Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Natural products and their derived secondary metabolites play an important role in medicine and other allied health sectors. Liriodendrin is one of the main lignans of roots. Liriodendrin is a lignin class phytochemical having numerous health beneficial properties in medicine, including anti-myocardial ischemia, anti-arrhythmic, anti-oxidant and anti-inflammatory potential. This present review aims to analyze the reported ethnomedicinal properties, pharmacological activities and analytical aspects of liriodendrin and identify the remaining gaps in medicinal fields for their future investigations. The pharmacological properties of liriodendrin have been described in the present paper in order to describe its better utilization in natural medicine in the future. Biological poptential and pharmacological activities of liriodendrin have been described in the present work with their analytical development in the scientific fields. In the present work, scientific data on liriodendrin were collected from different scientific databases such as PubMed, Springer, Google, Science Direct, and Google Scholar. They described their biological potential on the basis of the available scientific literature. Further, research and review articles from peer-reviewed journals were also searched during data collection. The present paper's scientific data signified the biological importance of liriodendrin in medicine, which has been isolated from and other medicinal plants. Liriodendrin has biological potential against myocardial infarction, arrhythmias, lung injury, hepatic injury, inflammatory disorders, ulcerative colitis, gastric injury, SARS-CoV-2 protease and intestinal inflammation. Further, its effectiveness in medicine was also due to its anti-convulsant activity, nitric oxide inhibitory potential, cytotoxicity, cytoprotective nature, anti-oxidant, and anti-microbial potential. The present paper's scientific data also described the metabolism and analytical development for their isolation, separation and identification in different samples. Detailed pharmacological activities of liriodendrin have been described here in the present work and highlighted its important pharmacological properties and analytical aspects. Liriodendrin is a valuable phytochemical of which has numerous biological applications in medicine. Further, this study can also validate the traditional and ethnobotanical use of the and other plant material, which contain a significant amount of liriodendrin as an active phytochemical. Liriodendrin have huge biological potential far beyond its traditional uses in human complications.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072286081240326082701
2024-04-09
2025-06-24
Loading full text...

Full text loading...

References

  1. PatelD.K. PatelK. The potential therapeutic properties of prunetin against human health complications: A review of medicinal importance and pharmacological activities.Drug Metab. Bioanal. Lett.202215316617710.2174/2949681015666220912104743 36098409
    [Google Scholar]
  2. PatelD.K. Medicinal importance, pharmacological activities, and analytical aspects of engeletin in medicine: Therapeutic benefit through scientific data analysis.Endocr. Metab. Immune Disord. Drug Targets202323327328210.2174/1871530322666220520162251 35619306
    [Google Scholar]
  3. PatelD.K. Biological importance of bioactive phytochemical ‘Cimifugin’ as potential active pharmaceutical ingredients against human disorders: A natural phytochemical for new therapeutic alternatives.Pharmacol. Res. Mod. Chin. Med.2023710023210.1016/j.prmcm.2023.100232
