Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Background

Periodontal disease and dental caries are two oral illnesses that are significantly influenced by microorganisms, hence the usefulness of finding natural substances to inhibit them.

Objective

This study aimed to assess the Labill. leaf and fruit essential oils effect against , and to study their anticariogenic and antiperiodonto pathogenic activities.

Methods

These activities were evaluated according to the determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), anti-biofilm effects, and the impact on the adhesion to hydroxyapatite, a main component of the tooth.

Results

Both leaf and fruit essential oils showed strong antibacterial activity against anaerobic bacteria: (MIC of 0.012%) and (MIC of 0.025%). Anticarcinogenic activity also showed MIC values of 0.06% against and, 0.5% against , and appropriate antifungal activity against . It is interesting to note that both oils showed a significant inhibitory property to biofilm formation by the different studied species and significantly reduced the adhesion capacity of and to the hydroxyapatite surface at very low concentrations of 0.12 and 0.5% for and , respectively.

Conclusion

These results highlight the strong potential of essential oils as antimicrobial and antibiofilm agents, as well as their ability to inhibit bacterial adhesion, which is promising for the prevention of dental caries and plaque. This implies that may be a new alternative source of substances of medicinal interest that can be used in the pharmaceutical industry to produce antimicrobial agents against dental caries and oral infectious diseases.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072296932240319060406
2024-04-02
2025-05-11
Loading full text...

Full text loading...

