Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Introduction

Many quinone derivatives as of now utilized for anticancer medications. Especially, 1,4-naphthoquinones are dynamic derivatives, and it was broadly utilized in unrefined substances in the drugs and agrochemicals industry.

Materials and Methods

In this work, we planned and combined five different moieties into 2, 3 disubstituted naphthalene-1,4-dione molecules. Various spectral studies distinguished the synthetic designs of the produced compounds. The naphthoquinone derivatives were exposed to the primary molecular descriptor by Molinspiration programming, and all the descriptor values are within the specified value.

Results and Discussion

Each of the five naphthoquinone derivatives was docked against the Topoisomerase II utilizing Auto Dock program 4.2.5. (PDB: 3L4K). The docking tells us that the studied compounds possess significant to moderate inhibition toward the targeted enzymes. Among the studied compounds, compound L3 showed the most elevated binding score (-10.66 kcal/mol with one H-bond) than the adriamycin (-9.58 kcal/mol with two H-bonds) and compound L2 (- 9.86 kcal/mol with two H-bonds). The derivatives were tried for cytotoxicity studies against MCF - 7 by the SRB method. Among them, compounds L2 (28.42±3.1 µg/mL) and L3 (29.38±3.2 µg/mL) were the most significant ones when contrasted with the control Adriamycin (15.28±3.4 µg/mL).

Conclusion

The current research indicates that the tested compounds show anticancer action against the MCF-7 breast cancer cell line. Thus, the study is an attempt to advance toward the identification of innovative anticancer drugs.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072298465240403084903
2024-04-16
2025-05-14
Loading full text...

Full text loading...

