Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Background

Glycerolates of biogenic elements are of interest because of their pharmacological activity. Some of them are used as active substances in agents for topical application and as biocompatible precursors in sol-gel synthesis of bioactive materials.

Objective

In this work, morphostructural feature, ability to hydrolyze, and the pharmacological activity of previously synthesized iron(III) monoglycerolate were studied.

Methods

Analytical techniques, including SEM, TEM, XRD, TGA, IR spectroscopy, DLS and ELS, were used. Hemostatic activity was studied , and primary toxicological studies were carried out on experimental animals. Antimicrobial activity was studied using the agar diffusion method.

Results

When dispersed in glycerol, solid crystalline iron(III) monoglycerolate transforms into an amorphous state, forming aggregates with an average particle size of 250 nm (according to DLS data). It slowly hydrolyzes in water at room temperature, while hydrolysis does not take place in an aqueous glycerol media. Iron(III) monoglycerolate is nontoxic and exhibits pronounced hemostatic activity and low antibacterial activity (relative to the strain ).

Conclusion

Iron(III) monoglycerolate can be considered a potential hemostatic agent, showing promise for topical application in medical and veterinary practice, as well as a novel biocompatible precursor in the sol-gel synthesis of practically useful substances.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072295011240425080837
2024-05-09
2025-06-27
Loading full text...

Full text loading...

