Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Objective

The present study aimed to investigate the chemical profile and evaluate the antibacterial and antibiotic-modulating activity of the methanolic extract and ethyl acetate of the stem bark of against standard and multiresistant strains.

Methods

The Minimum Inhibitory Concentration was determined by the microdilution method, and the modulating potential of the extracts on aminoglycoside and β-lactam antibiotics was evaluated.

Results

The classes of secondary metabolites identified from qualitative chemical prospecting were flavones, flavonols, xanthones, flavonones, flavonols, catechins and leucoanthocyanidins. The assays showed inhibition only for -producing extended-spectrum -lactamase, carbapenemase and ATCC 25922 with MICs of 256, 512 and 512 μg/mL, respectively. The extracts, when associated with gentamicin and amoxicillin, showed synergism against all standard and multiresistant strains, with the exception of carbapenemase and producing extended-spectrum -lactamase, respectively. When combined with amikacin, they also demonstrated synergism against multidrug-resistant strains; however, only the ethyl acetate extract had a synergistic effect against ATCC 25922. The association of penicillin with methanolic extract showed synergism only for producing extended-spectrum -lactamase and S. aureus ATCC 29213, while the ethyl acetate extracts demonstrated synergism against and producing extended-spectrum lactamase.

Conclusion

It was found that extracts have antibacterial potential against gram-negative bacteria. However, the need for additional research using specific methods against bacteria carrying different resistance mechanisms, especially gram-positive ones, is highlighted, with the aim of elucidating their mechanism of action.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072297726240430040317
2024-05-13
2025-06-01
Loading full text...

Full text loading...

References

  1. AlmeidaR.S. FreitasP.R. AraújoA.C.J. MenezesA.I.R. SantosE.L. TintinoS.R. MouraT.F. FilhoJ.R. FerreiraV.A. SilvaA.C.A. SilvaL.E. do AmaralW. DeschampsC. IritiM. CoutinhoM.H.D. GC-MS profile and enhancement of antibiotic activity by the essential oil of Ocotea odorífera and safrole: Inhibition of Staphylococcus aureus efflux pumps.Antibiotics20209524710.3390/antibiotics9050247 32408576
    [Google Scholar]
  2. CostaL.R. NetoS.J.F. CamiloC.J. LeiteD.O.D. ColaresA.V. CalixtoJuniorJ.T. BragaM.F.B.M. MáximoB.P. FonsecaV.J.A. CostaJ.G.M. BituV.C.N. Antimicrobial activity and antibiotic modulating effect of the bark extract of Dahlstedtia araripensis (Benth) Fabaceae. Research.Soc. Dev.2022115e2811152814510.33448/rsd‑v11i5.28145
    [Google Scholar]
  3. SilvaA.R. CostaM.D. AraújoN.J. FreitasT.S. SantosA.T. GonçalvesS.A. SilvaV.B. PinheiroA.J.C. TahimC.M. LucettiE.C. CoutinhoH.D. Antibacterial activity and antibiotic-modifying action of carvacrol against multidrug-resistant bacteria.Adv Sample Prep2023710007210.1016/j.sampre.2023.100072
    [Google Scholar]
  4. SantosE.L. FreitasP.R. AraújoA.C.J. AlmeidaR.S. TintinoS.R. PauloC.L.R. SilvaA.C.A. SilvaL.E. do AmaralW. DeschampsC. JuniorJ.P.S. FilhoJ.M.B. de SousaG.R. FilhoR.J. CoutinhoH.D.M. Enhanced antibacterial effect of antibiotics by the essential oil of Aloysia gratissima (Gillies & Hook.) Tronc. and its major constituent beta-caryophyllene.Phytomed. Plus20211410010010.1016/j.phyplu.2021.100100
    [Google Scholar]