References

  1. YariZ. MahdaviS. KhayatiS. GhorbaniR. IsazadehA. Evaluation of antibiotic resistance patterns in Staphylococcus aureus isolates collected from urinary tract infections in women referred to Shahid Beheshti educational and therapeutic center in Maragheh city, year 2016.Majallah-i Pizishki (Tabriz)201941610611210.34172/mj.2020.013
    [Google Scholar]
  2. AryaV. TanejaL. SrivastavaA. NandlalS. Anticariogenic activity of black tea - an in vivo study.J. Clin. Diagn. Res.2016103ZC74ZC7710.7860/JCDR/2016/16276.7489 27135007
    [Google Scholar]
  3. LoescheW.J. Role of Streptococcus mutans in human dental decay.Microbiol. Rev.198650435338010.1128/mr.50.4.353‑380.1986 3540569
    [Google Scholar]
  4. YuH.H. LeeD.H. SeoS.J. YouY.O. Anticariogenic properties of the extract of Cyperus rotundus.Am. J. Chin. Med.200735349750510.1142/S0192415X07005016 17597508
    [Google Scholar]
  5. Ben LaghaA. LeBelG. GrenierD. Tart cherry (Prunus Cerasus L.) fractions inhibit biofilm formation and adherence properties of oral pathogens and enhance oral epithelial barrier function.Phytother. Res.202034488689510.1002/ptr.6574 31846135
    [Google Scholar]
  6. ShahzadM. MillhouseE. CulshawS. EdwardsC.A. RamageG. CombetE. Selected dietary (poly)phenols inhibit periodontal pathogen growth and biofilm formation.Food Funct.20156371972910.1039/C4FO01087F 25585200
    [Google Scholar]
  7. JaffarN. MiyazakiT. MaedaT. Biofilm formation of periodontal pathogens on hydroxyapatite surfaces: Implications for periodontium damage.J. Biomed. Mater. Res. A2016104112873288010.1002/jbm.a.35827 27390886
    [Google Scholar]
  8. DashperS. AngC.S. LiuS.W. PaoliniR. VeithP. ReynoldsE. Inhibition of Porphyromonas gingivalis biofilm by oxantel.Antimicrob. Agents Chemother.20105431311131410.1128/AAC.00946‑09 20038616
    [Google Scholar]
  9. LoescheW.J. Microbiology of dental decay and periodontal disease.Medical Microbiology.4th edGalveston, TXUniversity of Texas Medical Branch at Galveston1996
    [Google Scholar]
  10. ParkM. SutherlandJ.B. RafiiF. Effects of nano-hydroxyapatite on the formation of biofilms by Streptococcus mutans in two different media.Arch. Oral Biol.201910710448410.1016/j.archoralbio.2019.104484 31382161
    [Google Scholar]
  11. GaoL. LiuY. KimD. LiY. HwangG. NahaP.C. CormodeD.P. KooH. Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo.Biomaterials201610127228410.1016/j.biomaterials.2016.05.051 27294544
    [Google Scholar]
  12. JunkaA. ŻywickaA. ChodaczekG. DziadasM. CzajkowskaJ. Duda-MadejA. BartoszewiczM. MikołajewiczK. KrasowskiG. SzymczykP. FijałkowskiK. Potential of biocellulose carrier impregnated with essential oils to fight against biofilms formed on hydroxyapatite.Sci. Rep.201991125610.1038/s41598‑018‑37628‑x 30718663
    [Google Scholar]
  13. PedrazziV. de SouzaS.S.L. De OliveiraR.R. CimõesR. Mechanical methods to control the supragingival biofilm.Periodontia20091932633
    [Google Scholar]
  14. DadelahiS. YousefiF. Emami GolmarzP. TaheriE. Evaluation of chemical composition and antimicrobial activities of Scrophularia striata essential oil on dental caries pathogens.JBRMS2020743642
    [Google Scholar]
  15. RobbinsN. CaplanT. CowenL.E. Molecular evolution of antifungal drug resistance.Annu. Rev. Microbiol.201771175377510.1146/annurev‑micro‑030117‑020345 28886681
    [Google Scholar]
  16. DerhamiF.S. RadG.M. MahmoudiR. NadariA.M.R. Comparaitive studies of antibacterial activity of extracts nasturtium officinale and coriandrum sativum against some of pathogenic bacteria.Vet. Microbiol.20171335l0032
    [Google Scholar]
  17. Souza-MeloW.O. Figueiredo-JúniorE.C. FreireJ.C.P. CostaB.P. LiraA.B. FreiresI.A. CavalcantiY.W. LopesW.S. TavaresJ.F. PessôaH.L.F. PereiraJ.V. Phytochemistry, antifungal and antioxidant activity, and cytotoxicity of byrsonima gardneriana (A. Juss) extract.Arch. Oral Biol.202112310499410.1016/j.archoralbio.2020.104994 33472099
    [Google Scholar]
  18. MahdaviS. KheyrollahiM. SheikhloeiH. IsazadehA. Antibacterial and antioxidant activities of Nasturtium officinale essential oil on food borne bacteria.Open Microbiol. J.2019131818510.2174/1874285801913010081