References

  1. TovarN.G. RodríguezV.S. LeyvaE. CarrilloL.S. de LoeraD. LópezL.L.I. The relevance and insights on 1,4-naphthoquinones as antimicrobial and antitumoral molecules. A systematic review.Pharmaceuticals202316449610.3390/ph16040496 37111253
    [Google Scholar]
  2. B, A.; Fernandez, A.; Laila, S.P.; Nair, A.S.; Vishnu, V.S. Synthesis, characterization, molecular docking and anticancer studies of fluoroaniline derivatives of hydroxybenzoquinone and hydroxynaphthoquinone.J. Biomol. Struct. Dyn.20224093917392710.1080/07391102.2020.1852116 33314966
    [Google Scholar]
  3. McClendonA.K. OsheroffN. DNA topoisomerase II, genotoxicity, and cancer.Mutat. Res.20076231-2839710.1016/j.mrfmmm.2007.06.009 17681352
    [Google Scholar]
  4. AmininD. PolonikS. 1,4-Naphthoquinones: Some Biological Properties and Application.Chem. Pharm. Bull.2020681465710.1248/cpb.c19‑00911 31902901
    [Google Scholar]
  5. B, C.; Kumar, S.; Gupta, A.K.; Schols, D.; Tahtaci, H.; Karakurt, T.; Kotha, S.; B, S.; Setty, R.; Karki, S.S. Synthesis, molecular docking, and preliminary cytotoxicity study of some novel 2-(naphthalen-1-yl)-methylimidazo[2,1-b][1,3,4]thiadiazoles.J. Mol. Struct.2021123413017410.1016/j.molstruc.2021.130174
    [Google Scholar]
  6. TandonV.K. MauryaH.K. TripathiA. ShivaKeshava, G.B.; Shukla, P.K.; Srivastava, P.; Panda, D. 2,3-Disubstituted-1,4-naphthoquinones, 12H-benzo[b]phenothiazine-6,11-diones and related compounds: Synthesis and Biological evaluation as potential antiproliferative and antifungal agents.Eur. J. Med. Chem.20094431086109210.1016/j.ejmech.2008.06.025 18708272
    [Google Scholar]
  7. IbrahimS.A. SalemM.M. ElsalamH.A.A. NoserA.A. Design, synthesis, in-silico and biological evaluation of novel 2-Amino-1,3,4-thiadiazole based hydrides as B-cell lymphoma-2 inhibitors with potential anticancer effects.J. Mol. Struct.2022126813367310.1016/j.molstruc.2022.133673
    [Google Scholar]
  8. López-LópezL.I. Rivera-ÁvalosE. ReyesV.C. GutiérrezM.F. de LoeraD. Synthesis and antimicrobial evaluation of amino acid naphthoquinone derivatives as potential antibacterial agents.Chemotherapy202267210210910.1159/000521098 34839283
    [Google Scholar]
  9. PérezS.V. de IturrateM.P. VázquezN.M. NóvoaL. PérezC. CampilloN.E. GilC. RivasL. Naphthoquinone as a new chemical scaffold for leishmanicidal inhibitors of Leishmania GSK-3.Biomedicines2022105113610.3390/biomedicines10051136 35625873
    [Google Scholar]
  10. MollazehiF. ShaterianH.R. Design and characterization of Dendrimer of MNPs as a novel, heterogeneous and reusable nanomagnetic organometallic catalyst for one‐pot synthesis of hydroxyl naphthalene‐1,4‐dione derivatives under solvent‐free conditions.Appl. Organomet. Chem.2018323e418310.1002/aoc.4183
    [Google Scholar]
  11. OlyaeiA. SadeghpourM. KhalajM. Mannich bases derived from lawsone and their metal complexes: synthetic strategies and biological properties.RSC Advances20201051302653028110.1039/D0RA05717G 35516010
    [Google Scholar]
  12. DongY. ZhangH. YangJ. HeS. ShiZ.C. ZhangX.M. WangJ.Y.B. (C6F5)3 -catalyzed C-C coupling of 1,4-naphthoquinones with the c-3 position of indole derivatives in water.ACS Omega2019425215672157710.1021/acsomega.9b03328 31867553
    [Google Scholar]
  13. AvendanoC. MenendezJ.C. DNA intercalators and topoisomerase inhibitors.Medicinal Chemistry of Anticancer Drugs.OxfordElsevier2018199228
    [Google Scholar]
  14. GomesM. CorreiaE. GomesM. dos SantosC. BarrosC. de AbreuF. AntunesL. FerreiraV. GonçalvesM. de ResendeG. GonzagaD. PintoC. PaixãoI. da SilvaF. Antibacterial profile in vitro and in vivo of new 1,4-naphthoquinones tethered to 1,2,3-1h-triazoles against the planktonic growth of streptococcus mutans.J. Braz. Chem. Soc.2022331028104010.21577/0103‑5053.20220014
    [Google Scholar]
  15. LeyvaE. Cárdenas-ChaparroA. Loredo-CarrilloS.E. LópezL.I. SánchezM.F. RichaM.A. Ultrasound-assisted reaction of 1,4-naphthoquinone with anilines through an EDA complex.Mol. Divers.201822228129010.1007/s11030‑018‑9820‑9 29536227
    [Google Scholar]
  16. DyshlovoyS.A. PelageevD.N. JakobL.S. BorisovaK.L. HauschildJ. BusenbenderT. KauneM. KhmelevskayaE.A. GraefenM. BokemeyerC. AnufrievV.P. von AmsbergG. Activity of new synthetic (2-chloroethylthio)-1,4-naphthoquinones in prostate cancer cells.Pharmaceuticals2021141094910.3390/ph14100949 34681173
    [Google Scholar]
