Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Background

Marine algae stand out as repositories of bioactive metabolites, widely harnessed in treating diverse diseases. Given the often-challenging side effects associated with conventional cancer treatments, researchers are increasingly turning their attention to marine algae as a promising source for discovering novel and potent anticancer compounds. In this study, we meticulously explored the potential anticancer activity of and sourced from the Indian Ocean.

Materials and Methods

The secondary metabolites were extracted using methanol solvent according to the standard protocol. The extract was subjected to GC-MS analysis and evaluated for its short- and long-term cytotoxicity and anti-proliferative ability in the HCT116 cell line using MTT, clonogenic, and trypan blue dye exclusion assays, respectively.

Results and Discussion

The results indicate that increasing the concentration of algal extracts decreased the cell viability significantly, with an IC of 51.49 µg/mL () and 37.50 µg /mL () in the HCT116 cell line. The results showed a significant reduction in colorectal cancer colony formation and a gradual reduction in cell proliferation. These results underscore the potential for targeted, low-toxicity biomedicines due to their selective cytotoxicity against cancer cells.

Conclusion

Our findings show that & extracts contain various bioactive compounds, display long-term and short-term cytotoxicity and anti-proliferative effects, which indicates that their constituent compounds might be further refined into effective anti-colorectal cancer medications.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072296835240409124751
2024-04-24
2025-06-24
Loading full text...

Full text loading...