    [Google Scholar]
  4. PatelD.K. Herbal phytomedicine ‘irisolidone’ in chronic diseases: Biological efficacy and pharmacological activity.Recent Adv. Antiinfect. Drug Discov.2022171132210.2174/1574891X16666220304231934 35249525
    [Google Scholar]
  5. PatelD.K. PatelK. Biological importance and therapeutic potential of calycopterin from dracocephalum kotschyi: An overview of current scientific research work.Recent Adv. Antiinfect. Drug Discov.2024191122010.2174/2772434418666230406092739
    [Google Scholar]
  6. PatelK. PatelD.K. Medicinal importance and therapeutic benefit of bioactive flavonoid eriocitrin: An update on pharmacological activity and analytical aspects.Nat. Prod. J.2024142e10072321858310.2174/2210315514666230710112336
    [Google Scholar]
  7. PatelK. PatelD.K. Biological potential and therapeutic effectiveness of pteryxin in medicine. A viable alternative to current remedies for the treatment of human disorders.Pharmacol. Res. Mod. Chin. Med.20241010040510.1016/j.prmcm.2024.100405
    [Google Scholar]
  8. PatelD.K. PatelK. An overview of medicinal importance, pharmacological activities and analytical aspects of fraxin from cortex fraxinus.Curr. Tradit. Med.202395e19092220892110.2174/2215083808666220919114652
    [Google Scholar]
  9. KumarA. P, N.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; K, S.; Oz, F. Major phytochemicals: Recent advances in health benefits and extraction method.Molecules202328288710.3390/molecules28020887 36677944
    [Google Scholar]
  10. SinghS. PathakN. FatimaE. NegiA.S. Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine.Eur. J. Med. Chem.202122611383910.1016/j.ejmech.2021.113839 34536668
    [Google Scholar]
  11. PatelK. KumarV. VermaA. RahmanM. PatelK.D. Health Benefits of Furanocoumarins ‘Psoralidin’ An Active Phytochemical of Psoralea corylifolia: The Present, Past and Future Scenario.Curr. Bioact. Compd.201915436937610.2174/1573407214666180511153438
    [Google Scholar]
  12. PatelK. SinghG.K. PatelD.K. A review on pharmacological and analytical aspects of naringenin.Chin. J. Integr. Med.201824755156010.1007/s11655‑014‑1960‑x 25501296
    [Google Scholar]
  13. AbojukoroA.A.N. NkadimengS.M. McGawL.J. NsahlaiI.V. Phytochemical composition and cytotoxicity of ethanolic extracts of some selected plants.J. Appl. Anim. Res.202250165666510.1080/09712119.2022.2119979
    [Google Scholar]
  14. PatelD.K. Biological potential and therapeutic effectiveness of hinokiflavone in medicine: The effective components of herbal medicines for treatment of cancers and associated complications.Curr. Nutr. Food Sci.202420443944910.2174/1573401319666230602121227
    [Google Scholar]
  15. PatelD.K. Health benefits, therapeutic applications, and recent advances of cirsilineol in the medicine: Potential bioactive natural flavonoids of genus Artemisia.Endocr. Metab. Immune Disord. Drug Targets202323789490710.2174/1871530323666221122123456 36415094
    [Google Scholar]
  16. PatelD.K. PatelK. Herbal medicines genkwadaphnin as therapeutic agent for cancers and other human disorders: A review of pharmacological activities through scientific evidence.Curr. Tradit. Med.2024104e23052321725110.2174/2215083810666230523155650
    [Google Scholar]
  17. PatelK. PatelD.K. Biological importance, pharmacological activities, and nutraceutical potential of capsanthin: A review of capsicum plant capsaicinoids.Curr. Drug Res. Rev.2024161183110.2174/2589977515666230331093712 36999721
    [Google Scholar]