  5. OliveiraR.C. Structural and spectroscopic analysis, evaluation of the antibacterial and efflux pump activity of the triterpene mixture α, β-amyrin isolated from resin protium heptaphyllum (Aubl.) Marchand.Masters dissertation; Crato: Universidade Regional do Cariri2021
    [Google Scholar]
  6. SturmerS. Assessment of the incidence of Staphylococcus aureus in employees of health care units in Dois Vizinhos-Paraná. Thesis dissertation; Two Neighbors: Federal Technological University of Paraná2015
    [Google Scholar]
  7. NicolauG.S. MonteiroM.F.G. Sousa JúniorD.L. MarquesA.E.F. AquinoP.E.A. FerreiraS.S. MarinhoA.D. SaraivaC.R.N. LeandroM.K.N.S. SilveiraZ.S. SilvaR.O.M. LeandroL.M.G. Antibacterial and modulatory activity of α-pinene associated with the led light device.Revista Univap2022285710.18066/revistaunivap.v28i57.2550
    [Google Scholar]
  8. ŠarićL. PezoL. KruljJ. TomićJ. PlavšićD. JovanovP. MatićM. Antibacterial activity of donkey’s milk against clinical isolate of Klebsiella pneumoniae.Mljekarstvo2022722637610.15567/mljekarstvo.2022.0201
    [Google Scholar]
  9. CarvalhoI. ChenoufN.S. CarvalhoJ.A. CastroA.P. SilvaV. CapitaR. CallejaA.C. DapkeviciusE.M.L.N. IgrejasG. TorresC. PoetaP. Multidrug-resistant Klebsiella pneumoniae harboring extended spectrum β-lactamase encoding genes isolated from human septicemias.PLoS One2021165e025052510.1371/journal.pone.0250525 33945553
    [Google Scholar]
  10. de SouzaG.H.A. dos Santos RadaiJ.A. Mattos VazM.S. Esther da SilvaK. FragaT.L. BarbosaL.S. SimionattoS. In vitro and in vivo antibacterial activity assays of carvacrol: A candidate for development of innovative treatments against KPC-producing Klebsiella pneumoniae.PLoS One2021162e024600310.1371/journal.pone.0246003 33617571
    [Google Scholar]
  11. MacedoC.A. Antibacterial and antibiofilm activity of Lippia grata against clinical isolates of Pseudomonas aeruginosa.Masters dissertation; Natal: Federal University of Rio Grande do Norte2019
    [Google Scholar]
  12. FernandesJM Euphorbiaceae prohibited in the composition of traditional phytotherapeutic products in Brazil.Rev. Saude. AJES2022815
    [Google Scholar]
  13. HurbathF. TorresD.S.C. RoqueN. Euphorbiaceae in serra geral de licínio de almeida, Bahia, Brazil.Rodriguesia201667248953110.1590/2175‑7860201667217
    [Google Scholar]
  14. ParedesP.F.M. VasconcelosF.R. PaimR.T.T. MarquesM.M.M. MoraisS.M. LiraS.M. GuedesM.I.F. Screening of bioactivities and toxicity of Cnidoscolus quercifolius. Pohl. Evid Based Complement.Altern Med.20162016793056310.1155/2016/7930563
    [Google Scholar]
  15. MatosJ.A.F. Living Pharmacies: Medicinal Plant Utilization System Designed For Small Communities.4th edUFC2002
    [Google Scholar]
  16. AgraM.D.F. BarachoG.S. NuritK. BasílioI.J.L.D. CoelhoV.P.M. Medicinal and poisonous diversity of the flora of “Cariri Paraibano”, Brazil.J Ethno.2007111238339510.1016/j.jep.2006.12.007
    [Google Scholar]
  17. AgraM.F. SilvaK.N. BasílioI.J.L.D. FreitasP.F. FilhoB.J.M. Survey of medicinal plants used in the region Northeast of Brazil.Rev. Bras. Farmacogn.200818347250810.1590/S0102‑695X2008000300023
    [Google Scholar]
  18. JúniorO.R.G. Phytochemical study and evaluation of the cytotoxic effect of Cnidoscolus quercifolius Pohl (Euphorbiaceae) on human melanoma cells.Masters dissertation; Petrolina: Federal University of Vale do São Francisco2017
    [Google Scholar]
  19. SousaE.O. CostaM.S. TintinoO.C.D.M. NonatoC.F.A. PinheiroJ.C.A. CoutinhoH.D.M. MenezesI.R.A. CostaJ.G.M. Chemical composition of the fixed oil of Harconia speciosa and modulation of the antibiotic activity against non-resistant and MDR bacterial strains.Separations20229924910.3390/separations9090249
