Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Background

In the past few decades, researchers have focused on finding the benefits of natural substances derived from plants.

Objective

This study aimed to evaluate the use of Brassica rapa seeds in poultry feed as an antioxidant and immunostimulant of host defenses.

Methods

We prepared three extracts using ethanol, Ethyl Acetate, and water. Spectrophotometric methods determined the total phenolic and flavonoid content in the three extracts. Antioxidant activity was assessed using 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing/antioxidant power (FRAP), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radicals and β-Carotene bleaching methods. An assessment of their immunostimulant activities was performed on chicken immunity cell proliferation (splenocytes, thymocytes, and Bursa cells) and IgY production.

Results

The total phenolic contents ranged from 462.5 to 794.8 mg /g of extract, the order of TPC was as follows: EtOAc > EtOH >Water. Flavonoid contents were, 63.7 mg in EtOH extract, 81.2 mg in EtOAc extract, and 108.7 mg/g Extract in aqueous extract. By DPPH, the IC of EtOH, EtOAc, and water, were 1.8 µg/ml, 2.4 µg/ml, and 1.5 µg/ml, respectively. Using the Ferric-Reducing Antioxidant Power (FRAP), we remarked that the EtOH and EtOAc extracts have important antioxidant powers. The ABTS assay indicated that EtOH and water had the highest activities with IC of 0.19 and 0.07, respectively. Finally, by the β-carotene bleaching test, we observed that the IC of the EtOH, EtOAc, and water were 62.1 µg/mL; 72.7 µg/mL, and 45.8 µg/mL, respectively. The results obtained indicate that Brassica aqueous extract stimulates humoral immunity by stimulating splenocyte (B and T-lymphocytes) and Bursa cell (B-lymphocyte) proliferation by more than 200% of response control. In addition, the aqueous extract highly stimulated the function of bursa cells by 208% of the reaction. In the same conditions, we recorded a stimulation of cellular immunity mediated by thymocytes by an increase in cell proliferation (352.7% of response) implicated in virus protection. These extracts also possessed an antimicrobial effect against diverse microorganisms such as coliforms and . The FT-IR spectrum indicated that the hydroxyl group (phenol), hydroxybenzoic acid family, carbohydrate molecules such as glucopyranose, a carbonyl ester group, hydrocarbon chains (alkyls groups) were present.

Conclusion

This result could have interesting applications in the poultry feed industry to enhance the performance of animal development.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072282302240402043805
2024-04-09
2025-06-19
Loading full text...

Full text loading...