References

  1. CheongM.Y. HazimahA.H. ZafarizalA.A.H. RosnahI. Zinc glycerolate: Potential active for topical application.J. Oil Palm Res.20122412871295
    [Google Scholar]
  2. GabyA.R. Natural remedies for Herpes simplex.Altern. Med. Rev.200611293101 16813459
    [Google Scholar]
  3. RainsfordK.D. WhitehouseM.W. Anti-ulcer activity of a slow-release zinc complex, zinc monoglycerolate (Glyzinc).J. Pharm. Pharmacol.201144647648210.1111/j.2042‑7158.1992.tb03650.x 1359071
    [Google Scholar]
  4. KhoninaT.G. IvanenkoM.V. ChupakhinO.N. SafronovA.P. BogdanovaE.A. KarabanalovM.S. PermikinV.V. LarionovL.P. DrozdovaL.I. Silicon-zinc-glycerol hydrogel, a potential immunotropic agent for topical application.Eur. J. Pharm. Sci.201710719720210.1016/j.ejps.2017.07.012 28709910
    [Google Scholar]
  5. KhoninaT.G. KungurovN.V. ZilberbergN.V. EvstigneevaN.P. KokhanM.M. PolishchukA.I. ShadrinaE.V. NikitinaE.Y. PermikinV.V. ChupakhinO.N. Structural features and antimicrobial activity of hydrogels obtained by the sol–gel method from silicon, zinc, and boron glycerolates.J. Sol-Gel Sci. Technol.202095368269210.1007/s10971‑020‑05328‑6
    [Google Scholar]
  6. HooshmandS. MollazadehS. AkramiN. GhanadM. El-FiqiA. BainoF. NazarnezhadS. KargozarS. Mesoporous silica nanoparticles and mesoporous bioactive glasses for wound management: From skin regeneration to cancer therapy.Materials20211412333710.3390/ma14123337 34204198
    [Google Scholar]
  7. NielsenF.H. Update on the possible nutritional importance of silicon.J. Trace Elem. Med. Biol.201428437938210.1016/j.jtemb.2014.06.024 25081495
    [Google Scholar]
  8. FarooqM.A. DietzK.J. Silicon as versatile player in plant and human biology: Overlooked and poorly understood.Front. Plant Sci.2015699410.3389/fpls.2015.00994 26617630
    [Google Scholar]
  9. RondanelliM. FalivaM.A. PeroniG. GasparriC. PernaS. RivaA. PetrangoliniG. TartaraA. Silicon: A neglected micronutrient essential for bone health.Exp. Biol. Med.2021246131500151110.1177/1535370221997072 33715532
    [Google Scholar]
  10. KimB. LeeW.W. Regulatory role of zinc in immune cell signaling.Mol. Cells202144533534110.14348/molcells.2021.0061 33986184
    [Google Scholar]
  11. GlutschV. HammH. GoebelerM. Zink und Haut: Ein Update.J. Dtsch. Dermatol. Ges.201917658959610.1111/ddg.13811_g 31241838
    [Google Scholar]
  12. MaywaldM. RinkL. Zinc in human health and infectious diseases.Biomolecules20221212174810.3390/biom12121748 36551176
    [Google Scholar]
  13. StilesL.I. FerraoK. MehtaK.J. Role of zinc in health and disease.Clin. Exp. Med.20242413810.1007/s10238‑024‑01302‑6 38367035
    [Google Scholar]
  14. SayinZ. UcanU.S. SakmanogluA. Antibacterial and antibiofilm effects of boron on different bacteria.Biol. Trace Elem. Res.2016173124124610.1007/s12011‑016‑0637‑z 26864941
    [Google Scholar]
  15. NielsenF.H. Update on human health effects of boron.J. Trace Elem. Med. Biol.201428438338710.1016/j.jtemb.2014.06.023 25063690
    [Google Scholar]
  16. KhaliqH. JumingZ. Ke-MeiP. The physiological role of boron on health.Biol. Trace Elem. Res.20181861315110.1007/s12011‑018‑1284‑3 29546541
    [Google Scholar]
  17. AbdelnourS.A. Abd El-HackM.E. SwelumA.A. PerilloA. LosaccoC. The vital roles of boron in animal health and production: A comprehensive review.J. Trace Elem. Med. Biol.20185029630410.1016/j.jtemb.2018.07.018 30262295
    [Google Scholar]
  18. KhoninaT.G. SafronovA.P. ShadrinaE.V. IvanenkoM.V. SuvorovaA.I. ChupakhinO.N. Mechanism of structural networking in hydrogels based on silicon and titanium glycerolates.J. Colloid Interface Sci.20123651818910.1016/j.jcis.2011.09.018 21978403
    [Google Scholar]