    [Google Scholar]
  20. MatosJ.A.F. Introduction to experimental phytochemistry.UFC2009
    [Google Scholar]
  21. JavadpourM.M. JubanM.M. LoW.C.J. BishopS.M. AlbertyJ.B. CowellS.M. BeckerC.L. McLaughlinM.L. De novo antimicrobial peptides with low mammalian cell toxicity.J. Med. Chem.199639163107311310.1021/jm9509410 8759631
    [Google Scholar]
  22. NonatoC.F.A. de MeloE.V.S. CamiloC.J. FerreiraM.K.A. de MenesesJ.E.A. da SilvaA.W. SantosH.S. FilhoR.J. e SilvaP.S.J. TavaresJ.F. MenezesI.R.A. CoutinhoH.D.M. KowalskaG. BajT. KowalskiR. da CostaJ.G.M. Antibacterial activity and anxiolytic effect in adult zebrafish of genus Lippia L. species.Plants2023128167510.3390/plants12081675 37111898
    [Google Scholar]
  23. CLSI CLSI. Performance Standards for Antimicrobial Susceptibility Testing.28th edWayne, PA, USAClinical and Laboratory Standards Institute2018
    [Google Scholar]
  24. MannC.M. MarkhamJ.L. A new method for determining the minimum inhibitory concentration of essential oils.J. Appl. Microbiol.199884453854410.1046/j.1365‑2672.1998.00379.x 9633651
    [Google Scholar]
  25. CoutinhoH.D.M. CostaJ.G.M. LimaE.O. Falcão-SilvaV.S. JúniorS.J.P. Enhancement of the antibiotic activity against a multiresistant Escherichia coli by Mentha arvensis L. and chlorpromazine.Chemotherapy200854432833010.1159/000151267 18698137
    [Google Scholar]
  26. SiebraA.L.A. OliveiraL.R. MartinsA.O.B.P.B. SiebraD.C. AlbuquerqueR.S. LemosI.C.S. DelmondesG.A. TintinoS.R. FigueredoF.G. da CostaJ.G.M. CoutinhoH.D.M. MenezesI.R.A. FelipeC.F.B. KerntopfM.R. Potentiation of antibiotic activity by Passiflora cincinnata Mast. front of strains Staphylococcus aureus and Escherichia coli.Saudi J. Biol. Sci.2018251374310.1016/j.sjbs.2016.01.019 29379354
    [Google Scholar]
  27. JohannS. Antimicrobial activity of polymethoxylated flavonoids isolated from citrus fruits.Masters dissertation; Santa Catarina: Federal University of Santa Catarina2003
    [Google Scholar]
  28. SouzaM.S. Analytical liquid chromatography methods for determining flavonoids in different products containing Passiflora spp.: A scoping review..Thesis; Macaé: Federal University of Rio de Janeiro2022
    [Google Scholar]
  29. CruzA.J. BritoI.P. SobralM.A.F. SousaA.T.L. AvesE.F. AndrezaR.S. FerreiraS.S. CostaR.O. FigueredoF.G. TamG.T. MacêdoR.O. RibeiroT.R.G. LeandroL.M.G. OliveiraC.D.M. TintinoS.R. CostaM. AquinoP.E.A. Evaluation of the antibacterial and modulating activity of methanolic and hexane extracts from the Allium cepa leaf.Rev. Cienc. Salud201614219120010.12804/revsalud14.02.2016.04
    [Google Scholar]
  30. SiqueiraF.Q.C. Teores de tatinos e flavonóides em plantas medicinais da caatinga: avaliando estratégias de bioprospecção[Master's Thesis.].: Universidade Federal de Pernambuco2011
    [Google Scholar]
  31. SoaresN.P. SantosP.L. VieiraV.S. PimentaV.S.C. de AraújoE.G. Phytochemical prospecting techniques and their importance for the study of biomolecules derived from plants.Encicl. Biosf.20161324991101010.18677/EnciBio_2016B_094
    [Google Scholar]
  32. (a FlambóD.F.A.L.P. Abiological activities of flavonoids: Antimicrobial activity.. Doctoral dissertation; Universidade Fernando Pessoa2013
    [Google Scholar]
  33. (b Dos SantosD.S. RodriguesF.M.M. Pharmacological activities of flavonoids: A review study.Estação Científica201773293510.18468/estcien.2017v7n3.p29‑35
    [Google Scholar]