    [Google Scholar]
  19. EtemadiR. MoghadamP. YousefiF. Evaluation of chemical composition and antimicrobial activities of Eucalyptus Camaldulensisessential oil on dental caries pathogens.JBRMS2020714349
    [Google Scholar]
  20. DagliN. DagliR. MahmoudR. BaroudiK. Essential oils, their therapeutic properties, and implication in dentistry: A review.J. Int. Soc. Prev. Community Dent.20155533534010.4103/2231‑0762.165933 26539382
    [Google Scholar]
  21. LimamH. Ben JemaaM. TammarS. KsibiN. KhammassiS. JallouliS. Del ReG. MsaadaK. Variation in chemical profile of leaves essential oils from thirteen Tunisian Eucalyptus species and evaluation of their antioxidant and antibacterial properties.Ind. Crops Prod.202015811296410.1016/j.indcrop.2020.112964
    [Google Scholar]
  22. PanikarS. ShobaG. ArunM. SahayarayanJ.J. Usha Raja NanthiniA. ChinnathambiA. AlharbiS.A. NasifO. KimH.J. Essential oils as an effective alternative for the treatment of COVID-19: Molecular interaction analysis of protease (Mpro) with pharmacokinetics and toxicological properties.J. Infect. Public Health202114560161010.1016/j.jiph.2020.12.037 33848890
    [Google Scholar]
  23. Atmani-MerabetG. BelkhiriA. DemsM.A. LalaounaA. KhalfaouiZ. MosbahB. Chemical composition, toxicity, and acaricidal activity of Eucalyptus globulus essential oil from Algeria.Curr. Issues Pharm. Med. Sci.2018312899310.1515/cipms‑2018‑0017
    [Google Scholar]
  24. Harkat-MadouriL. AsmaB. MadaniK. Bey-Ould Si SaidZ. RigouP. GrenierD. AllalouH. ReminiH. AdjaoudA. Boulekbache-MakhloufL. Chemical composition, antibacterial and antioxidant activities of essential oil of Eucalyptus globulus from Algeria.Ind. Crops Prod.20157814815310.1016/j.indcrop.2015.10.015
    [Google Scholar]
  25. Bey-Ould Si SaidZ. Haddadi-GuemgharH. Boulekbache-MakhloufL. RigouP. ReminiH. AdjaoudA. KhoudjaN.K. MadaniK. Essential oils composition, antibacterial and antioxidant activities of hydrodistillated extract of Eucalyptus globulus fruits.Ind. Crops Prod.20168916717510.1016/j.indcrop.2016.05.018
    [Google Scholar]
  26. CimangaK. KambuK. TonaL. ApersS. De BruyneT. HermansN. TottéJ. PietersL. VlietinckA.J. Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo.J. Ethnopharmacol.200279221322010.1016/S0378‑8741(01)00384‑1 11801384
    [Google Scholar]
  27. BoukhatemM.N. FerhatM.A. KameliA. SaidiF. WalidK. MohamedS.B. Quality assessment of the essential oil from Eucalyptus globulus labill of Blida (Algeria) origin. International Letters of Chemistry.Physics and Astronomy201436330331510.56431/p‑68q125
    [Google Scholar]
  28. KankoC. SawalihoB.E.H. KoneS. KoukouaG. N’GuessanY.T. Étude des propriétés physico-chimiques des huiles essentielles de Lippia multiflora, Cymbopogon citratus, Cymbopogon nardus, Cymbopogon giganteus.C. R. Chim.2004710-111039104210.1016/j.crci.2003.12.030
    [Google Scholar]
  29. TakaradaK. KimizukaR. TakahashiN. HonmaK. OkudaK. KatoT. A comparison of the antibacterial efficacies of essential oils against oral pathogens.Oral Microbiol. Immunol.2004191616410.1046/j.0902‑0055.2003.00111.x 14678476
    [Google Scholar]
  30. DelaquisP. StanichK. GirardB. MazzaG. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils.Int. J. Food Microbiol.2002741-210110910.1016/S0168‑1605(01)00734‑6 11929164
    [Google Scholar]
  31. EmiraN. MejdiS. AouniM. In vitro activity of Melaleuca alternifolia (tea tree) and Eucalyptus globulus essential oils on oral candida biofilm formation on polymethylmethacrylate.J. Med. Plants Res.20137201461146610.5897/jmpr12.885
    [Google Scholar]
  32. ChouhanS. SharmaK. GuleriaS. Antimicrobial activity of some essential oils-present status and future perspectives.Medicines (Basel)2017435810.3390/medicines4030058 28930272
    [Google Scholar]
  33. Di PasquaR. HoskinsN. BettsG. MaurielloG. Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media.J. Agric. Food Chem.20065472745274910.1021/jf052722l 16569070
    [Google Scholar]