References

  1. DillekåsH. RogersM.S. StraumeO. Are 90% of deaths from cancer caused by metastases?Cancer Med.20198125574557610.1002/cam4.2474 31397113
    [Google Scholar]
  2. FerlayJ. ErvikM. LamF. ColombetM. MeryL. PiñerosM. Global cancer observatory: cancer today.International Agency for Research on CancerLyon2020
    [Google Scholar]
  3. ChoudhariA.S. MandaveP.C. DeshpandeM. RanjekarP. PrakashO. Phytochemicals in cancer treatment: From preclinical studies to clinical practice.Front. Pharmacol.202010161410.3389/fphar.2019.01614 32116665
    [Google Scholar]
  4. ArveloF. SojoF. CotteC. Biology of colorectal cancer.Ecancermedicalscience2015952010.3332/ecancer.2015.520 25932044
    [Google Scholar]
  5. CaoR. YangF. MaS.C. LiuL. ZhaoY. LiY. WuD.H. WangT. LuW.J. CaiW.J. ZhuH.B. GuoX.J. LuY.W. KuangJ.J. HuanW.J. TangW.M. HuangK. HuangJ. YaoJ. DongZ.Y. Development and interpretation of a pathomics-based model for the prediction of microsatellite instability in Colorectal Cancer.Theranostics20201024110801109110.7150/thno.49864 33042271
    [Google Scholar]
  6. Cleveland Clinic. Colorectal (Colon) Cancer.2002Available from: https://my.clevelandclinic.org/health/diseases/14501-colorectal-colon-cancer
  7. YamashitaR. LongJ. LongacreT. PengL. BerryG. MartinB. HigginsJ. RubinD.L. ShenJ. Deep learning model for the prediction of microsatellite instability in colorectal cancer: A diagnostic study.Lancet Oncol.202122113214110.1016/S1470‑2045(20)30535‑0 33387492
    [Google Scholar]
  8. HuckM. BohlJ. Colonic polyps: Diagnosis and surveillance.Clin. Colon Rectal Surg.201629429630510.1055/s‑0036‑1584091 31777460
    [Google Scholar]
  9. BrenaD. HuangM.B. BondV. Extracellular vesicle-mediated transport: Reprogramming a tumor microenvironment conducive with breast cancer progression and metastasis.Transl. Oncol.202215110128610.1016/j.tranon.2021.101286 34839106
    [Google Scholar]
  10. RawlaP. SunkaraT. BarsoukA. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors.Prz. Gastroenterol.20191428910310.5114/pg.2018.81072 31616522
    [Google Scholar]
  11. SaeedA.F.U.H. SuJ. OuyangS. Marine-derived drugs: Recent advances in cancer therapy and immune signaling.Biomed. Pharmacother.202113411109110.1016/j.biopha.2020.111091 33341044
    [Google Scholar]
  12. BerensE.B. HolyJ.M. RiegelA.T. WellsteinA. A cancer cell spheroid assay to assess invasion in a 3D setting.J. Vis. Exp.2015201510553409
    [Google Scholar]
  13. BoopathyS.N. KathiresanK. Anticancer drugs from marine flora: an overview.J. Oncol.2010201011810.1155/2010/214186 21461373
    [Google Scholar]
  14. KhalifaS.A.M. EliasN. FaragM.A. ChenL. SaeedA. HegazyM.E.F. MoustafaM.S. Abd El-WahedA. Al-MousawiS.M. MusharrafS.G. ChangF.R. IwasakiA. SuenagaK. AlajlaniM. GöranssonU. SeediE.H.R. Marine natural products: A source of novel anticancer drugs.Mar. Drugs201917949110.3390/md17090491 31443597
    [Google Scholar]
  15. FarasatM. Khavari-NejadR.A. NabaviS.M.B. NamjooyanF. Antioxidant activity, total phenolics and flavonoid contents of some edible green seaweeds from northern coasts of the persian gulf.Iran. J. Pharm. Res.2014131163170 24734068
    [Google Scholar]
  16. FerdousU.T. YusofB.Z.N. Insight into potential anticancer activity of algal flavonoids: Current status and challenges.Molecules20212622684410.3390/molecules26226844 34833937
    [Google Scholar]
  17. MonaY. In vitro cytotoxic activity of laurencia papillosa, marine red algae from the lebanese coast.J. Appl. Pharm. Sci.2017703175179
    [Google Scholar]
  18. El-DinM.S.M. AlagawanyN.I. Phytochemical constituents and anticoagulation property of marine algae gelidium crinale, sargassum hornschuchii and ulva linza.Thalassas. Int. J. Mar. Sci.2019352381397
    [Google Scholar]
  19. SaleemH. ZenginG. LocatelliM. AbidinS.A.Z. AhemadN. Investigation of phytochemical composition and enzyme inhibitory potential of Anagallis arvensis L.Nat. Prod. Res.202236143750375510.1080/14786419.2021.1880404 33550873
    [Google Scholar]
  20. AliM. WaniS.U.D. SalahuddinM. Recent advance of herbal medicines in cancer- A molecular approach.Heliyon202392e13684
    [Google Scholar]
  21. TavakoliJ. MiarS. ZadehzareM.M. AkbariH. Evaluation of effectiveness of herbal medication in cancer care: A review study.Iran. J. Cancer Prev.201253144156 25628834
    [Google Scholar]
  22. IlyasZ. Ali RedhaA. WuY.S. OzeerF.Z. AlukoR.E. Nutritional and health benefits of the brown seaweed Himanthalia elongata.Plant Foods Hum. Nutr.202378223324210.1007/s11130‑023‑01056‑8 36947371
    [Google Scholar]
  23. AsmaS.T. AcarozU. ImreK. MorarA. ShahS.R.A. HussainS.Z. AcarozA.D. DemirbasH. MusliuH.Z. IstanbullugilF.R. SoleimanzadehA. MorozovD. ZhuK. HermanV. AyadA. AthanassiouC. InceS. Natural products/bioactive compounds as a source of anticancer drugs.Cancers20221424620310.3390/cancers14246203 36551687
    [Google Scholar]
  24. IsmailM.M. El ZokmG.M. LopezM.J.M. Nutritional, bioactive compounds content, and antioxidant activity of brown seaweeds from the Red Sea.Front. Nutr.202310121093410.3389/fnut.2023.1210934 37565040
    [Google Scholar]
  25. SaleemH. YaqubA. RafiqueR. Ali ChohanT. MalikD.S. TousifM.I. KhurshidU. AhemadN. RamasubburayanR. RengasamyK.R.R. Nutritional and medicinal plants as potential sources of enzyme inhibitors toward the bioactive functional foods: An updated review.Crit. Rev. Food Sci. Nutr.2023202312410.1080/10408398.2023.2217264 37255100