  34. MoraisN.R. NetoO.F.B. MeloA.R. BertiniL.M. SilvaF.F. AlvesL.A. Phytochemical prospecting and evaluation of the antioxidant potential of Cnidoscolus phyllacanthus (müll. Arg.) Pax & k.hoffm. Originally from apodi – RN.Rev Bras Plantas Medicinais2016
    [Google Scholar]
  35. Peixoto-SobrinhoT.J. CastroV.T.N.A. SaraivaA.M. AlmeidaD.M. TavaresE.A. PisciottanoM.N.C. AmorimE.L.C. Phytochemical screening and antibacterial activity of four Cnidoscolus species (Euphorbiaceae) against standard strains and clinical isolates.J. Med. Plants Res.201262110.5897/JMPR11.1533
    [Google Scholar]
  36. GomesL.M.A. AndradeT.M. SilvaJ.C. LimaJ.T. JuniorQ.L.J. AlmeidaS.J.R.G. Phytochemical screening and anti-inflammatory activity of Cnidoscolus quercifolius (Euphorbiaceae) in mice.Pharmacognosy Res.20146434534910.4103/0974‑8490.138290
    [Google Scholar]
  37. SilvaW.A. MousinhoK.C. BandeiraM.A.M. CostaM.A.S. SobreiraR.C.B. SilvaT.M.S. SilvaJ.A.G. SousaR.S. LimaL.S. LimaR.M.L. LeiteS.P. Phytochemical profile and toxicological evaluation Croton Heliotropiifolius against Artemia Salina Leach. Brazil.J. Healt. Rev.202034105801059010.34119/bjhrv3n4‑272
    [Google Scholar]
  38. FagbohunE.D. EgbebiA.O. LawalO.U. Phytochemical screening, proximate analysis and in-vitro antimicrobial activities of methanolic extract of Cnidoscolus aconitifolius leaves.Int. J. Pharm. Sci. Rev. Res.20121312833
    [Google Scholar]
  39. YakubuM.T. AkanjiM.A. OladijiA.T. OlatinwoA.O. AdesokanA.A. YakubuM.O. AjaoM.S. Effect of Cnidoscolous aconitifolius (Miller) in Johnston leaf extract on reproductive hormones of female rats.Iran. J. Reprod. Med.200863149155
    [Google Scholar]
  40. LinaresY.M. MosqueraD.M. DíazA.V. EspínA.P. AlfonsoO.C. RománR.E. Estudio fitoquímico de extractos de hojas de Cnidoscolus chayamansa Mc Vaugh (Chaya).Rev. Cuba. Plantas Med.2016214113
    [Google Scholar]
  41. RodriguesI.M. Souza FilhoA.P. FerreiraF.A. Phytochemical study of Senna alata using two methodologies.Planta Daninha2009
    [Google Scholar]
  42. LagesL.P. SousaA.J.M. MourãoP.S. FilhoM.A.L.M. MarquesR.B. RochaA.V.T. CarvalhoS.E.S. QueirozB.F.S. MunizM.M.S. MeloS.M. Phytochemical prospecting of the hydroethanolic extract of the Anacardiumoccidentale Linn (Cashew) leaf. Res.Soc. Dev.20221111e26711113178010.33448/rsd‑v11i11.31780
    [Google Scholar]
  43. HoletzF.B. PessiniG.L. SanchesN.R. CortezD.A.G. NakamuraC.V. Dias FilhoB.P. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases.Mem. Inst. Oswaldo Cruz20029771027103110.1590/S0074‑02762002000700017 12471432
    [Google Scholar]
  44. EllerS.C.W.S. FeitosaV.A. ArrudaT.A. AntunesR.M.P. CatãoR.M.R. Antimicrobial evaluation of plant extracts and possible pharmacological interaction in vitro .Rev. Cienc. Farm. Basica Apl.2015361
    [Google Scholar]
  45. NunesF.R.S. DiasH.M.C. CavalcanteG.M. Investigation of the antioxidant and antimicrobial activities of two tree species occurring in the caatinga biome.Scient. Stat201661819010.18468/estcien.2016v6n1.p81‑90
    [Google Scholar]
  46. De RêgoA.M.S. da SilvaL.V.C. MaiaS.C. TeixeiraN.M. MarinhoL.M. de LimaR.E. Evaluation of the safety of the hydroalcoholic extract of aerial parts of Plectranthus neochilus Schlechter, Lamiaceae and bark of Cnidoscolus quercifolius Pohl, Eupharbiaceae in rodents.Med. Vet.20191228210.26605/medvet‑v12n2‑2359
    [Google Scholar]
  47. LimaE.R. SilvaB.N. OliveiraR.A.S. LindenL.A. SilvaV.C.L. RêgoM.S.A. MarinhoM.L. Evaluation of the in vitro antimicrobial effect of ethanolic extracts of Plectranthus neochilus and Cnidoscolus quercifolius.Med. Vet.202014424810.26605/medvet‑v14n4‑3917
    [Google Scholar]