  17. AchecoP.A.F. GonzagaD.T. Cirne SantosC.C. BarrosC.S. GomesM.W.L. GomesR.S.P. GonçalvesM.C. FerreiraV.F. RabeloV.W. AbreuP.A. Synthesis and anti-chikungunya virus (CHIKV) activity of novel 1,4-naphthoquinone sulfonamide and sulfonate ester derivatives.Artic. J. Braz. Chem. Soc202233556569
    [Google Scholar]
  18. ÁvalosR.E. de LoeraD. HuitradoA.J.G. GarcíaE.I.L. SánchezM.M.A. HernándezH. LópezJ.A. LópezL. Synthesis of amino acid–naphthoquinones and in vitro studies on cervical and breast cell lines.Molecules20192423428510.3390/molecules24234285 31775253
    [Google Scholar]
  19. MichelettiG. BogaC. ZalambaniC. FarruggiaG. EspositoE. FioriJ. RizzardiN. TaddeiP. FoggiaD.M. CalonghiN. Synthesis of thia-michael-type adducts between naphthoquinones and N-Acetyl-L-cysteine and their biological activity.Molecules20222717564510.3390/molecules27175645 36080409
    [Google Scholar]
  20. RivasC.S. HuitradoA.J.G. AvalosR.E. GarcíaE.I.L. TorresL.S.M. HernándezH.Y. LópezH. LópezL. de LoeraD. LópezJ.A. Differential proliferation effect of the newly synthesized valine, tyrosine and tryptophan–naphthoquinones in immortal and tumorigenic cervical cell lines.Molecules2020259205810.3390/molecules25092058 32354078
    [Google Scholar]
  21. GiangL.N.T. AnhD.T.T. PhuongH.T. ThanhN.H. GiangN.T.Q. AnhN.T. TuyenN.V. KiemP. Van DMAP-catalyzed efficient and convenient approach for the synthesis of 3,3′-(Arylmethylene)Bis(2-Hydroxynaphthalene-1,4-Dione) derivatives.Nat. Prod. Commun.20211617
    [Google Scholar]
  22. SridharaM.B. RakeshK.P. ManukumarH.M. ShantharamC.S. VivekH.K. KumaraH.K. MohammedY.H.E. GowdaD.C. Synthesis of dihydrazones as potential anticancer and DNA binding candidates: A validation by molecular docking studies.Anticancer. Agents Med. Chem.2020207845858
    [Google Scholar]
  23. TiglaniD. Development of benzimidazole derivatives as target based antitumor drugs: an overview.Int. J. Curr. Pharm.202011A170179
    [Google Scholar]
  24. KumarA. SinghA.K. SinghH. VijayanV. KumarD. NaikJ. TharejaS. YadavJ.P. PathakP. GrishinaM. VermaA. KhalilullahH. JaremkoM. EmwasA.H. KumarP. Nitrogen containing heterocycles as anticancer agents: A medicinal chemistry perspective.Pharmaceuticals202316229910.3390/ph16020299 37259442
    [Google Scholar]
  25. KaviarasanL. GowrammaB. KalirajanR. MevithraM. ChandralekhaS. Molecular docking studies and synthesis of a new class of chroman 4 one fused 1,3,4 thiadiazole derivatives and evaluation for their anticancer potential.J. Indian Chem. Soc.20201720832094
    [Google Scholar]
  26. KalirajanR. GowrammaB. JubieS. SankarS. Molecular docking studies and in silico admet screening of some novel heterocyclic substituted 9-anilinoacridines as topoisomerase II inhibitors.JSM Chem.2017511039
    [Google Scholar]
  27. MokuB. RavindarL. RakeshK.P. QinH.L. The significance of N-methylpicolinamides in the development of anticancer therapeutics: Synthesis and structure-activity relationship (SAR) studies.Bioorg. Chem.20198651353710.1016/j.bioorg.2019.02.030 30782571
    [Google Scholar]
  28. Md RafiH. KamalA. NadeemS. ZulphikarA. Md JawaidA. NeerajF. ShivkanyaF. ManickamR. ShaharY.M. Novel 9-(2-(1-arylethylidene) hydrazinyl)acridine derivatives: Target topoisomerase 1 and growth inhibition of hela cancer cells.Bioorg. Chem.20191930373044
    [Google Scholar]
  29. PengC.K. ZengT. XuX.J. ChangY.Q. HouW. LuK. LinH. SunP.H. LinJ. ChenW.M. Novel 4-(4-substituted amidobenzyl)furan-2(5H)-one derivatives as topoisomerase I inhibitors.Eur. J. Med. Chem.201712718719910.1016/j.ejmech.2016.12.035 28063351
    [Google Scholar]
  30. KathiravanM.K. KaleA.N. NilewarS. Discovery and development of topoisomerase inhibitors as anticancer agents.Mini Rev. Med. Chem.201616151219122910.2174/1389557516666160822110819 27549098
    [Google Scholar]
  31. CapranicoG. MarinelloJ. ChillemiG. Type I DNA topoisomerases.J. Med. Chem.20176062169219210.1021/acs.jmedchem.6b00966 28072526
    [Google Scholar]
  32. ChenJ. LiD. LiW. YinJ. ZhangY. YuanZ. GaoC. LiuF. JiangY. Design, synthesis and anticancer evaluation of acridine hydroxamic acid derivatives as dual Topo and HDAC inhibitors.Bioorg. Med. Chem.201826143958396610.1016/j.bmc.2018.06.016 29954683
    [Google Scholar]
  33. YakkalaP.A. PenumalluN.R. ShafiS. KamalA. Prospects of topoisomerase inhibitors as promising anti-cancer agents.Pharmaceuticals20231610145610.3390/ph16101456 37895927
    [Google Scholar]