  18. PatelK. PatelD.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report.J. Tradit. Complement. Med.20177336036610.1016/j.jtcme.2016.11.003 28725632
    [Google Scholar]
  19. PatelD.K. PatelK. Potential therapeutic applications of eudesmin in medicine: An overview on medicinal importance, pharmacological activities and analytical prospects.Pharmacol. Res. Mod. Chin. Med.2022510017510.1016/j.prmcm.2022.100175
    [Google Scholar]
  20. PatelD.K. Biological importance, therapeutic benefit, and medicinal importance of flavonoid, cirsiliol for the development of remedies against human disorders.Curr. Bioact. Compd.2022183e24082119580410.2174/1573407217666210824125427
    [Google Scholar]
  21. JungJ. ClausenH.M. WeinmannW. Anorectic sibutramine detected in a Chinese herbal drug for weight loss.Forensic Sci. Int.20061612-322122210.1016/j.forsciint.2006.02.052 16870382
    [Google Scholar]
  22. PatelD.K. Biological importance, therapeutic benefit and analytical aspects of bioactive flavonoid pectolinarin in the nature.Drug Metab. Lett.202114211712510.2174/1872312814666210726112910 34313205
    [Google Scholar]
  23. PatelD.K. Biological importance of a biflavonoid ‘bilobetin’ in the medicine: Medicinal importance, pharmacological activities and analytical aspects.Infect. Disord. Drug Targets2022225e21032220249010.2174/1871526522666220321152036 35319397
    [Google Scholar]
  24. DatL.D. ZhaoB.T. HungN.D. LeeJ.H. MinB.S. WooM.H. Lignan derivatives from Selaginella tamariscina and their nitric oxide inhibitory effects in LPS-stimulated RAW 264.7 cells.Bioorg. Med. Chem. Lett.201727352452910.1016/j.bmcl.2016.12.028 28038832
    [Google Scholar]
  25. ZhangZ. YangL. WangB. ZhangL. ZhangQ. LiD. ZhangS. GaoH. WangX. Protective role of liriodendrin in mice with dextran sulphate sodium-induced ulcerative colitis.Int. Immunopharmacol.20175220321010.1016/j.intimp.2017.09.012 28941417
    [Google Scholar]
  26. GaurP.K. RastogiS. LataK. Correlation between phytocompounds and pharmacological activities of Boerhavia diffusa Linn with traditional-ethnopharmacological insights.Phytomed. Plus20222210026010.1016/j.phyplu.2022.100260
    [Google Scholar]
  27. LiB. YaoB.C. ChenQ.L. SongY.Q. JiangN. ZhaoL.L. GuoZ.G. The protective role and mechanism of liriodendrin in rats with myocardial infarction.J. Thorac. Dis.202214113514610.21037/jtd‑21‑1998 35242375
    [Google Scholar]
  28. YuZ.Y. ChengG. Protective effect of liriodendrin against liver ischemia/reperfusion injury in mice via modulating oxidative stress, inflammation and nf-ĸb/tlr-4 pathway.Folia Morphol.20238266867610.5603/FM.a2022.0049 35607873
    [Google Scholar]
  29. LiD-H. WangY. LvY-S. LiuJ-H. YangL. ZhangS-K. ZhuoY.Z. Preparative purification of liriodendrin from Sargentodoxa cuneata by macroporous resin.BioMed Res. Int.20152015861256 26236742
    [Google Scholar]
  30. KatayamaT. OgakiA. Biosynthesis of (+)-syringaresinol inLiriodendron tulipifera I: Feeding experiments withl-[U-14C]phenylalanine and [8-14C]sinapyl alcohol.J. Wood Sci.2001471414710.1007/BF00776644
    [Google Scholar]
  31. SohnY.A. HwangS.A. LeeS.Y. HwangI.Y. KimS.W. KimS.Y. MoonA. LeeY.S. KimY.H. KangK.J. JeongC.S. Protective effect of liriodendrin isolated from kalopanax pictus against gastric injury.Biomol. Ther.2015231535910.4062/biomolther.2014.103 25593644
    [Google Scholar]
  32. KaurM. GoelR.K. Anti-convulsant activity of Boerhaavia diffusa: Plausible role of calcium channel antagonism.Evid. Based Complement. Alternat. Med.2011201131042010.1093/ecam/nep192 19948752
    [Google Scholar]
  33. FengC. LiB.G. GaoX.P. QiH.Y. ZhangG.L. A new triterpene and an antiarrhythmic liriodendrin from Pittosporum brevicalyx.Arch. Pharm. Res.201033121927193210.1007/s12272‑010‑1206‑1 21191756