  19. KhoninaT.G. SafronovA.P. IvanenkoM.V. ShadrinaE.V. ChupakhinO.N. Features of silicon– and titanium–polyethylene glycol precursors in sol–gel synthesis of new hydrogels.J. Mater. Chem. B Mater. Biol. Med.20153275490550010.1039/C5TB00480B 32262520
    [Google Scholar]
  20. AbbaspourN. HurrellR. KelishadiR. Review on iron and its importance for human health.J. Res. Med. Sci.2014192164174 24778671
    [Google Scholar]
  21. ZorodduM.A. AasethJ. CrisponiG. MediciS. PeanaM. NurchiV.M. The essential metals for humans: A brief overview.J. Inorg. Biochem.201919512012910.1016/j.jinorgbio.2019.03.013 30939379
    [Google Scholar]
  22. SánchezM. SabioL. GálvezN. CapdevilaM. Dominguez-VeraJ.M. Iron chemistry at the service of life.IUBMB Life201769638238810.1002/iub.1602 28150902
    [Google Scholar]
  23. GuptaD.C.P. Role of iron (Fe) in body.J. Appl. Chem.2014711384610.9790/5736‑071123846
    [Google Scholar]
  24. KaplanJ. WardD.M. The essential nature of iron usage and regulation.Curr. Biol.20132315R642R64610.1016/j.cub.2013.05.033 23928078
    [Google Scholar]
  25. GonçalvesJ.M. HennemannA.L. Ruiz-MontoyaJ.G. MartinsP.R. ArakiK. AngnesL. Shahbazian-YassarR. Metal-glycerolates and their derivatives as electrode materials: A review on recent developments, challenges, and future perspectives.Coord. Chem. Rev.202347721495410.1016/j.ccr.2022.214954
    [Google Scholar]
  26. RadoslovichE.W. RaupachM.R. SladeP.G. TaylorR.M. Crystalline cobalt, zinc, manganese, and iron alkoxides of glycerol.Aust. J. Chem.197023101963197010.1071/CH9701963
    [Google Scholar]
  27. FulsP.F. RodriqueL. FripiatJ.J. Iron alkoxide obtained by reacting iron oxides with glycerol.Clays Clay Miner.1970181536210.1346/CCMN.1970.0180107
    [Google Scholar]
  28. RodriqueL. DelvauxG. DardenneA. High temperature synthesis of an iron glycerolate from ferrous and ferric oxalate.Powder Technol.19781919310110.1016/0032‑5910(78)80076‑X
    [Google Scholar]
  29. KhoninaT.G. NikitinaE.Y. GermovA.Y. GoloborodskyB.Y. MikhalevK.N. BogdanovaE.A. TishinD.S. DeminA.M. KrasnovV.P. ChupakhinO.N. CharushinV.N. Individual iron(III) glycerolate: Synthesis and characterisation.RSC Advances20221274042404610.1039/D1RA08485B 35425460
    [Google Scholar]
  30. BruylantsP. MunautA. PonceletG. LadriereJ. MeyersJ. FripiatJ. IR and Mössbauer study of iron glycerolates.J. Inorg. Nucl. Chem.198042111603161110.1016/0022‑1902(80)80324‑1
    [Google Scholar]
  31. WangM. JiangJ. AiL. Layered bimetallic iron–nickel alkoxide microspheres as high-performance electrocatalysts for oxygen evolution reaction in alkaline media.ACS Sustain. Chem.& Eng.2018656117612510.1021/acssuschemeng.7b04784
    [Google Scholar]
  32. LauP.C. KwongT.L. YungK.F. Effective heterogeneous transition metal glycerolates catalysts for one-step biodiesel production from low grade non-refined Jatropha oil and crude aqueous bioethanol.Sci. Rep.2016612382210.1038/srep23822 27029238
    [Google Scholar]
  33. LiuX. GongM. DengS. ZhaoT. ZhangJ. WangD. Recent advances on metal alkoxide-based electrocatalysts for water splitting.J. Mater. Chem. A Mater. Energy Sustain.2020820101301014910.1039/D0TA03044A
    [Google Scholar]
  34. BartůněkV. PrůchaD. ŠvecováM. UlbrichP. HuberŠ. SedmidubskýD. JankovskýO. Ultrafine ferromagnetic iron oxide nanoparticles: Facile synthesis by low temperature decomposition of iron glycerolate.Mater. Chem. Phys.201618027227810.1016/j.matchemphys.2016.06.007
    [Google Scholar]
  35. LarcherD. SudantG. PatriceR. TarasconJ.M. Some insights on the use of polyols-based metal alkoxides powders as precursors for tailored metal-oxides particles.Chem. Mater.200315183543355110.1021/cm030048m
    [Google Scholar]
