Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Background

This investigation aims to explore the potential anti- effects of Chitosan nanocomposites.

Methods

Researchers searched several databases, including Scopus, PubMed, Science Direct, Cochrane, and Ovid, for articles published between 2000 and 2023 using specific keywords.

Results

Of the 5,600 studies that were first searched in the databases, after removing duplicates (700 cases) and applying inclusion and exclusion criteria, 43 studies were selected for evaluation after duplicate removal.

Conclusions

According to studies, the anti- properties of chitosan nanocomposites are more than routine antifungals such as nystatin; therefore, it can be concluded that Chitosan nanocomposites can be used to deal with .

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072297928240404074703
2024-04-16
2025-07-11
Loading full text...

Full text loading...

References

  1. PappasP.G. LionakisM.S. ArendrupM.C. Ostrosky-ZeichnerL. KullbergB.J. Invasive candidiasis.Nat. Rev. Dis. Primers2018411802610.1038/nrdp.2018.26 29930242
    [Google Scholar]
  2. AppletonS.S. Candidiasis: Pathogenesis, clinical characteristics, and treatment.J. Calif. Dent. Assoc.2000281294294710.1080/19424396.2000.12223143 11323949
    [Google Scholar]
  3. van de VeerdonkF.L. KullbergB.J. NeteaM.G. Pathogenesis of invasive candidiasis.Curr. Opin. Crit. Care201016545345910.1097/MCC.0b013e32833e046e 20711079
    [Google Scholar]
  4. LallaR.V. PattonL.L. Dongari-BagtzoglouA. Oral candidiasis: Pathogenesis, clinical presentation, diagnosis and treatment strategies.J. Calif. Dent. Assoc.201341426326810.1080/19424396.2013.12222301 23705242
    [Google Scholar]
  5. TsuiC. KongE.F. Jabra-RizkM.A. Pathogenesis of Candida albicans biofilm.Pathog. Dis.2016744ftw01810.1093/femspd/ftw018 26960943
    [Google Scholar]
  6. RollenhagenC. MamtaniS. MaD. DixitR. EszterhasS. LeeS.A. The role of secretory pathways in Candida albicans pathogenesis.J. Fungi (Basel)2020612610.3390/jof6010026 32102426
    [Google Scholar]
  7. VossA. KluytmansJ.A.J.W. KoelemanJ.G.M. SpanjaardL. Vandenbroucke-GraulsC.M.J.E. VerbrughH.A. VosM.C. WeersinkA.Y.L. Hoogkamp-KorstanjeJ.A.A. MeisJ.F.G.M. Occurrence of yeast bloodstream infections between 1987 and 1995 in five Dutch university hospitals.Eur. J. Clin. Microbiol. Infect. Dis.1996151290991210.1007/BF01690507 9031872
    [Google Scholar]
  8. WhaleyS.G. BerkowE.L. RybakJ.M. NishimotoA.T. BarkerK.S. RogersP.D. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species.Front. Microbiol.20177217310.3389/fmicb.2016.02173 28127295
    [Google Scholar]
  9. WangL. HuC. ShaoL. The antimicrobial activity of nanoparticles: Present situation and prospects for the future.20171227124910.2147/IJN.S121956
    [Google Scholar]
  10. DizajS.M. LotfipourF. Barzegar-JalaliM. ZarrintanM.H. AdibkiaK. Antimicrobial activity of the metals and metal oxide nanoparticles.Mater. Sci. Eng. C20144427828410.1016/j.msec.2014.08.031 25280707
    [Google Scholar]
  11. BuszewskiB. Railean-PlugaruV. PomastowskiP. RafińskaK. Szultka-MlynskaM. GolinskaP. WypijM. LaskowskiD. DahmH. Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain.J. Microbiol. Immunol. Infect.2018511455410.1016/j.jmii.2016.03.002 27103501
    [Google Scholar]
  12. HadwigerL.A. Multiple effects of chitosan on plant systems: Solid science or hype.Plant Sci.2013208424910.1016/j.plantsci.2013.03.007 23683928