    [Google Scholar]
  34. KimD.H. LeeK.T. BaeE.A. HanM.J. ParkH.J. Metabolism of liriodendrin and syringin by human intestinal bacteria and their relation to in vitro cytotoxicity.Arch. Pharm. Res.1999221303410.1007/BF02976432 10071956
    [Google Scholar]
  35. LiJ. ZhengX. LiX. YangJ. LiuW. YangL. LiuB. Study on the protective effect and mechanism of liriodendrin on radiation enteritis in mice.J. Radiat. Res. 202263221322010.1093/jrr/rrab128 35059715
    [Google Scholar]
  36. LamiN. KadotaS. KikuchiT. MomoseY. Constituents of the roots of Boerhaavia diffusa L. III. Identification of Ca2+ channel antagonistic compound from the methanol extract.Chem. Pharm. Bull.19913961551155510.1248/cpb.39.1551 1934177
    [Google Scholar]
  37. YangL. LiD. ZhuoY. ZhangS. WangX. GaoH. Protective role of liriodendrin in sepsis-induced acute lung injury.Inflammation20163951805181310.1007/s10753‑016‑0416‑1 27498121
    [Google Scholar]
  38. JungH.J. ParkH.J. KimR.G. ShinK.M. HaJ. ChoiJ.W. KimH.J. LeeY.S. LeeK.T. In vivo anti-inflammatory and antinociceptive effects of liriodendrin isolated from the stem bark of Acanthopanax senticosus.Planta Med.200369761061610.1055/s‑2003‑41127 12898415
    [Google Scholar]
  39. MatsudaH. KageuraT. OdaM. MorikawaT. SakamotoY. YoshikawaM. Effects of constituents from the bark of Magnolia obovata on nitric oxide production in lipopolysaccharide-activated macrophages.Chem. Pharm. Bull.200149671672010.1248/cpb.49.716 11411523
    [Google Scholar]
  40. ÜnlüA. TeralıK. AydınU.Z. DönmezA.A. YusufoğluH.S. Çalışİ. Isolation, characterization and in silico studies of secondary metabolites from the whole plant of Polygala inexpectata peşmen & erik.Molecules202227368410.3390/molecules27030684 35163950
    [Google Scholar]
  41. RanX.K. WangX.T. LiuP.P. ChiY.X. WangB.J. DouD.Q. KangT.G. XiongW. Cytotoxic constituents from the leaves of Broussonetia papyrifera.Chin. J. Nat. Med.201311326927310.1016/S1875‑5364(13)60027‑8 23725840
    [Google Scholar]
  42. KardonoL.B.S. TsauriS. PadmawinataK. PezzutoJ.M. KinghornA.D. Cytotoxic constituents of the bark of plumeria rubra collected in indonesia.J. Nat. Prod.19905361447145510.1021/np50072a008 1965200
    [Google Scholar]
  43. NamJ.W. KimS.Y. YoonT. LeeY.J. KilY.S. LeeY.S. SeoE.K. Heat shock factor 1 inducers from the bark of Eucommia ulmoides as cytoprotective agents.Chem. Biodivers.20131071322132710.1002/cbdv.201200401 23847077
    [Google Scholar]
  44. SuryaR.U. PraveenN. A molecular docking study of SARS-CoV-2 main protease against phytochemicals of Boerhavia diffusa Linn. for novel COVID-19 drug discovery.Virusdisease2021321465410.1007/s13337‑021‑00683‑6 33758772
    [Google Scholar]
  45. SunJ.M. YangJ.S. ZhangH. Two new flavanone glycosides of Jasminum lanceolarium and their anti-oxidant activities.Chem. Pharm. Bull.200755347447610.1248/cpb.55.474 17329896
    [Google Scholar]
  46. TurghunC. BakriM. LiuG.Y. BobakulovK. AisaH.A. Phenolic glycosides from Nitraria sibirica leaves and their in vitro biological activities.Nat. Prod. Res.20213581388139210.1080/14786419.2019.1647429 31379199
    [Google Scholar]
  47. KırmızıbekmezH. ÇalısI. PerozzoR. BrunR. DönmezA.A. LindenA. RüediP. TasdemirD. Inhibiting activities of the secondary metabolites of Phlomis brunneogaleata against parasitic protozoa and plasmodial enoyl-ACP Reductase, a crucial enzyme in fatty acid biosynthesis.Planta Med.200470871171710.1055/s‑2004‑827200 15326547
    [Google Scholar]