  48. de JúniorO.R.G. FerrazA.C.A. PontesM.C. CavalcanteN.B. da AraújoC.E.C. de OliveiraA.P. PicotL. RolimL.A. da AlmeidaS.J.R.G. Antibacterial activity of terpenoids isolated from Cnidoscolus quercifolius Pohl (Euphorbiaceae), a Brazilian medicinal plant from Caatinga biome.Eur. J. Integr. Med.201824303410.1016/j.eujim.2018.10.011
    [Google Scholar]
  49. BarbosaE.V. Evaluation of the antibacterial and antibiofilm activities of natural extracts against Gram-positive and Gram-negative bacteria and their possible synergistic effects.PhD dissertation; Niterói: Fluminense Federal University2020
    [Google Scholar]
  50. ValerianoC. PiccoliR.H. CardosoM.G. AlvesE. Antimicrobial activity of essential oils on pathogenic bacteria of food origin.Rev. Bras. Plantas Med.2012141
    [Google Scholar]
  51. JayashreeK. GopukumarS. Antimicrobial potential of various extracts of Cnidoscolus aconitifolius latex.Journal Appl. Sci. Comput201852536
    [Google Scholar]
  52. AraujoM.M.K. Evaluation of the antibiotic and tumor antiproliferative activities of purified fractions of the nettle Cnidoscolus urens [monography].Thesis; Sumé: Federal University of Campina Grande2018
    [Google Scholar]
  53. GonzálezP.M.Z. RebolledoG.G.A. Yépez-MuliaL. ToméR.I.S. HerreraL.J. ArellanesJ.M.A. Antiprotozoal, antimycobacterial, and anti-inflammatory evaluation of Cnidoscolus chayamansa (Mc Vaugh) extract and the isolated compounds.Biomed. Pharmacother.201789899710.1016/j.biopha.2017.02.021 28222400
    [Google Scholar]
  54. SilvaA.L.N. SilvaK.A. MagalhãesT.N. SáM.K.S. RamosR.A. GomesY.R.M.S. MilitãoJ.S.L.T. CassebA.A. MatosN.B. MesquitaE.A. Evaluation of the antimicrobial action of Croton lechleri Müll latex. Arg. (Euphorbiaceae) in Gram-positive and Gram-negative bacteria. Res.Soc. Dev.20221116e8411163775010.33448/rsd‑v11i16.37750
    [Google Scholar]
  55. AdounkpeF. AyenaA.C. AholoukpeV. DougnonV. KlotoeJ.R. MedehouenouM. Baba-MoussaL. Use of the leaves of Alchornea cordifolia (Schumach. & Thonn.) Müll (Euphorbiaceae) and prospects for treatment of infections due to multidrug-resistant bacteria.Bull. Natl. Res. Cent.202246113210.1186/s42269‑022‑00821‑0
    [Google Scholar]
  56. OstroskyE.A. MizumotoM.K. LimaM.E.L. KanekoT.M. NishikawaS.O. FreitasB.R. Methods for evaluating antimicrobial activity and determining the Minimum Inhibitory Concentration (MIC) of medicinal plants.Rev. Bras. Farmacogn.200818230130710.1590/S0102‑695X2008000200026
    [Google Scholar]
  57. CamiloC.J. NonatoC.F.A. SilvaJ.T.P. RodriguesF.F.G. SalazarG.J.T. CostaG.M. Interference of Hymenaea courbaril L. (JATOBÁ) extract on the antibacterial activity of aminoglycosides.Rev. Interfaces (Juazeiro do Norte).20208137237910.16891/2317‑434X.v8.e1.a2020.pp372‑379
    [Google Scholar]
  58. AguiarE.C.C. Resistance of gram-negative strains to antibacterials in effluents from public hospitals and the Boa Vista sewage treatment plant.Masters dissertation; Boa Vista: Universidade Federal de Roraima2020
    [Google Scholar]
  59. HuangY. SokolowskiK. RanaA. SinghN. WangJ. ChenK. LangY. ZhouJ. KadiyalaN. KrappF. OzerE.A. HauserA.R. LiJ. BulittaJ.B. BulmanZ.P. Generating genotype-specific aminoglycoside combinations with ceftazidime/avibactam for KPC-producing Klebsiella pneumoniae.Antimicrob. Agents Chemother.2021659e00692e2110.1128/AAC.00692‑21 34152820
    [Google Scholar]
  60. GonçalvesM.D. Clinical impact of pharmacokinetic monitoring of gentamicin, amikacin and vancomycin and its relationship with renal function.Masters dissertation; University of Algarve Faculty of Sciences and Technologies2019
    [Google Scholar]