    [Google Scholar]
  13. SarvaiyaJ. AgrawalY.K. Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery.Int. J. Biol. Macromol.20157245446510.1016/j.ijbiomac.2014.08.052 25199867
    [Google Scholar]
  14. ChungY.C. YehJ.Y. TsaiC.F. Antibacterial characteristics and activity of water-soluble chitosan derivatives prepared by the Maillard reaction.Molecules201116108504851410.3390/molecules16108504 21989311
    [Google Scholar]
  15. MohandasA. DeepthiS. BiswasR. JayakumarR. Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings.Bioact. Mater.20183326727710.1016/j.bioactmat.2017.11.003 29744466
    [Google Scholar]
  16. Regiel-FutyraA. Kus-LiśkiewiczM. SebastianV. IrustaS. ArrueboM. KyziołA. StochelG. Development of noncytotoxic silver–chitosan nanocomposites for efficient control of biofilm forming microbes.RSC Advances2017783523985241310.1039/C7RA08359A 29308194
    [Google Scholar]
  17. Hussein-Al-AliS.H. El ZowalatyM.E. KuraA.U. GeilichB. FakuraziS. WebsterT.J. HusseinM.Z. Antimicrobial and controlled release studies of a novel nystatin conjugated iron oxide nanocomposite.BioMed Res. Int.2014201411310.1155/2014/651831 24900976
    [Google Scholar]
  18. HusseinM.Z. Al AliS. GeilichB. El ZowalatyM. WebsterT. Synthesis, characterization, and antimicrobial activity of an ampicillin-conjugated magnetic nanoantibiotic for medical applications.Int. J. Nanomedicine201493801381410.2147/IJN.S61143 25143729
    [Google Scholar]
  19. RençberS. KaravanaS.Y. YılmazF.F. EraçB. NenniM. ÖzbalS. PekçetinÇ. Gurer-OrhanH. Hoşgör LimoncuM. GüneriP. ErtanG. Development, characterization, and in vivo assessment of mucoadhesive nanoparticles containing fluconazole for the local treatment of oral candidiasis.Int. J. Nanomedicine2016112641265310.2147/IJN.S103762 27358561
    [Google Scholar]
  20. FreireP.L.L. AlbuquerqueA.J.R. FariasI.A.P. da SilvaT.G. AguiarJ.S. GalembeckA. FloresM.A.P. SampaioF.C. StamfordT.C.M. RosenblattA. Antimicrobial and cytotoxicity evaluation of colloidal chitosan – silver nanoparticles – fluoride nanocomposites. Int. J. Biol. Macromol.201693Pt A89690310.1016/j.ijbiomac.2016.09.052 27642129
    [Google Scholar]
  21. QianJ. PanC. LiangC. Antimicrobial activity of Fe‐loaded chitosan nanoparticles.Eng. Life Sci.201717662963410.1002/elsc.201600172 32624808
    [Google Scholar]
  22. HassibaA.J. El ZowalatyM.E. WebsterT.J. AbdullahA.M. NasrallahG.K. KhalilK.A. Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications.Int. J. Nanomedicine20172205221310.2147/IJN.S123417
    [Google Scholar]
  23. De MarchiJ.G.B. JornadaD.S. SilvaF.K. FreitasA.L. FuentefriaA.M. PohlmannA.R. Triclosan resistance reversion by encapsulation in chitosan-coated-nanocapsule containing α-bisabolol as core: development of wound dressing.Int. J. Nanomedicine20177855786810.2147/IJN.S143324
    [Google Scholar]
  24. PerinelliD. CampanaR. SkourasA. BonacucinaG. CespiM. MastrottoF. BaffoneW. CasettariL. Chitosan loaded into a hydrogel delivery system as a strategy to treat vaginal co-infection.Pharmaceutics20181012310.3390/pharmaceutics10010023 29401648
    [Google Scholar]
  25. LaraH.H. GuisbiersG. MendozaJ. MimunL.C. VincentB. Lopez-RibotJ.L. NashK.L. Synergistic antifungal effect of chitosan-stabilized selenium nanoparticles synthesized by pulsed laser ablation in liquids against Candida albicans biofilms.Int. J. Nanomedicine2018132697270810.2147/IJN.S151285 29760550