  48. da SilvaD.A. AlvesV.G. FrancoD.M.M. RibeiroL.C. de SouzaM.C. KatoL. de CarvalhoJ.E. KohnL.K. de OliveiraC.M.A. da SilvaC.C. Antiproliferative activity of Luehea candicans Mart. et Zucc. (Tiliaceae).Nat. Prod. Res.201226436436910.1080/14786411003752102 21432719
    [Google Scholar]
  49. LiQ. JiaY. XuL. WangX. ShenZ. LiuY. BiK. Simultaneous determination of protocatechuic acid, syringin, chlorogenic acid, caffeic acid, liriodendrin and isofraxidin in Acanthopanax senticosus Harms by HPLC-DAD.Biol. Pharm. Bull.200629353253410.1248/bpb.29.532 16508160
    [Google Scholar]
  50. GohariA.R. SaeidniaS. MoghadamB.M. AminG. Lignans and neolignans from Stelleropsis antoninae.Daru20111917479 22615643
    [Google Scholar]
  51. ZhaoB.T. JeongS.Y. KimT.I. SeoE.K. MinB.S. SonJ.K. WooM.H. Simultaneous quantitation and validation of method for the quality evaluation of Eucommiae cortex by HPLC/UV.Arch. Pharm. Res.201538122183219210.1007/s12272‑015‑0642‑3 26216707
    [Google Scholar]
  52. DuB.Z. ZhangH.X.G. YangX.Y. ZhangR.F. YinX. XingJ.Y. HanZ.Z. GaoZ.P. ChaiX.Y. Chemical constituents from stems of Ilex asprellaZhongguo Zhongyao Zazhi201742214154415829271154
    [Google Scholar]
  53. GanM. ZhangY. LinS. LiuM. SongW. ZiJ. YangY. FanX. ShiJ. HuJ. SunJ. ChenN. Glycosides from the root of Iodes cirrhosa.J. Nat. Prod.200871464765410.1021/np7007329 18327912
    [Google Scholar]
  54. Çalışİ. KırmızıbekmezH. SticherO. Iridoid glycosides from Globularia t richosantha.J. Nat. Prod.2001641606410.1021/np0003591 11170667
    [Google Scholar]
  55. WangZ. ZhangL. SunY. Semipreparative separation and determination of eleutheroside E in Acanthopanax giraldii Harms by high-performance liquid chromatography.J. Chromatogr. Sci.200543524925210.1093/chromsci/43.5.249 15975243
    [Google Scholar]
  56. XuH.B. GengC.A. ZhangX.M. MaY.B. HuangX.Y. ChenJ.J. Chemical structure of cyperotundic acid from rhizomes of Cyperus rotundus.Zhongguo Zhongyao Zazhi201641610661069 28875671
    [Google Scholar]
  57. WangJ. ChenD. LiangL. XueP. TuP. Chemical constituents from flowers of Chrysanthemum indicum.Zhongguo Zhongyao Zazhi2010356718721 20545195
    [Google Scholar]
  58. YangX. DingY. SunZ.H. ZhangD.M. Studies on chemical constituents from Ilex pubescens.J. Asian Nat. Prod. Res.20068650551010.1080/10286020500176344 16931425
    [Google Scholar]
  59. KamelM.S. MohamedK.M. HassaneanH.A. OhtaniK. KasaiR. YamasakiK. Iridoid and megastigmane glycosides from Phlomis aurea.Phytochemistry200055435335710.1016/S0031‑9422(00)00331‑9 11117884
    [Google Scholar]
  60. HuaH. ChengM. LiX. PeiY. A new pyrroloquinazoline alkaloid from Linaria vulgaris.Chem. Pharm. Bull. 200250101393139410.1248/cpb.50.1393 12372872
    [Google Scholar]
  61. LinS. ZhangY.L. LiuM.T. ZiJ.C. GanM.L. SongW.X. FanX.N. WangX.N. YangY.C. ShiJ.G. Chemical constituents from branch of Fraxinus sieboldiana.Zhongguo Zhongyao Zazhi2015401326022611 26697686
    [Google Scholar]
  62. Van MenC. JangY.S. LeeK.J. LeeJ.H. QuangT.H. LongV.N. LuongV.H. KimY.H. KangJ.S. Multiple component quantitative analysis for the pattern recognition and quality evaluation of kalopanacis cortex using HPLC.Arch. Pharm. Res.201134122065207110.1007/s12272‑011‑1209‑6 22210032
    [Google Scholar]
  63. ZhouZ.Y. HuangY. XiaoJ.C. LiuH. WangY.L. GongZ.P. LiY.T. WangA.M. LiY.J. ZhengL. Chemical profiling and quantification of multiple components in Jin‐Gu‐Lian capsule using a multivariate data processing approach based on UHPLC‐Orbitrap Exploris 240 MS and UHPLC‐MS/MS.J. Sep. Sci.20224561282129110.1002/jssc.202100762 35060338
    [Google Scholar]