  34. SerioA. ChiariniM. TettamantiE. PaparellaA. Electronic paramagnetic resonance investigation of the activity of Origanum vulgare L. essential oil on the Listeria monocytogenes membrane.Lett. Appl. Microbiol.201051210.1111/j.1472‑765X.2010.02877.x 20557450
    [Google Scholar]
  35. KotanR. KordaliS. CakirA. Screening of antibacterial activities of twenty-one oxygenated monoterpenes.Z. Naturforsch. C J. Biosci.2007627-850751310.1515/znc‑2007‑7‑808 17913064
    [Google Scholar]
  36. DelaquisP.J. StanichK. Antilisterial properties of Cilantro essential oil.J. Essent. Oil Res.200416540941410.1080/10412905.2004.9698757
    [Google Scholar]
  37. MoureyA. CanillacN. Anti-Listeria monocytogenes activity of essential oils components of conifers.Food Control2002134-528929210.1016/S0956‑7135(02)00026‑9
    [Google Scholar]
  38. NazzaroF. FratianniF. De MartinoL. CoppolaR. De FeoV. Effect of essential oils on pathogenic bacteria.Pharmaceuticals (Basel)20136121451147410.3390/ph6121451 24287491
    [Google Scholar]
  39. PrabuseenivasanS. JayakumarM. IgnacimuthuS. In vitro antibacterial activity of some plant essential oils.BMC Complement. Altern. Med.2006613910.1186/1472‑6882‑6‑39 17134518
    [Google Scholar]
  40. WilkinsonJ.M. HipwellM. RyanT. CavanaghH.M.A. Bioactivity of Backhousia citriodora: antibacterial and antifungal activity.J. Agric. Food Chem.2003511768110.1021/jf0258003 12502388
    [Google Scholar]
  41. BachirR.G. BenaliM. Antibacterial activity of the essential oils from the leaves of Eucalyptus globulus against Escherichia coli and Staphylococcus aureus.Asian Pac. J. Trop. Biomed.20122973974210.1016/S2221‑1691(12)60220‑2 23570005
    [Google Scholar]
  42. MarinoM. BersaniC. ComiG. Antimicrobial activity of the essential oils of Thymus vulgaris L. measured using a bioimpedometric method.J. Food Prot.19996291017102310.4315/0362‑028X‑62.9.1017 10492476
    [Google Scholar]
  43. MirjanaS. NadaB. Bezi’cN. Chemical composition and antimicrobial variability of Satureja montana L. essential oils produced during ontogenesis.J. Essent. Oil Res.200416438739110.1080/10412905.2004.9698751
    [Google Scholar]
  44. FrassinettiS. CaltavuturoL. CiniM. Della CroceC.M. MasertiB.E. Antibacterial and antioxidant activity of essential oils fromCitrusspp.J. Essent. Oil Res.2011231273110.1080/10412905.2011.9700427
    [Google Scholar]
  45. MooC-L. OsmanM.A. YangS-K. YapW-S. IsmailS. LimS-H-E. ChongC-M. LaiK-S. Antimicrobial activity and mode of action of 1,8-cineol against carbapenemase-producing Klebsiella pneumoniae.Sci. Rep.20211112082410.1038/s41598‑021‑00249‑y
    [Google Scholar]
  46. MerghniA. NoumiE. HaddedO. DridiN. PanwarH. CeylanO. MastouriM. SnoussiM. Assessment of the antibiofilm and antiquorum sensing activities of Eucalyptus globulus essential oil and its main component 1,8-cineole against methicillin-resistant Staphylococcus aureus strains.Microb. Pathog.2018118748010.1016/j.micpath.2018.03.006 29522803
    [Google Scholar]
  47. FaniM. KohantebJ. Inhibitory activity of Cinnamon zeylanicum and Eucalyptus globulus oils on Streptococcus mutans, Staphylococcus aureus, and Candidaspecies isolated from patients with oral infections.J. Dent.2011111422 https://sid.ir/paper/565945/en
    [Google Scholar]
  48. LeeK.H. KimB.S. KeumK.S. YuH.H. KimY.H. ChangB.S. RaJ.Y. MoonH.D. SeoB.R. ChoiN.Y. YouY.O. Essential oil of Curcuma longa inhibits Streptococcus mutans biofilm formation.J. Food Sci.2011769H226H23010.1111/j.1750‑3841.2011.02427.x 22416707
    [Google Scholar]
  49. WestergrenG. OlssonJ. Hydrophobicity and adherence of oral streptococci after repeated subculture in vitro.Infect. Immun.198340143243510.1128/iai.40.1.432‑435.1983 6832836
    [Google Scholar]
  50. DohareS. DubeyS.D. KaliaM. VermaP. PandeyH. SinghN.K. Anti-biofilm activity of Eucalyptus globulus oil encapsulated silica nanoparticles against E. coli biofilm.Int. J. Pharm. Sci. Res.2014511501110.13040/IJPSR.0975‑8232.5(11).5011‑16
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072296932240319060406
Loading
/content/journals/cbc/10.2174/0115734072296932240319060406
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test