References

  1. ChauvinC. Le Bouquin-LeneveuS. HardyA. HaguetD. OrandJ.P. SandersP. An original system for the continuous monitoring of antimicrobial use in poultry production in France.J. Vet. Pharmacol. Ther.200528651552310.1111/j.1365‑2885.2005.00697.x 16343283
    [Google Scholar]
  2. KairallaM. AlshelmaniM. AburasA. Effect of diet supplemented with graded levels of garlic (Allium sativum L.) powder on growth performance, carcass characteristics, blood hematology and biochemistry of broiler.Open Vet. J.202212559560110.5455/OVJ.2022.v12.i5.1 36589396
    [Google Scholar]
  3. KairallaM.A. AburasA.A. AlshelmaniM.I. Effect of diet supplemented with graded levels of ginger (Zingiber officinale) powder on growth performance, hematological parameters, and serum lipids of broiler chickens.Arch. Razi Inst.202277620892095 37274916
    [Google Scholar]
  4. MajidiK.A. AlshelmaniM.I. ImdakimM.M. Effect of diet supplemented with different levels of moringa powder on growth performance, carcass characteristics, meat quality, hematological parameters, serum lipids, and economic efficiency of broiler chickens.Arch. Razi Inst.202378516471656
    [Google Scholar]
  5. AlshelmaniM.I. LohT.C. FooH.L. SaziliA.Q. LauW.H. Effect of feeding different levels of palm kernel cake fermented by Paenibacillus polymyxa ATCC 842 on nutrient digestibility, intestinal morphology, and gut microflora in broiler chickens.Anim. Feed Sci. Technol.201621621622410.1016/j.anifeedsci.2016.03.019
    [Google Scholar]
  6. AlshelmaniM.I. KakaU. AbdallaE.A. HumamA.M. ZamaniH.U. Effect of feeding fermented and non-fermented palm kernel cake on the performance of broiler chickens: A review.Worlds Poult. Sci. J.202177237738810.1080/00439339.2021.1910472
    [Google Scholar]
  7. BréqueC. SuraiP. BrillardJ.P. Roles of antioxidants on prolonged storage of avian spermatozoa in vivo and in vitro.Mol. Reprod. Dev.200366331432310.1002/mrd.10347 14502611
    [Google Scholar]
  8. SuraiP.F. Natural antioxidants and immunity.Natural Antioxidants in Avian Nutrition and Reproduction.Nottingham University Press2002511525
    [Google Scholar]
  9. CaoG. SoficE. PriorR.L. Antioxidant capacity of tea and common vegetables.J. Agric. Food Chem.199644113426343110.1021/jf9602535
    [Google Scholar]
  10. OuB. HuangD. Hampsch-WoodillM. FlanaganJ.A. DeemerE.K. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study.J. Agric. Food Chem.200250113122312810.1021/jf0116606 12009973
    [Google Scholar]
  11. ZhouK. YuL. Total phenolic contents and antioxidant properties of commonly consumed vegetables grown in Colorado.Lebensm. Wiss. Technol.200639101155116210.1016/j.lwt.2005.07.015
    [Google Scholar]
  12. DekkerM. VerkerkR. JongenW.M.F. Predictive modelling of health aspects in the food production chain: A case study on glucosinolates in cabbage.Trends Food Sci. Technol.2000114-517418110.1016/S0924‑2244(00)00062‑5
    [Google Scholar]
  13. IoriR. BarillariJ. RollinP. Comment on In vitro gastrointestinal digestion study of broccoli inflorescence phenolic compounds, glucosinolates, and vitamin C.J. Agric. Food Chem.200452247432743310.1021/jf040108o 15563231
    [Google Scholar]
  14. HeimlerD. VignoliniP. DiniM.G. VincieriF.F. RomaniA. Antiradical activity and polyphenol composition of local Brassicaceae edible varieties.Food Chem.200699346446910.1016/j.foodchem.2005.07.057
    [Google Scholar]
  15. SeyedN. KhaleghiM. MohammadA.K.T. Effect of three immunostimulants on some of indicators of broilers’ immune response.Poult. Sci. J.2010474321325
    [Google Scholar]
  16. NidaullahH. DurraniF.R. AhmadS. JanI.U. GulS. Aqueous extract from different medicinal plants as anticoccidial, growth promotive and immunostimulant in broilers.J. Agric. Biol. Sci.2010515359