  61. FisherJ.F. MobasheryS. β-Lactam resistance mechanisms: Gram-positive bacteria and Mycobacterium tuberculosis.Cold Spring Harb. Perspect. Med.201665a02522110.1101/cshperspect.a025221 27091943
    [Google Scholar]
  62. SantosI.P. OliveiraC.M.S. Indiscriminate use of beta-lactams and their clinical repercussions.Revista Nórdica de Estudios20228111588160010.51891/rease.v8i11.7757
    [Google Scholar]
  63. EgorovA.M. UlyashovaM.M. RubtsovaM.Y. Inhibitors of β-Lactamases. new life of β-lactam antibiotics.Biochemistry202085111292130910.1134/S0006297920110024 33280574
    [Google Scholar]
  64. BarrosR.H.W. Antimicrobial activity of medicinal plants against klebsiella pneumoniae according to the scientometric perspective.Thesis; Dourados: Federal University of Grande Dourados2020
    [Google Scholar]
  65. HussainH.I. AqibA.I. SeleemM.N. ShabbirM.A. HaoH. IqbalZ. KulyarM.F.A. ZaheerT. LiK. Genetic basis of molecular mechanisms in β-lactam resistant gram-negative bacteria.Microb. Pathog.202115810504010.1016/j.micpath.2021.105040 34119627
    [Google Scholar]
  66. ContrucciB.A. PinatoG.R. SilvaA.O. CastroJ.M. ZorzettiM.R. CólloJ.V. FarinazzoH.M. CorsiniM.F.L. GalvãoS.F.C. GarciaB.B. In vitro evaluation of the susceptibility of gram positive and negative bacteria when exposed to ozonized plant oils. Brazil.J. Health Res.202145196621967210.34119/bjhrv4n5‑097
    [Google Scholar]
  67. ScarpateE.C. CossatisJ.J. The presence of Klebsiella pneumoniae producing extended-spectrum β-lactamase in the hospital environment.Saude Ambient20094111
    [Google Scholar]
  68. AcolatseJ.E.E. PortalE.A.R. BoostromI. AkafityG. DakroahM.P. ChalkerV.J. SandsK. SpillerO.B. Environmental surveillance of ESBL and carbapenemase-producing gram-negative bacteria in a Ghanaian Tertiary Hospital.Antimicrob. Resist. Infect. Control20221114910.1186/s13756‑022‑01090‑2 35296353
    [Google Scholar]
  69. TookeC.L. HinchliffeP. BraggintonE.C. ColensoC.K. HirvonenV.H.A. TakebayashiY. SpencerJ. β-Lactamases and β-lactamase inhibitors in the 21st century.J. Mol. Biol.2019431183472350010.1016/j.jmb.2019.04.002 30959050
    [Google Scholar]
  70. SeibertG. HörnerR. MeneghettiB.H. RighiR.A. FornoN.L.F.D. SallaA. Nosocomial infections by Klebsiella pneumoniae carbapenemase producing enterobacteria in a teaching hospital.Einstein201412328228610.1590/s1679‑45082014ao3131 25295446
    [Google Scholar]
  71. SejasC.G.F. Assessment of antibiotic resistance, genetic variability and clonal relationships of ESBL-producing Klebsiella pneumoniae and Escherichia coli from surveillance culture in an Intensive Care Unit in the city of Rio de Janeiro.Doctoral Dissertation; Rio de Janeiro: Oswaldo Cruz Foundation2015
    [Google Scholar]
  72. CookM.A. WrightG.D. The past, present, and future of antibiotics. Scien. Transla.Med.e,202214657eabo779310.1126/scitranslmed.abo779
    [Google Scholar]
  73. AlvesA.P. BeharP.R. Hospital infections due to Kpc-producing enterobacteria in a tertiary hospital in southern Brazil.Rev. AMRIGS2013573213218
    [Google Scholar]
  74. BreijyehZ. JubehB. KaramanR. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it.Molecules2020256134010.3390/molecules25061340 32187986
    [Google Scholar]
  75. WolduA.M. Klebsiella pneumoniae and its growing concern in healthcare settings.Clin. Exp. Pharmacol.2016611710.4172/2161‑1459.1000199
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072297726240430040317
Loading
/content/journals/cbc/10.2174/0115734072297726240430040317
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test