    [Google Scholar]
  26. ElshinawyM.I. Al-MadbolyL.A. GhoneimW.M. Synergistic effect of newly introduced root canal medicaments; ozonated olive oil and chitosan nanoparticles, against persistent endodontic pathogens.Front. Microbiol.20189137110.3389/fmicb.2018.01371
    [Google Scholar]
  27. FicaiD. ArdeleanI.L. HolbanA.M. DiţuL.M. GudovanD. SönmezM. TruşcăR. KayaA. FicaiA. AndronescuE. Manufacturing nanostructured chitosan-based 2D sheets with prolonged antimicrobial activity.Rom. J. Morphol. Embryol.2018592517525 30173257
    [Google Scholar]
  28. IkonoR. VibrianiA. WibowoI. SaputroK.E. MuliawanW. BachtiarB.M. MardliyatiE. BachtiarE.W. RochmanN.T. KagamiH. XianqiL. Nagamura-InoueT. TojoA. Nanochitosan antimicrobial activity against Streptococcus mutans and Candida albicans dual-species biofilms.BMC Res. Notes201912138310.1186/s13104‑019‑4422‑x 31287001
    [Google Scholar]
  29. CalvoN.L. SreekumarS. SvetazL.A. LamasM.C. MoerschbacherB.M. LeonardiD. Design and characterization of chitosan nanoformulations for the delivery of antifungal agents.Int. J. Mol. Sci.20192015368610.3390/ijms20153686 31357647
    [Google Scholar]
  30. GrumezescuV. GherasimO. NegutI. BanitaS. HolbanA.M. FlorianP. IcriverziM. SocolG. Nanomagnetite-embedded PLGA spheres for multipurpose medical applications.Materials (Basel)20191216252110.3390/ma12162521 31398805
    [Google Scholar]
  31. KhanS.H. YounusH. AllemailemK.S. AlmatroudiA. AlrumaihiF. AlruweteiA.M. Potential of methylglyoxal-conjugated chitosan nanoparticles in treatment of fluconazole-resistant Candida albicans infection in a murine model.Int. J. Nanomedicine20203681369310.2147/IJN.S249625
    [Google Scholar]
  32. AraújoD.E. de OliveiraA.A. CabralM.S. CostaA.F. SilvaB.C. do Carmo SilvaL. de MenezesL.B. de Almeida SoaresC.M. AmaralA.C. PereiraM. Investigation of thiosemicarbazide free or within chitosan nanoparticles in a murine model of vulvovaginal candidiasis.Braz. J. Microbiol.20205141465147310.1007/s42770‑020‑00326‑w 32638273
    [Google Scholar]
  33. AriasL.S. BrownJ.L. ButcherM.C. DelaneyC. MonteiroD.R. RamageG. A nanocarrier system that potentiates the effect of miconazole within different interkingdom biofilms.J. Oral Microbiol.2020121177107110.1080/20002297.2020.1771071 32922677
    [Google Scholar]
  34. AraujoH.C. AriasL.S. CaldeirãoA.C.M. AssumpçãoL.C.F. MorceliM.G. de Souza NetoF.N. de CamargoE.R. OliveiraS.H.P. PessanJ.P. MonteiroD.R. Novel colloidal nanocarrier of cetylpyridinium chloride: Antifungal activities on Candida species and cytotoxic potential on murine fibroblasts.J. Fungi (Basel)20206421810.3390/jof6040218 33053629
    [Google Scholar]
  35. JenaA. PattanaikS. ShashirekhaG. In vitro comparative evaluation of antifungal efficacy of three endodontic sealers with and without incorporation of chitosan nanoparticles against Candida albicans.J. Conserv. Dent.201922656456710.4103/JCD.JCD_242_19 33088066
    [Google Scholar]
  36. TeaimaM.H. AbdelnabyF.A. FadelM. El-NabarawiM.A. ShoueirK.R. Synthesis of biocompatible and environmentally nanofibrous mats loaded with moxifloxacin as a model drug for biomedical applications.Pharmaceutics20201211102910.3390/pharmaceutics12111029 33126627
    [Google Scholar]
  37. SaidM.M. RehanM. El-SheikhS.M. ZahranM.K. Abdel-AzizM.S. BechelanyM. BarhoumA. Multifunctional hydroxyapatite/silver nanoparticles/cotton gauze for antimicrobial and biomedical applications.Nanomaterials (Basel)202111242910.3390/nano11020429 33567743