    [Google Scholar]
  17. BjörkmanM. KlingenI. BirchA.N.E. BonesA.M. BruceT.J.A. JohansenT.J. MeadowR. MølmannJ. SeljåsenR. SmartL.E. StewartD. Phytochemicals of Brassicaceae in plant protection and human health – Influences of climate, environment and agronomic practice.Phytochemistry201172753855610.1016/j.phytochem.2011.01.014 21315385
    [Google Scholar]
  18. NanjoF. GotoK. SetoR. SuzukiM. SakaiM. HaraY. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical.Free Radic. Biol. Med.199621689590210.1016/0891‑5849(96)00237‑7 8902534
    [Google Scholar]
  19. TaoudaH AlaouiMM ErrachidiF ChabirR AarabL Comparative study of the morpho-metric and Biochemical dates caractere solding in the regional market of FES.MORO201481110
    [Google Scholar]
  20. BoudkhiliM. GrecheH. MisbahiH. GiovanelliS. NoccioliC. PistelliL. AarabL. Isolation and antioxidant activity of flavonoids from Coriaria myrtifolia methanolic extract.Chem. Nat. Compd.201551114114210.1007/s10600‑015‑1222‑y
    [Google Scholar]
  21. LaarajS. OuahidiI. AarabL. Photoabsorbent, antioxidative, and anti-inflammatory properties of three traditional cosmetic seed oils.Trop. J. Nat. Prod. Res.202261117901793
    [Google Scholar]
  22. OyaizuM. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine.Eiyogaku Zasshi198644630731510.5264/eiyogakuzashi.44.307
    [Google Scholar]
  23. SayahK. MarmouziI. Naceiri MrabtiH. CherrahY. Faouzi, MEA Antioxidant activity and inhibitory potential of Cistus salviifolius (L.) and Cistus monspeliensis (L.) Aerial parts extracts against key enzymes linked to hyperglycemia.BioMed Res. Int.201720172789482
    [Google Scholar]
  24. El OmariN. SayahK. FettachS. El BlidiO. BouyahyaA. FaouziM.E.A. Evaluation of in vitro antioxidant and antidiabetic activities of Aristolochia longa extracts.Evid. Based Complement. Alternat. Med.20192019738473510.1155/2019/7384735
    [Google Scholar]
  25. LaarajS. OuahidiI. Al MoudaniN. AllaliM. AarabL. Immunostimulant and pharmacological activities, of cucurbita maxima seeds on humoral and cellular immunity cells and their functions.Open Public Health J.2024171e1874944527477510.2174/0118749445274775231204095205
    [Google Scholar]
  26. KandsiF. ElbouzidiA. LafdilF.Z. MeskaliN. AzgharA. AddiM. HanoC. MalebA. GseyraN. Antibacterial and antioxidant activity of Dysphania ambrosioides (L.) mosyakin and clemants essential oils: Experimental and computational approaches.Antibiotics202211448210.3390/antibiotics11040482 35453233
    [Google Scholar]
  27. AinsworthE.A. GillespieK.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent.Nat. Protoc.20072487587710.1038/nprot.2007.102 17446889
    [Google Scholar]
  28. BahorunT. GressierB. TrotinF. BrunetC. DineT. LuyckxM. VasseurJ. CazinM. CazinJ.C. PinkasM. Oxygen species scavenging activity of phenolic extracts from hawthorn fresh plant organs and pharmaceutical preparations.Arzneimittelforschung1996461110861089 8955870
    [Google Scholar]
  29. El Hamsas El YoubiA. BoustaD. OuahidiI. AarabL. Primary pharmacological screening of an endemic plant native to southern Morocco (Tetraena gaetula [Emb. & Maire] Beier & Thulin).C. R. Biol.20103331073674310.1016/j.crvi.2010.08.001 20965443
    [Google Scholar]
  30. DaoudiA. Abdel-SatterE. AarabL. The relationship between lectin compounds and immunomodulatory activities of protein extracted from plants.J. Plant Stud.201331566410.5539/jps.v3n1p56
    [Google Scholar]
  31. DaoudiA. BagrelD. AarabL. In vitro anticancer activity of some plants used in Moroccan traditional medicine.J. Med. Plants Res.201371711821189