  36. KhoninaT.G. DeminA.M. TishinD.S. GermovA.Y. UiminM.A. MekhaevA.V. MininA.S. KarabanalovM.S. MysikA.A. BogdanovaE.A. KrasnovV.P. Magnetic nanocomposite materials based on Fe3O4 nanoparticles with iron and silica glycerolates shell: Synthesis and characterization.Int. J. Mol. Sci.202324151217810.3390/ijms241512178 37569552
    [Google Scholar]
  37. ElahiN. RizwanM. Progress and prospects of magnetic iron oxide nanoparticles in biomedical applications: A review.Artif. Organs202145111272129910.1111/aor.14027 34245037
    [Google Scholar]
  38. MonteserínM. LarumbeS. MartínezA.V. BurguiS. Francisco MartínL. Recent advances in the development of magnetic nanoparticles for biomedical applications.J. Nanosci. Nanotechnol.20212152705274110.1166/jnn.2021.19062 33653440
    [Google Scholar]
  39. ObisesanO.S. AjiboyeT.O. MhlangaS.D. MufhanduH.T. Biomedical applications of biodegradable polycaprolactone-functionalized magnetic iron oxides nanoparticles and their polymer nanocomposites.Colloids Surf. B Biointerfaces202322711334210.1016/j.colsurfb.2023.113342 37224613
    [Google Scholar]
  40. TadicM. LazovicJ. PanjanM. KraljS. Hierarchical iron oxide nanocomposite: Bundle-like morphology, magnetic properties and potential biomedical application.Ceram. Int.20224811160151602210.1016/j.ceramint.2022.02.145
    [Google Scholar]
  41. AnikM.I. HossainM.K. HossainI. MahfuzA.M.U.B. RahmanM.T. AhmedI. Recent progress of magnetic nanoparticles in biomedical applications: A review.Nano Select2021261146118610.1002/nano.202000162
    [Google Scholar]
  42. EslamiP. AlbinoM. ScavoneF. ChielliniF. MorelliA. BaldiG. CappielloL. DoumettS. LorenziG. RavagliC. CaneschiA. LaurenzanaA. SangregorioC. Smart magnetic nanocarriers for multi-stimuli on-demand drug delivery.Nanomaterials202212330310.3390/nano12030303 35159647
    [Google Scholar]
  43. DeminA.M. PershinaA.G. MininA.S. BrikunovaO.Y. MurzakaevA.M. PerekuchaN.A. RomashchenkoA.V. ShevelevO.B. UiminM.A. ByzovI.V. MalkeyevaD. KiselevaE. EfimovaL.V. VtorushinS.V. OgorodovaL.M. KrasnovV.P. Smart design of a pH-responsive system based on pHLIP-modified magnetite nanoparticles for tumor MRI.ACS Appl. Mater. Interfaces20211331368003681510.1021/acsami.1c07748 34324807
    [Google Scholar]
  44. NedyalkovaM. DonkovaB. RomanovaJ. TzvetkovG. MadurgaS. SimeonovV. Iron oxide nanoparticles – In vivo/in vitro biomedical applications and in silico studies.Adv. Colloid Interface Sci.201724919221210.1016/j.cis.2017.05.003 28499604
    [Google Scholar]
  45. ZhaoS. YuX. QianY. ChenW. ShenJ. Multifunctional magnetic iron oxide nanoparticles: An advanced platform for cancer theranostics.Theranostics202010146278630910.7150/thno.42564 32483453
    [Google Scholar]
  46. CrețuB.E.B. DodiG. ShavandiA. GardikiotisI. ȘerbanI.L. BalanV. Imaging constructs: The rise of iron oxide nanoparticles.Molecules202126113437348210.3390/molecules26113437 34198906
    [Google Scholar]
  47. LiH. WangR. HongR. LiY. Preparation, biocompatibility and imaging performance of ultrasmall iron oxide magnetic fluids for T1/T2-weighted MRI.Colloids Surf. A Physicochem. Eng. Asp.202264812936010.1016/j.colsurfa.2022.129360
    [Google Scholar]
  48. ImranM. AffandiA.M. AlamM.M. KhanA. KhanA.I. Advanced biomedical applications of iron oxide nanostructures based ferrofluids.Nanotechnology2021324242200110.1088/1361‑6528/ac137a 34252891
    [Google Scholar]
  49. ImranM. ChaudharyA.A. AhmedS. AlamM.M. KhanA. ZouliN. HakamiJ. RudayniH.A. KhanS.U.D. Iron oxide nanoparticle-based ferro-nanofluids for advanced technological applications.Molecules20222722793110.3390/molecules27227931 36432031
    [Google Scholar]
  50. ImranM. AlamM.M. HussainS. AbutalebA. AzizA. ChandanM.R. IrshadK. Al-HagriA.M.A. BakatherO.Y. KhanA. Colloidal Fe3O4 nanoparticles-based oil blend ferro-nanofluid for heat transfer application.Eur. Phys. J. Plus2021136775210.1140/epjp/s13360‑021‑01711‑6