  64. LiD.H. LvY.S. LiuJ.H. YangL. WangY. ZhangS.K. ZhuoY.Z. Simultaneous determination of four active ingredients in Sargentodoxa cuneata by HPLC coupled with evaporative light scattering detection.Int. J. Anal. Chem.201620161710.1155/2016/8509858 27313618
    [Google Scholar]
  65. SanoT. MatsumuraI. NakamuraR. YamajiH. HashimotoK. TakedaO. KiuchiF. TakedaT. Genetic and chemical comparison of boi (sinomeni caulis et rhizoma) and seifuto (caulis sinomenii).J. Nat. Med.201064325726510.1007/s11418‑010‑0397‑6 20217263
    [Google Scholar]
  66. NingY. SunJ. LvH.N. TuP.F. JiangY. [Chemical constituents from seeds of Vigna umbellata].Zhongguo Zhongyao Zazhi2013381219381941 24066588
    [Google Scholar]
  67. DengY.R. DingL. WuS.X. WangH.Q. [Studies on chemical constituents in herb of Lamium maculatum var. kansuense (II)].Zhongguo Zhongyao Zazhi2005304272274 15724404
    [Google Scholar]
  68. YaoH.K. DuanJ.Y. LiY. WangJ.H. YinX.X. DuanH.Q. [Studies on the chemical constituents from the roots of Kalopanax septemlobus].Zhong Yao Cai2011345716718 21954557
    [Google Scholar]
  69. ZhouL.G. FengX.S. HuangK.Y. HeL. DengX.M. WangD.C. [Studies on chemical constituents of Syringa veutina].Zhong Yao Cai2008315679681 18826143
    [Google Scholar]
  70. FanQ.L. LiuJ. ZhaoM.M. HanF.S. TanC.H. HuangC.G. ZhuD.Y. [Studies on phenylpropanoids from herbs of Eriophyton wallichii].Zhongguo Zhongyao Zazhi2008332226362639 19216160
    [Google Scholar]
  71. MaoluoG. Constituents from a water-soluble portion of ethanolicextract of Iodes cirrhosa.Zhongguo Zhong Yao Za Zhi2010354456467
    [Google Scholar]
  72. ChaoJ.F. YinZ.Q. YeW.C. ZhaoS.X. [Chemical constituents from branch of Broussonetia papyrifera].Zhongguo Zhongyao Zazhi2006311310781080 17048607
    [Google Scholar]
  73. MaZ.J. ZhaoZ.J. [Studies on chemical constituents from stem barks of Fraxinus paxiana].Zhongguo Zhongyao Zazhi2008331619901993 19086636
    [Google Scholar]
  74. WangG.L. YanH. HouQ.Y. LuY. GongN.B. LinR.C. [Chemical constituents from Alyxia sinensis (II)].Zhongguo Zhongyao Zazhi2002273199201 12774400
    [Google Scholar]
  75. OuyangM.A. HeZ.D. WuC.L. [Anti-oxidative activity of glycosides from Ligustrum sinense].Nat. Prod. Res.200317638138710.1080/1057563031000075476 14577686
    [Google Scholar]
  76. CherietT. ManciniI. SeghiriR. BenayacheF. BenayacheS. [Chemical constituents and biological activities of the genus Linaria (Scrophulariaceae)].Nat. Prod. Res.201529171589161310.1080/14786419.2014.999243 25674928
    [Google Scholar]
  77. LamS.H. JianS.D. HwangT.L. ChenP.J. HungH.Y. KuoP.C. WuT.S. [A new dimeric protoberberine alkaloid and other compounds from the tubers of Tinospora dentata].Nat. Prod. Res.2021351172410.1080/14786419.2019.1611809 31135226
    [Google Scholar]
  78. LiuY. YangR. ZouH.D. XuZ.P. PanJ. WuJ.T. GuanW. HaoZ.C. AlgradiA.M. KuangH.X. YangB.Y. Phenolic components from the fruits of Solanum xanthocarpum with anti-inflammatory activity.Nat. Prod. Res.20243861007101510.1080/14786419.2023.2211217 37165597
    [Google Scholar]
  79. WangM.Y. ZhanZ.B. XiongY. ZhangH. LiX.B. New cytotoxic constituents in the water-soluble fraction from Momordicae Semen.Nat. Prod. Res.202034682382910.1080/14786419.2018.1508146 30557059
    [Google Scholar]
  80. LiuC. SongX. SunY. LiY. LiX. ZhangD. A comprehensive review of phytochemistry, pharmacology and clinical application of Gentianae Macrophyllae Radix.Nat. Prod. Res.20232612210.1080/14786419.2023.2298724 38146635
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072286081240326082701
Loading
/content/journals/cbc/10.2174/0115734072286081240326082701
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test