    [Google Scholar]
  38. FilipovićN. UšjakD. MilenkovićM.T. ZhengK. LiveraniL. BoccacciniA.R. StevanovićM.M. Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure.Front. Bioeng. Biotechnol.2021862462110.3389/fbioe.2020.624621 33569376
    [Google Scholar]
  39. CaldeirãoA.C.M. AraujoH.C. TomasellaC.M. SampaioC. dos Santos OliveiraM.J. RamageG. PessanJ.P. MonteiroD.R. Effects of antifungal carriers based on chitosan-coated iron oxide nanoparticles on microcosm biofilms.Antibiotics (Basel)202110558810.3390/antibiotics10050588 34067527
    [Google Scholar]
  40. CaldeirãoA.C.M. AraujoH.C. AriasL.S. Ramírez CarmonaW. MirandaG.P. OliveiraS.H.P. PessanJ.P. MonteiroD.R. Nanocarriers of miconazole or fluconazole: Effects on three-species Candida biofilms and cytotoxic effects in vitro.J. Fungi (Basel)20217750010.3390/jof7070500 34201635
    [Google Scholar]
  41. AlshehriS. ImamS.S. Formulation and evaluation of butenafine loaded PLGA-nanoparticulate laden chitosan nano gel.Drug Deliv.20212812348236010.1080/10717544.2021.1995078 34747275
    [Google Scholar]
  42. Nemati ShizariL. Mohammadpour DounighiN. BayatM. MosavariN. A New amphotericin B-loaded trimethyl chitosan nanoparticles as a drug delivery system and antifungal activity on Candida albicans biofilm.Arch. Razi Inst.202176357158610.22092/ari.2020.342702.1477 34824750
    [Google Scholar]
  43. IbrahimA. MoodleyD. UcheC. MabozaE. OlivierA. PetrikL. Antimicrobial and cytotoxic activity of electrosprayed chitosan nanoparticles against endodontic pathogens and Balb/c 3T3 fibroblast cells.Sci. Rep.20211112448710.1038/s41598‑021‑04322‑4 34966174
    [Google Scholar]
  44. ShahM.K.A. AzadA.K. NawazA. UllahS. LatifM.S. RahmanH. AlsharifK.F. AlzahraniK.J. El-KottA.F. AlbrakatiA. Abdel-DaimM.M. Formulation development, characterization and antifungal evaluation of chitosan NPs for topical delivery of voriconazole in vitro and ex vivo.Polymers (Basel)202114113510.3390/polym14010135 35012154
    [Google Scholar]
  45. VitaliA. StringaroA. ColoneM. MuntiuA. AngiolellaL. Antifungal carvacrol loaded chitosan nanoparticles.Antibiotics (Basel)20211111110.3390/antibiotics11010011 35052888
    [Google Scholar]
  46. ElshaerE.E. ElwakilB.H. EskandraniA. ElshewemiS.S. OlamaZ.A. Novel Clotrimazole and Vitis vinifera loaded chitosan nanoparticles: Antifungal and wound healing efficiencies.Saudi J. Biol. Sci.20222931832184110.1016/j.sjbs.2021.10.041 35280562
    [Google Scholar]
  47. YadavT.C. GuptaP. SainiS. MohiyuddinS. PruthiV. PrasadR. Plausible mechanistic insights in biofilm eradication potential against Candida spp. using in situ-synthesized tyrosol-functionalized chitosan gold nanoparticles as a versatile antifouling coating on implant surfaces.ACS Omega20227108350836310.1021/acsomega.1c05822 35309435
    [Google Scholar]
  48. FranzinN.R.S. SostenaM.M.D.S. SantosA.D.d. MouraM.R. CamargoE.R.d. HosidaT.Y. Novel pulp capping material based on sodium trimetaphosphate: synthesis, characterization, and antimicrobial properties.J. Appl. Oral Sci.202230e20210483
    [Google Scholar]
  49. HashemA.H. ShehabeldineA.M. AliO.M. SalemS.S. Synthesis of chitosan-based gold nanoparticles: Antimicrobial and wound-healing activities.Polymers (Basel)20221411229310.3390/polym14112293 35683965
    [Google Scholar]