    [Google Scholar]
  32. LaarajS. OuahidiI. AarabL. Immunostimulant effect of Brassica rapa and Raphanus sativus seeds on thymic cells and their cytotoxicity.Egypt. J. Immunol.2023301879510.55133/eji.300109
    [Google Scholar]
  33. DaoudiA. BoustaD. AarabL. Abdel-SattarE. Evaluation and characterization of the immunomodulatory activity of the protein extract from Citrullus colocynthis L.Food Agric. Immunol.2013241475710.1080/09540105.2011.641168
    [Google Scholar]
  34. MosmannT. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Methods1983651-2556310.1016/0022‑1759(83)90303‑4 6606682
    [Google Scholar]
  35. BalouiriM. SadikiM. IbnsoudaS.K. Methods for in vitro evaluating antimicrobial activity: A review.J. Pharm. Anal.201662717910.1016/j.jpha.2015.11.005 29403965
    [Google Scholar]
  36. BouramdaneY. FellakS. El MansouriF. Impact of Natural Degradation on the Aged Lignocellulose Fibers of Moroccan Cedar Softwood: Structural Elucidation by Infrared Spectroscopy (ATRFTIR) and X-ray Diffraction (XRD).Fermentation2022812698
    [Google Scholar]
  37. BoukirA. GuilianoM. AsiaL. HallaouiA. El; Mille, G. Fraction to fraction study of photo-oxidation of BAL 150 crude oil asphaltenes.Analusis19982635836410.1051/analusis:1998185
    [Google Scholar]
  38. BoukirA. FellakS. DoumenqP. Structural characterization of Argania spinosa Moroccan wooden artifacts during natural degradation progress using infrared spectroscopy (ATR-FTIR) and X-Ray diffraction (XRD).Heliyon201959e0247710.1016/j.heliyon.2019.e02477 31687572
    [Google Scholar]
  39. BoukirA. AriesE. GuilianoM. AsiaL. DoumenqP. MilleG. Subfractionation, characterization and photooxidation of crude oil resins.Chemosphere200143327928610.1016/S0045‑6535(00)00159‑4
    [Google Scholar]
  40. HajjiL. BoukirA. AssouikJ. KerbalA. KajjoutM. A multi-analytical approach for the evaluation of the efficiency of the conservation – Restoration treatment of moroccan historical manuscripts dating to the 16th, 17th, and 18th centuries.Appl. Spectrosc.2015698920938
    [Google Scholar]
  41. BoukirA. MehyaouiI. FellakS. AsiaL. DoumenqP. The effect of the natural degradation process on the cellulose structure of Moroccan hardwood fiber : A survey on spectroscopy and structural properties.Mediterr. J. Chem.20198317919010.13171/mjc8319050801ab
    [Google Scholar]
  42. BoukirA GuilianoM DoumenqP ElA MilleG Structural characterization of petroleum asphaltSnes by infrared spectroscopy (IRTF).Zi photo-oxidation application.1998597602
    [Google Scholar]
  43. SuraiP.F. Antioxidants in poultry nutrition and reproduction: An update.Antioxidants20209210510.3390/antiox9020105 31991738
    [Google Scholar]
  44. ChenF. ZhangH. DuE. JinF. ZhengC. FanQ. ZhaoN. GuoW. ZhangW. HuangS. WeiJ. Effects of magnolol on egg production, egg quality, antioxidant capacity, and intestinal health of laying hens in the late phase of the laying cycle.Poult. Sci.2021100283584310.1016/j.psj.2020.10.047 33518137
    [Google Scholar]
  45. CandanT. AytungaB. Use of natural antioxidants in poultry meat.Celal Bayar Üniversitesi Fen Bilim Derg.2017132279291
    [Google Scholar]
  46. SoengasP. SoteloT. VelascoP. CarteaM.E. Antioxidant properties of brassica vegetables.Funct. Plant Sci. Biotechnol.201154355
    [Google Scholar]
  47. SoengasP. CarteaM.E. FranciscoM. SoteloT. VelascoP. New insights into antioxidant activity of Brassica crops.Food Chem.2012134272573310.1016/j.foodchem.2012.02.169 23107684
    [Google Scholar]
  48. PodsędekA. Natural antioxidants and antioxidant capacity of Brassica vegetables: A review.Lebensm. Wiss. Technol.200740111110.1016/j.lwt.2005.07.023
    [Google Scholar]