    [Google Scholar]
  51. HussainS. Mottahir AlamM. ImranM. ZouliN. AzizA. IrshadK. HaiderM. KhanA. Fe3O4 nanoparticles decorated multi-walled carbon nanotubes based magnetic nanofluid for heat transfer application.Mater. Lett.202027412804310.1016/j.matlet.2020.128043
    [Google Scholar]
  52. PopaC.L. ProdanA.M. ChaponP. TurculetC. PredoiD. Inhibitory effect evaluation of glycerol-iron oxide thin films on methicillin-resistant staphylococcus aureus.J. Nanomater.201520151810.1155/2015/465034
    [Google Scholar]
  53. KhoninaT.G. TishinD.S. LarionovL.P. OsipenkoA.V. DobrinskayaM.N. BogdanovaE.A. KarabanalovM.S. BulatovaM.A. ShadrinaE.V. ChupakhinO.N. Iron(III) Monoglycerolate as a new biocompatible precursor in the synthesis of bioactive nanocomposite glycerohydrogels.Curr. Pharm. Biotechnol.20241710.2174/0113892010269503231229100317 38310447
    [Google Scholar]
  54. MatterM.T. StarsichF. GalliM. HilberM. SchlegelA.A. BertazzoS. PratsinisS.E. HerrmannI.K. Developing a tissue glue by engineering the adhesive and hemostatic properties of metal oxide nanoparticles.Nanoscale20179248418842610.1039/C7NR01176H 28604885
    [Google Scholar]
  55. NuvvulaS. BandiM. MallineniS.K. Clinical applications of ferric sulfate in dentistry: A narrative review.J. Conserv. Dent.201720427828110.4103/JCD.JCD_259_16 29259368
    [Google Scholar]
  56. ShabanovaE.M. DrozdovA.S. FakhardoA.F. DudanovI.P. KovalchukM.S. VinogradovV.V. Thrombin@Fe3O4 nanoparticles for use as a hemostatic agent in internal bleeding.Sci. Rep.20188123310.1038/s41598‑017‑18665‑4 29321571
    [Google Scholar]
  57. TranH.D.N. MoonshiS.S. XuZ.P. TaH.T. Influence of nanoparticles on the haemostatic balance: Between thrombosis and haemorrhage.Biomater. Sci.2021101105010.1039/D1BM01351C 34775503
    [Google Scholar]
  58. CothrenC.C. MooreE.E. HedegaardH.B. MengK. Epidemiology of urban trauma deaths: A comprehensive reassessment 10 years later.World J. Surg.20073171507151110.1007/s00268‑007‑9087‑2 17505854
    [Google Scholar]
  59. KhoshmohabatH. PaydarS. KazemiH.M. DalfardiB. Overview of agents used for emergency hemostasis.Trauma Mon.2016211e2602310.5812/traumamon.26023 27218055
    [Google Scholar]
  60. WareB.R. FlygareW.H. Light scattering in mixtures of BSA, BSA dimers, and fibrinogen under the influence of electric fields.J. Colloid Interface Sci.197239367067510.1016/0021‑9797(72)90075‑6
    [Google Scholar]
  61. TscharnuterW.W. Photon correlation spectroscopy in particle sizing. Encyclopedia of Analytical Chemistry. MeyersR.A. ChichesterJohn Wiley & Sons20005469548510.1002/9780470027318.a1512
    [Google Scholar]
  62. MironovA.N. Guidelines for preclinical trials of drugs.MoscowGrif i K2012
    [Google Scholar]
  63. LangH. MouracadeP. GimelP. BernhardJ.C. PignotG. ZiniL. CrepelM. RigaudJ. SalomonL. BellecL. VaessenC. RoupretM. JungJ.L. MoureyE. MartinX. BigotP. BruyèreF. BergerJ. AnsieauJ.P. SalomeF. HubertJ. PfisterC. TrifardF. GiganteM. BaumertH. MéjeanA. PatardJ.J. National prospective study on the use of local haemostatic agents during partial nephrectomy.BJU Int.20141135bE56E6110.1111/bju.12397 24053412
    [Google Scholar]
  64. KheirabadiB.S. SieberJ. BukhariT. RudnickaK. MurcinL.A. TuthillD. High-pressure fibrin sealant foam: An effective hemostatic agent for treating severe parenchymal hemorrhage.J. Surg. Res.2008144114515010.1016/j.jss.2007.02.012 17583744
    [Google Scholar]
  65. TakácsI. WegmannJ. HorváthS. FerenczA. FerenczS. JávorS. OdermattE. RõthE. WeberG. Efficacy of different hemostatic devices for severe liver bleeding: A randomized controlled animal study.Surg. Innov.201017434635210.1177/1553350610384405 20870671
    [Google Scholar]
