Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Nowadays, cancer treatment is currently limited to surgery, chemotherapy, and radiation, which carry the risk of damaging the normal tissue of the body and incomplete removal of the cancerous cells from the body. Thus, the Nano technique offers a great means to target therapies directly on cancerous cells and neoplasm. Moreover, because nano-based formulations of polyphenolic curcumin show a major effect on cancer and tumour cells, nanoparticles have a tendency to overcome the hydrophobic nature of curcumin to improve its stability and bioavailability and . It is apparent from the studies that Curcumin has shown anticancer effects by regulating various immunomodulators, which include cytokines, reactive oxygen species, and cyclooxygenase-2 (COX-2). It also takes part in the downregulation of growth factors, protein kinases, oncogenic molecules, and various signalling pathways, such as nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), c-Jun N-terminal kinase (JNK), and signal transducer and activator of transcription 3 (STAT3) signalling. According to recent studies and clinical trials, nano curcumin shows a major effect on cancerous cells. In this article, the authors summarised the mechanism of nano curcumin in various metastatic cancers and the most recent clinical trials performed.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072294675240502065442
2024-05-15
2025-07-10
Loading full text...

Full text loading...

References

  1. RahmanM.A. AliA. RahamathullaM. SalamS. HaniU. WahabS. WarsiM.H. YusufM. AliA. MittalV. HarwanshR.K. Fabrication of sustained release curcumin-loaded solid lipid nanoparticles (Cur-SLNs) as a potential drug delivery system for the treatment of lung cancer: Optimization of formulation and in vitro biological evaluation.Polymers202315354210.3390/polym15030542 36771843
    [Google Scholar]
  2. Seyed HosseiniE. Alizadeh ZareiM. TarrahimofradH. ZamaniJ. Haddad KashaniH. AhmadE. NikzadH. Synergistic effects of dendrosomal nanocurcumin and oxaliplatin on oncogenic properties of ovarian cancer cell lines by down-expression of MMPs.Biol. Res.2023561310.1186/s40659‑023‑00412‑x 36658640
    [Google Scholar]
  3. AnandP. KunnumakkaraA.B. NewmanR.A. AggarwalB.B. Bioavailability of curcumin: Problems and promises.Mol. Pharm.20074680781810.1021/mp700113r 17999464
    [Google Scholar]
  4. LouisaM. WanafriE. ArozalW. SandhiutamiN.M.D. BasalamahA.M. Nanocurcumin preserves kidney function and haematology parameters in DMBA-induced ovarian cancer treated with cisplatin via its antioxidative and anti-inflammatory effect in rats.Pharm. Biol.202361129830510.1080/13880209.2023.2166965 36708211
    [Google Scholar]
  5. KarthikeyanA. SenthilN. MinT. Nanocurcumin: A promising candidate for therapeutic applications.Front. Pharmacol.20201148710.3389/fphar.2020.00487 32425772
    [Google Scholar]
  6. RahimiH.R. NedaeiniaR. Sepehri ShamlooA. NikdoustS. Kazemi OskueeR. Novel delivery system for natural products: Nano-curcumin formulations.Avicenna J. Phytomed.201664383398 27516979
    [Google Scholar]
  7. ArozalW. LouisaM. RahmatD. ChendranaP. SandhiutamiN.M.D. Development, characterization and pharmacokinetic profile of chitosan-sodium tripolyphosphate nanoparticles based drug delivery systems for curcumin.Adv. Pharm. Bull.2020111778510.34172/apb.2021.008 33747854
    [Google Scholar]
  8. AmekyehH. AlkhaderE. SabraR. BillaN. Prospects of curcumin nanoformulations in cancer management.Molecules202227236110.3390/molecules27020361 35056675
    [Google Scholar]
  9. Hafez GhoranS. CalcaterraA. AbbasiM. TaktazF. NieseltK. BabaeiE. Curcumin-based nanoformulations: A promising adjuvant towards cancer treatment.Molecules20222716523610.3390/molecules27165236 36014474
    [Google Scholar]
  10. WongK.E. NgaiS.C. ChanK.G. LeeL.H. GohB.H. ChuahL.H. Curcumin nanoformulations for colorectal cancer: A review.Front. Pharmacol.20191015210.3389/fphar.2019.00152 30890933
    [Google Scholar]