  50. TanY. MaS. DingT. LudwigR. LeeJ. XuJ. Enhancing the Antibiofilm Activity of β-1,3-Glucanase-Functionalized Nanoparticles Loaded With Amphotericin B Against Candida albicans Biofilm.Front. Microbiol.20221381509110.3389/fmicb.2022.815091 35685939
    [Google Scholar]
  51. ShehabeldineA.M. SalemS.S. AliO.M. Abd-ElsalamK.A. ElkadyF.M. HashemA.H. Multifunctional silver nanoparticles based on chitosan: Antibacterial, antibiofilm, antifungal, antioxidant, and wound-healing activities.J. Fungi (Basel)20228661210.3390/jof8060612 35736095
    [Google Scholar]
  52. AshrafH. GulH. JamilB. SaeedA. PashaM. KaleemM. KhanA.S. Synthesis, characterization, and evaluation of the antifungal properties of tissue conditioner incorporated with essential oils-loaded chitosan nanoparticles.PLoS One2022178e027307910.1371/journal.pone.0273079 35984775
    [Google Scholar]
  53. Vlad-BubulacT. HamciucC. RîmbuC.M. AfloriM. ButnaruM. EnacheA.A. SerbezeanuD. Fabrication of poly(vinyl alcohol)/chitosan composite films strengthened with titanium dioxide and polyphosphonate additives for packaging applications.Gels20228847410.3390/gels8080474 36005075
    [Google Scholar]
  54. El-DidamonyS.E. KalabaM.H. El-FakharanyE.M. SultanM.H. SharafM.H. Antifungal and antibiofilm activities of bee venom loaded on chitosan nanoparticles: a novel approach for combating fungal human pathogens.World J. Microbiol. Biotechnol.2022381224410.1007/s11274‑022‑03425‑y 36280608
    [Google Scholar]
  55. JayathilakaE.H.T.T. NikapitiyaC. De ZoysaM. WhangI. Antimicrobial peptide octominin-encapsulated chitosan nanoparticles enhanced antifungal and antibacterial activities.Int. J. Mol. Sci.202223241588210.3390/ijms232415882 36555539
    [Google Scholar]
  56. HermosillaE. DíazM. VeraJ. ContrerasM.J. LealK. SalazarR. BarrientosL. TortellaG. RubilarO. Synthesis of antimicrobial chitosan-silver nanoparticles mediated by reusable chitosan fungal beads.Int. J. Mol. Sci.2023243231810.3390/ijms24032318 36768640
    [Google Scholar]
  57. MickymarayS. Al AboodyM.S. EraqiM.M. AlhoqailW.A. AlothaimA.S. SureshK. Biopolymer chitosan surface engineering with magnesium oxide-pluronic-f127-escin nanoparticles on human breast carcinoma cell line and microbial strains.Nanomaterials (Basel)2023137122710.3390/nano13071227 37049321
    [Google Scholar]
  58. BalsarafO. RaghavendraS.S. ShahD. SanjyotM. BalsarafA. Comparative evaluation of antifungal efficacy of conventional endodontic irrigants and chitosan nanoparticles.J. Conserv. Dent.202326222622910.4103/jcd.jcd_617_22 37205888
    [Google Scholar]
  59. ParkJ.H. SaravanakumarG. KimK. KwonI.C. Targeted delivery of low molecular drugs using chitosan and its derivatives.Adv. Drug Deliv. Rev.2010621284110.1016/j.addr.2009.10.003 19874862
    [Google Scholar]
  60. GhendonY. MarkushinS. KrivtsovG. AkopovaI. Chitosan as an adjuvant for parenterally administered inactivated influenza vaccines.Arch. Virol.2008153583183710.1007/s00705‑008‑0047‑4 18297235
    [Google Scholar]
  61. ZhangL. RavipatiA.S. KoyyalamudiS.R. JeongS.C. ReddyN. SmithP.T. BartlettJ. ShanmugamK. MünchG. WuM.J. Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds.J. Agric. Food Chem.20115923123611236710.1021/jf203146e 22023309
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072297928240404074703
Loading
/content/journals/cbc/10.2174/0115734072297928240404074703
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test