  66. SenerD. KocakM. SaracogluR. DeveciU. KaradagM. Histopathological effects of Algan hemostatic agent (AHA) in liver injury model in rats.Hepatol. Forum202231162010.14744/hf.2021.2021.0040
    [Google Scholar]
  67. GaoY. Ikeda-ImafukuM. ZhaoZ. JoshiM. MitragotriS. A polymer‐based systemic hemostat for managing uncontrolled bleeding.Bioeng. Transl. Med.202383e1051610.1002/btm2.10516 37206230
    [Google Scholar]
  68. KopecA.K. JoshiN. LuyendykJ.P. Role of hemostatic factors in hepatic injury and disease: Animal models de‐liver.J. Thromb. Haemost.20161471337134910.1111/jth.13327 27060337
    [Google Scholar]
  69. NouriS. SharifM.R. JamaliB. PanahiY. Effect of ferric sulfate and ferric chloride in controlling liver bleeding an animal model study.Physiol. and Pharmacol2015184429436
    [Google Scholar]
  70. JainJ. AroraS. RajwadeJ.M. OmrayP. KhandelwalS. PaknikarK.M. Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use.Mol. Pharm.2009651388140110.1021/mp900056g 19473014
    [Google Scholar]
  71. BalouiriM. SadikiM. IbnsoudaS.K. Methods for in vitro evaluating antimicrobial activity: A review.J. Pharm. Anal.201662717910.1016/j.jpha.2015.11.005 29403965
    [Google Scholar]
  72. ErhirhieE.O. IhekweremeC.P. IlodigweE.E. Advances in acute toxicity testing: Strengths, weaknesses and regulatory acceptance.Interdiscip. Toxicol.201811151210.2478/intox‑2018‑0001 30181707
    [Google Scholar]
  73. S, P. Toxicological screening.J. Pharmacol. Pharmacother.201122747910.4103/0976‑500X.81895 21772764
    [Google Scholar]
  74. GreishK. ThiagarajanG. GhandehariH. In vivo methods of nanotoxicology. Methods in Molecular Biology ReinekeJ. Humana PressTotowa2012926235253
    [Google Scholar]
  75. Al-AfifiN.A. AlabsiA.M. BakriM.M. RamanathanA. Acute and sub-acute oral toxicity of Dracaena cinnabari resin methanol extract in rats.BMC Complement. Altern. Med.20181815010.1186/s12906‑018‑2110‑3 29402248
    [Google Scholar]
  76. NalimuF. OloroJ. PeterE.L. OgwangP.E. Acute and sub-acute oral toxicity of aqueous whole leaf and green rind extracts of Aloe vera in Wistar rats.BMC Complementary. Medicine and Therapies20222211610.1186/s12906‑021‑03470‑4 35031035
    [Google Scholar]
  77. ZainalZ. OngA. Yuen MayC. ChangS.K. Abdul RahimA. Khaza’aiH. Acute and subchronic oral toxicity of oil palm puree in sprague–dawley rats.Int. J. Environ. Res. Public Health20201710340410.3390/ijerph17103404 32414159
    [Google Scholar]
  78. QuJ. PeiL. WangX. FuS. YongL. XiaoX. XieQ. FanB. SongY. Acute and subchronic oral toxicity of anthraquinone in sprague dawley rats.Int. J. Environ. Res. Public Health202219161041310.3390/ijerph191610413 36012048
    [Google Scholar]
  79. KhoninaT.G. TishinD.S. LarionovL.P. DobrinskayaM.N. AntropovaI.P. IzmozherovaN.V. OsipenkoA.V. ShadrinaE.V. NikitinaE.Y. BogdanovaE.A. KarabanalovM.S. EvstigneevaN.P. KokhanM.M. ChupakhinO.N. Bioactive silicon-iron-containing glycerohydrogel synthesized by the sol—gel method in the presence of chitosan.Russ. Chem. Bull.202271112342235110.1007/s11172‑022‑3661‑5
    [Google Scholar]
  80. CharushinV.N. KungurovN.V. ChupakhinO.N. KhoninaT.G. EvstigneevaN.P. KokhanM.M. ZilberbergN.V. GerasimovaN.A. TishinD.S. ShadrinaE.V. NikitinaE.Yu. PermikinV.V. StarikovN.M. LarionovL.P. OsipenkoA.V. DobrinskayaM.N. SementsovaE.A. KotikovaA.Yu. MandraYu.V. BulatovaM.A. Silicon-iron(zinc, boron)containing glycerohydrogel for topical use, having hemostatic and antimicrobial activity.RU27979662023
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072295011240425080837
Loading
/content/journals/cbc/10.2174/0115734072295011240425080837
Loading

Data & Media loading...

Supplements

ARRIVE checklist is available as a supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test