  49. FerreresF. SousaC. ValentãoP. SeabraR.M. PereiraJ.A. AndradeP.B. Tronchuda cabbage (Brassica oleracea L. var. costata DC) seeds: Phytochemical characterization and antioxidant potential.Food Chem.2007101254955810.1016/j.foodchem.2006.02.013
    [Google Scholar]
  50. JunH.I. WiesenbornD.P. KimY-S. Antioxidant activity of phenolic compounds from canola (Brassica napus) seed.Food Sci. Biotechnol.20142361753176010.1007/s10068‑014‑0240‑z
    [Google Scholar]
  51. JahangirM KimHK ChoiYH Verpoorte, RCompounds in Br ass i caceae.200983143
    [Google Scholar]
  52. AyazF.A. GlewR.H. MillsonM. HuangH.S. ChuangL.T. SanzC. Hayırlıoglu-AyazS. Nutrient contents of kale (Brassica oleraceae L. var. acephala DC.).Food Chem.200696457257910.1016/j.foodchem.2005.03.011
    [Google Scholar]
  53. JaiswalA.K. Abu-GhannamN. GuptaS. A comparative study on the polyphenolic content, antibacterial activity and antioxidant capacity of different solvent extracts of Brassica oleracea vegetables.Int. J. Food Sci. Technol.201247222323110.1111/j.1365‑2621.2011.02829.x
    [Google Scholar]
  54. TorrijosR. RighettiL. CirliniM. CalaniL. MañesJ. MecaG. Phytochemical profiling of volatile and bioactive compounds in yellow mustard (Sinapis alba) and oriental mustard (Brassica juncea) seed flour and bran.Lebensm. Wiss. Technol.20222023173
    [Google Scholar]
  55. ŠamecD. Piljac-ŽegaracJ. BogovićM. HabjaničK. GrúzJ. Antioxidant potency of white (Brassica oleracea L. var. capitata) and Chinese (Brassica rapa L. var. pekinensis (Lour.)) cabbage: The influence of development stage, cultivar choice and seed selection.Sci. Hortic. (Amsterdam)20111282788310.1016/j.scienta.2011.01.009
    [Google Scholar]
  56. SinghJ. UpadhyayA.K. BahadurA. SinghB. SinghK.P. RaiM. Antioxidant phytochemicals in cabbage (Brassica oleracea L. var. capitata).Sci. Hortic.20061083233237
    [Google Scholar]
  57. LiouY.L. LinJ.Y. Supplementation of red cabbage (Brassica oleracea L. var.) juice increases serum total antibody levels in mice.Yao Wu Shi Pin Fen Xi202020110.38212/2224‑6614.2071
    [Google Scholar]
  58. FuR. ZhangY. GuoY. PengT. ChenF. Hepatoprotection using Brassica rapa var. rapa L. seeds and its bioactive compound, sinapine thiocyanate, for CCl4-induced liver injury.J. Funct. Foods201622738110.1016/j.jff.2016.01.013
    [Google Scholar]
  59. ShinJ.S. NohY.S. LeeY.S. ChoY.W. BaekN.I. ChoiM.S. JeongT.S. KangE. ChungH.G. LeeK.T. Arvelexin from Brassica rapa suppresses NF-κB-regulated pro-inflammatory gene expression by inhibiting activation of IκB kinase.Br. J. Pharmacol.2011164114515810.1111/j.1476‑5381.2011.01351.x 21434881
    [Google Scholar]
  60. ShinJ.S. YunC.H. ChoY.W. BaekN.I. ChoiM.S. JeongT.S. ChungH.G. LeeK.T. Indole-containing fractions of Brassica rapa inhibit inducible nitric oxide synthase and pro-inflammatory cytokine expression by inactivating nuclear factor-κB.J. Med. Food201114121527153710.1089/jmf.2011.1611 21877949
    [Google Scholar]
  61. BeltagyA.M. Investigation of new antimicrobial and antioxidant activities of brassica rapa L.Int. J. Pharma Sci.201461925
    [Google Scholar]
  62. ValeA.P. SantosJ. MeliaN. PeixotoV. BritoN.V. OliveiraM.B.P.P. Phytochemical composition and antimicrobial properties of four varieties of Brassica oleracea sprouts.Food Control20155524825610.1016/j.foodcont.2015.01.051
    [Google Scholar]
  63. Dawajine info N° 27 - March 2014 The magazine of the Moroccan poultry industry - Published by FISA.2014Available from: maroc.org.ma
/content/journals/cbc/10.2174/0115734072282302240402043805
Loading
/content/journals/cbc/10.2174/0115734072282302240402043805
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test