  34. RajanR. OstermanA.K. GastA.T. MondragónA. Biochemical characterization of the topoisomerase domain of Methanopyrus kandleri topoisomerase V.J. Biol. Chem.201428942288982890910.1074/jbc.M114.590711 25135643
    [Google Scholar]
  35. NitissJ.L. DNA topoisomerase II and its growing repertoire of biological functions.Nat. Rev. Cancer20099532733710.1038/nrc2608 19377505
    [Google Scholar]
  36. WangY. RakelaS. ChambersJ.W. HuaZ.C. MullerM.T. NitissJ.L. Tse-DinhY.C. LengF. Kinetic study of DNA topoisomerases by supercoiling-dependent fluorescence quenching.ACS Omega2019419184131842210.1021/acsomega.9b02676 31720544
    [Google Scholar]
  37. OppegardL.M. DelgadoJ.L. KulkarniC.A. TowleT.R. HartD.E. WilliamsB.P. LentzS.R.C. NorrisB.J. FloryC.M. SchumacherR.J. MurryD.J. KernsR.J. HiasaH. Novel N-1 substituted fluoroquinolones inhibit human topoisomerase I activity and exhibit anti-proliferative activity.Invest. New Drugs201937237838310.1007/s10637‑018‑0666‑x 30198058
    [Google Scholar]
  38. LakshmananK. ByranG. Identification of benzimidazole containing 4 H –chromen–4–one derivative as potential MAP kinase inhibitors by in-silico approaches.J. Recept. Signal Transduct. Res.202141215315810.1080/10799893.2020.1800733 32752909
    [Google Scholar]
  39. KataraP. Role of bioinformatics and pharmacogenomics in drug discovery and development process.Netw. Model. Anal. Health Inform. Bioinform.20132422523010.1007/s13721‑013‑0039‑5
    [Google Scholar]
  40. RakeshR. Dynamics of bioinformatics in the artificial designing of drugs.J Glob. Biosci.20198461376145
    [Google Scholar]
  41. WoollerS.K. HumeB.G. ChenX. AliY. PearlF.M.G. Bioinformatics in translational drug discovery.Biosci. Rep.2017374BSR2016018010.1042/BSR20160180 28487472
    [Google Scholar]
  42. MalathiK. RamaiahS. Bioinformatics approaches for new drug discovery: A review.Biotechnol. Genet. Eng. Rev.201834224326010.1080/02648725.2018.1502984 30064294
    [Google Scholar]
  43. KaviarasanL. ElizabethE. PraveenT.K. KalirajanR. ManalM. 1,3,4-Thiadiazolo (3,2-A) pyrimidine-6-carbonitrile scaffold as PARP1 inhibitor.Anticancer. Agents Med. Chem.2021152050206510.2174/1871520621666201216095018 33327923
    [Google Scholar]
  44. SravanthiB. KaviarasanL. PraveenT.K. PindiproluS.S.S.K. PavankumarC. GowrammaB. Synthesis and pharmacological evaluation of 1, 3, 4-thiadiazole bearing pyrimidine derivatives as STAT3 inhibitor for treatment of breast cancer.J. Indian Chem. Soc.20201723592370
    [Google Scholar]
  45. RadaevaM. DongX. CherkasovA. The use of methods of computer-aided drug discovery in the development of topoisomerase II inhibitors: Applications and future directions.J. Chem. Inf. Model.20206083703372110.1021/acs.jcim.0c00325 32687346
    [Google Scholar]
  46. ReddyG.V. ReddyS.T. PrivérS.H. BaiY. MishraS. WlodkowicD. MirzadehN. BhargavaS. Synthesis of Gold(I) complexes containing cinnamide: in vitro evaluation of anticancer activity in 2D and 3D spheroidal models of melanoma and in vivo angiogenesis.Inorg. Chem.20195895988599910.1021/acs.inorgchem.9b00281 30985125
    [Google Scholar]
  47. RajasekaranS. PrasadP. Gopal KrishnaR. Molecular properties and bio-activity score of 2{[2-(4-chlorophenyl)-4-oxoquinazolin-3(4H)-yl]amino}-N-(substitutedphenyl) acetamides.Int J Drug Dev & Res202012315
    [Google Scholar]
  48. VoskienėA. SapijanskaitėB. MickevičiusV. JonuškienėI. StasevychM. PorokhnyavetsK.O. MusyanovychR. NovikovV. Synthesis and microbiological evaluation of new 2- and 2,3-diphenoxysubstituted naphthalene-1,4-diones with 5-oxopyrrolidine moieties.Molecules20121712144341444810.3390/molecules171214434 23519244
    [Google Scholar]
  49. CaiC. LinH. WangH. XuY. OuyangQ. LaiL. PeiJ. miDruglikeness: Subdivisional drug-likeness prediction models using active ensemble learning strategies.Biomolecules20221312910.3390/biom13010029 36671415
    [Google Scholar]
  50. AhmadI. KhanH. SerdaroğluG. Physicochemical properties, drug likeness, ADMET, DFT studies, and in vitro antioxidant activity of oxindole derivatives.Comput. Biol. Chem.202310410786110.1016/j.compbiolchem.2023.107861 37060784
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072298465240403084903
Loading
/content/journals/cbc/10.2174/0115734072298465240403084903
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): auto dock; molinspiration; Naphthoquinone; quinones; SRB assay; Topoisomerase II
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test