    [Google Scholar]
  26. El GamalA.A. Biological importance of marine algae.Saudi Pharm. J.201018112510.1016/j.jsps.2009.12.001 23960716
    [Google Scholar]
  27. AbolhasaniM.H. SafaviM. GoodarziM.T. KassaeeS.M. AzinM. Identification and anti-cancer activity in 2D and 3D cell culture evaluation of an Iranian isolated marine microalgae Picochlorum sp. RCC486.Daru201826210511610.1007/s40199‑018‑0213‑5 30242672
    [Google Scholar]
  28. PradhanB. NayakR. PatraS. JitB.P. RagusaA. JenaM. Bioactive metabolites from marine algae as potent pharmacophores against oxidative stress-associated human diseases: A comprehensive review.Molecules20202613710.3390/molecules26010037 33374738
    [Google Scholar]
  29. GillM.S.A. SaleemH. AhemadN. Plant extracts and their secondary metabolites as modulators of kinases.Curr. Top. Med. Chem.202020121093110410.2174/1568026620666200224100219 32091334
    [Google Scholar]
  30. HaqS.H. RuwaishedA.G. MutlaqA.M.A. NajiS.A. MogrenA.M. RashedA.S. AinQ.T. AmroA.A.A. MussallamA.A. Antioxidant, anticancer activity and phytochemical analysis of green algae, chaetomorpha collected from the arabian gulf.Sci. Rep.2019911890610.1038/s41598‑019‑55309‑1 31827196
    [Google Scholar]
  31. AlghazeerR. HowellN.K. El-NailiM.B. AwaynN. Anticancer and antioxidant activities of some algae from western libyan coast.Nat. Sci.201810723224610.4236/ns.2018.107025
    [Google Scholar]
  32. SaleemH. ZenginG. LocatelliM. AhmadI. KhaliqS. MahomoodallyM.F. HussainR. RengasamyK.R.R. MollicaA. AbidinZ.S.A. AhemadN. Pharmacological, phytochemical and in-vivo toxicological perspectives of a xero-halophyte medicinal plant: Zaleya pentandra (L.).Jeffrey. Food Chem. Toxicol.201913111053510.1016/j.fct.2019.05.043 31154083
    [Google Scholar]
  33. SaleemH. ZenginG. LocatelliM. TartagliaA. FerroneV. HtarT.T. NaiduR. MahomoodallyM.F. AhemadN. Filago germanica (L.) Huds. bioactive constituents: Secondary metabolites fingerprinting and in vitro biological assays.Ind. Crops Prod.202015211250510.1016/j.indcrop.2020.112505
    [Google Scholar]
  34. ShahjahanA. SekarS. KasinathanK. ArulJothi KN. The cytotoxic and anti-tumor potential of methanolic extracts of Indian marine isolates in HCT116 colorectal cancer cells.Anticancer. Agents Med. Chem.202323171974198110.2174/1871520623666230810094755 37565553
    [Google Scholar]
  35. TeohW.Y. YongY.S. RazaliF.N. StephenieS. ShahD.M. TanJ.K. GnanarajC. EsaM.N. LC-MS/MS and GC-MS analysis for the identification of bioactive metabolites responsible for the antioxidant and antibacterial activities of Lygodium microphyllum (Cav.).R. Br. Separations202310321510.3390/separations10030215
    [Google Scholar]
  36. SaleemH. ZenginG. SarfrazM. AlafnanA. LocatelliM. TartagliaA. AhmadI. MahomoodallyM.F. KhurshidU. AhemadN. Phytochemical composition and in vitro pharmacological evaluation of Emex australis Steinh: A natural source of enzyme inhibitors.S. Afr. J. Bot.202114337438110.1016/j.sajb.2021.02.023
    [Google Scholar]
  37. KimaniS. ChakrabortyS. IreneI. de la MareJ. EdkinsA. du ToitA. LoosB. BlanckenbergA. Van NiekerkA. LotufoC.L.V. ArulJothi, K.; Mapolie, S.; Prince, S. The palladacycle, BTC2, exhibits anti-breast cancer and breast cancer stem cell activity.Biochem. Pharmacol.202119011459810.1016/j.bcp.2021.114598 33979647
    [Google Scholar]
  38. KaiK. NaganoO. SugiharaE. ArimaY. SampetreanO. IshimotoT. NakanishiM. UenoN.T. IwaseH. SayaH. Maintenance of HCT116 colon cancer cell line conforms to a stochastic model but not a cancer stem cell model.Cancer Sci.2009100122275228210.1111/j.1349‑7006.2009.01318.x 19737148
    [Google Scholar]
  39. SabapathiN. RamalingamS. AruljothiK.N. LeeJ. BarathiS. Characterization and therapeutic applications of biosynthesized silver nanoparticles using Cassia auriculate flower extract.Plants202312470710.3390/plants12040707 36840055
    [Google Scholar]
  40. FischerD. LiY. AhlemeyerB. KrieglsteinJ. KisselT. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis.Biomaterials20032471121113110.1016/S0142‑9612(02)00445‑3 12527253
    [Google Scholar]
  41. LeeY. KohD. AhnS. LeeY.H. ShinS.Y. LimY. Clonogenic long-term survival assay of HCT 116 colorectal cancer cells after treatment with the synthesized diphenyl imidazoline derivatives.Appl. Biol. Chem.201861330331210.1007/s13765‑018‑0355‑7
    [Google Scholar]
  42. RafehiH. OrlowskiC. GeorgiadisG.T. VerverisK. El-OstaA. KaragiannisT.C. Clonogenic assay: Adherent cells.J. Vis. Exp.201113492573
    [Google Scholar]
  43. CarreónT.F. De la ZavalaT.S. GarzaA.H.F. SouzaV. WongG.L.J. ArnautA.H. In vitro anticancer activity of methanolic extract of Granulocystopsis sp., a microalgae from an oligotrophic oasis in the Chihuahuan desert.PeerJ20208e868610.7717/peerj.868632201642
    [Google Scholar]
  44. Koopaie, M.; Karimi, H.; Sohrabi, M.; Norouzi, H. Cytotoxic, antiproliferative, and apoptotic evaluation of Ramalina sinensis (Ascomycota, Lecanoromycetes), lichenized fungus on oral squamous cell carcinoma cell line; in-vitro study.BMC Complement Med Ther2023231296
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072296835240409124751
Loading
/content/journals/cbc/10.2174/0115734072296835240409124751
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): bioactive compounds; cytotoxicity assay; GC-MS analysis; HCT116; in-vitro; Marine algae
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test