci. Rep.20201011441310.1038/s41598‑020‑71484‑y32879419
    [Google Scholar]
  50. FujiiT. HirakataT. KurozumiS. TokudaS. NakazawaY. ObayashiS. YajimaR. OyamaT. ShirabeK. VEGF-A is associated with the degree of TILs and PD-L1 expression in primary breast cancer.In Vivo20203452641264610.21873/invivo.1208232871794
    [Google Scholar]
  51. GangenahalliG.U. SinghV.K. VermaY.K. GuptaP. SharmaR.K. ChandraR. LuthraP.M. Hematopoietic stem cell antigen CD34: Role in adhesion or homing.Stem Cells Dev.200615330531310.1089/scd.2006.15.30516846369
    [Google Scholar]
  52. LortieK. MaheuxC. GendronD. LangloisA. BeaulieuM.J. MarsolaisD. BosséY. BlanchetM.R. CD34 differentially regulates contractile and noncontractile elements of airway reactivity.Am. J. Respir. Cell Mol. Biol.2018581798810.1165/rcmb.2017‑0008OC28850257
    [Google Scholar]
  53. SinS. KimS.Y. KimS.S. Chronic treatment with ginsenoside Rg3 induces Akt-dependent senescence in human glioma cells.Int. J. Oncol.20124151669167410.3892/ijo.2012.160422922739
    [Google Scholar]
  54. ShamlooB. UsluerS. p21 in cancer research.Cancers2019118117810.3390/cancers1108117831416295
    [Google Scholar]
  55. SteinY. RotterV. Aloni-GrinsteinR. Gain-of-function mutant p53: All the roads lead to tumorigenesis.Int. J. Mol. Sci.20192024619710.3390/ijms2024619731817996
    [Google Scholar]
  56. ParralesA. IwakumaT. Targeting oncogenic mutant p53 for cancer therapy.Front. Oncol.2015528810.3389/fonc.2015.0028826732534
    [Google Scholar]
  57. WuN. WuG. HuR. LiM. FengH. Ginsenoside Rh2 inhibits glioma cell proliferation by targeting microRNA-128.Acta Pharmacol. Sin.201132334535310.1038/aps.2010.22021372826
    [Google Scholar]
  58. LiangR.F. LiM. YangY. WangX. MaoQ. LiuY.H. Circulating miR-128 as a potential diagnostic biomarker for glioma.Clin. Neurol. Neurosurg.2017160889110.1016/j.clineuro.2017.06.02028704779
    [Google Scholar]
  59. ZhangY. ChaoT. LiR. LiuW. ChenY. YanX. GongY. YinB. LiuW. QiangB. ZhaoJ. YuanJ. PengX. MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a.J. Mol. Med.2009871435110.1007/s00109‑008‑0403‑618810376
    [Google Scholar]
  60. AhlanderJ. BoscoG. The RB/E2F pathway and regulation of RNA processing.Biochem. Biophys. Res. Commun.2009384328028310.1016/j.bbrc.2009.04.10719401190
    [Google Scholar]
  61. CatesH.M. LardnerC.K. BagotR.C. NeveR.L. NestlerE.J. Fosb induction in nucleus accumbens by cocaine is regulated by E2F3a.eNeuro201962ENEURO.0325-18.201910.1523/ENEURO.0325‑18.201930963104
    [Google Scholar]
  62. LiangY.Y. WangB. QianD.M. LiL. WangZ.H. HuM. SongX.X. Inhibitory effects of Ginsenoside Rb1 on apoptosis caused by HSV-1 in human glioma cells.Virol. Sin.2012271192510.1007/s12250‑012‑3220‑622270803
    [Google Scholar]
  63. SpitzA.Z. GavathiotisE. Physiological and pharmacological modulation of BAX.Trends Pharmacol. Sci.202243320622010.1016/j.tips.2021.11.00134848097
    [Google Scholar]
  64. JensenK. WuWong, D.J.; Wong, S.; Matsuyama, M.; Matsuyama, S. Pharmacological inhibition of Bax-induced cell death: Bax-inhibiting peptides and small compounds inhibiting Bax.Exp. Biol. Med.2019244862162910.1177/153537021983362430836793
    [Google Scholar]
  65. PalP. ThummuriD. LvD. LiuX. ZhangP. HuW. PoddarS.K. HuaN. KhanS. YuanY. ZhangX. ZhouD. ZhengG. Discovery of a novel BCL-X L PROTAC degrader with enhanced BCL-2 inhibition.J. Med. Chem.20216419142301424610.1021/acs.jmedchem.1c0051734533954
    [Google Scholar]
  66. KimH.E. OhJ.H. LeeS.K. OhY.J. Ginsenoside RH-2 induces apoptotic cell death in rat C6 glioma via a reactive oxygen- and caspase-dependent but Bcl-XL-independent pathway.Life Sci.1999653PL33PL4010.1016/S0024‑3205(99)00252‑010447219
    [Google Scholar]
  67. ChoiS.S. LeeJ.K. HanE.J. HanK.J. LeeH.K. LeeJ. SuhH.W. effect of ginsenoside Rd on nitric oxide system induced by lipopolysaccharide plus TNF-α in C6 rat glioma cells.Arch. Pharm. Res.200326537538210.1007/BF0297669412785733
    [Google Scholar]
  68. YangD. XiaoC. LongF. WuW. HuangM. QuL. LiuX. ZhuY. Fra‐1 plays a critical role in angiotensin II—induced vascular senescence.FASEB J.20193367603761410.1096/fj.201801671RRRR30892941
    [Google Scholar]
  69. WutschkaJ. KastB. Sator-SchmittM. Appak-BaskoyS. HessJ. SinnH.P. AngelP. Schorpp-KistnerM. JUNB suppresses distant metastasis by influencing the initial metastatic stage.Clin. Exp. Metastasis202138441142310.1007/s10585‑021‑10108‑934282521
    [Google Scholar]
  70. ShaulianE. KarinM. AP-1 as a regulator of cell life and death.Nat. Cell Biol.200245E131E13610.1038/ncb0502‑e13111988758
    [Google Scholar]
  71. GazonH. BarbeauB. MesnardJ.M. PeloponeseJ.M.Jr Hijacking of the AP-1 signaling pathway during development of ATL.Front. Microbiol.20188268610.3389/fmicb.2017.0268629379481
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968305352240929154003
Loading
/content/journals/ccb/10.2174/0122127968305352240929154003
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-cancer; brain cancer; Ginsenoside; glioma; neuroprotective; targeted therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test