  11. YangM. YuL. GuoR. DongA. LinC. ZhangJ. A modular coassembly approach to all-in-one multifunctional nanoplatform for synergistic codelivery of doxorubicin and curcumin.Nanomaterials20188316710.3390/nano8030167 29543780
    [Google Scholar]
  12. WangJ. WangC. BuG. Curcumin inhibits the growth of liver cancer stem cells through the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway.Exp. Ther. Med.20181543650365810.3892/etm.2018.5805 29545895
    [Google Scholar]
  13. ZoiV. GalaniV. LianosG.D. VoulgarisS. KyritsisA.P. AlexiouG.A. The role of curcumin in cancer treatment.Biomedicines202199108610.3390/biomedicines9091086 34572272
    [Google Scholar]
  14. YeQ. Stable nanoemulsions for poorly soluble curcumin: From production to digestion response in vitro.J. Mol. Liq.202439412372010.1016/j.molliq.2023.123720
    [Google Scholar]
  15. GonçalvesR.F.S. MartinsJ.T. AbrunhosaL. VicenteA.A. PinheiroA.C. Nanoemulsions for enhancement of curcumin bioavailability and their safety evaluation: Effect of emulsifier type.Nanomaterials202111381510.3390/nano11030815 33806777
    [Google Scholar]
  16. QianC. McClementsD.J. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size.Food Hydrocoll.20112551000100810.1016/j.foodhyd.2010.09.017
    [Google Scholar]
  17. LuizM.T. JessycaA.P.D. Taís de CássiaR. CarvalhoG.C. SábioR.M. MarchettiJ.M. ChorilliM. Folic acid-modified curcumin-loaded liposomes for breast cancer therapy.Colloids Surf. A: Physicochem. Eng. Asp.202264512893510.1016/j.colsurfa.2022.128935
    [Google Scholar]
  18. BashkeranT. KamaruddinA.H. NgoT.X. SudaK. UmakoshiH. WatanabeN. NadzirM.M. Niosomes in cancer treatment: A focus on curcumin encapsulation.Heliyon202398e1871010.1016/j.heliyon.2023.e18710 37593605
    [Google Scholar]
  19. HongW. GuoF. YuN. YingS. LouB. WuJ. GaoY. JiX. WangH. LiA. WangG. YangG. A novel folic acid receptor-targeted drug delivery system based on curcumin-loaded β-Cyclodextrin nanoparticles for cancer treatment.Drug Des. Devel. Ther.2021152843285510.2147/DDDT.S320119 34234415
    [Google Scholar]
  20. PatilS. ChoudharyB. RathoreA. RoyK. MahadikK. Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells.Phytomedicine201522121103111110.1016/j.phymed.2015.08.006 26547533
    [Google Scholar]
  21. MangalathillamS. RejinoldN.S. NairA. LakshmananV.K. NairS.V. JayakumarR. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route.Nanoscale20124123925010.1039/C1NR11271F 22080352
    [Google Scholar]
  22. Loch-NeckelG. Santos-BubniakL. MazzarinoL. JacquesA.V. MoccelinB. Santos-SilvaM.C. Lemos-SennaE. Orally administered chitosan-coated polycaprolactone nanoparticles containing curcumin attenuate metastatic melanoma in the lungs.J. Pharm. Sci.2015104103524353410.1002/jps.24548 26085173
    [Google Scholar]
  23. ShaikhJ. AnkolaD.D. BeniwalV. SinghD. KumarM.N.V.R. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer.Eur. J. Pharm. Sci.2009373-422323010.1016/j.ejps.2009.02.019 19491009
    [Google Scholar]
  24. GuptaA. BriffaS.M. SwinglerS. GibsonH. KannappanV. AdamusG. KowalczukM. MartinC. RadeckaI. Synthesis of silver nanoparticles using curcumin-cyclodextrins loaded into bacterial cellulose-based hydrogels for wound dressing applications.Biomacromolecules20202151802181110.1021/acs.biomac.9b01724 31967794
    [Google Scholar]
  25. KakkarV. SinghS. SinglaD. KaurI.P. Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin.Mol. Nutr. Food Res.201155349550310.1002/mnfr.201000310 20938993
    [Google Scholar]
  26. YoysungnoenP. WirachwongP. ChangtamC. SuksamrarnA. PatumrajS. Anti-cancer and anti-angiogenic effects of curcumin and tetrahydrocurcumin on implanted hepatocellular carcinoma in nude mice.World J. Gastroenterol.200814132003200910.3748/wjg.14.2003 18395899
    [Google Scholar]
  27. MundekkadD. ChoW.C. Applications of curcumin and its nanoforms in the treatment of cancer.Pharmaceutics2023159222310.3390/pharmaceutics15092223 37765192
    [Google Scholar]
  28. SunJ.H. LuoQ. LiuL.L. SongG.B. Liver cancer stem cell markers: Progression and therapeutic implications.World J. Gastroenterol.201622133547355710.3748/wjg.v22.i13.3547 27053846
    [Google Scholar]
  29. AfrinR. ArumugamS. RahmanA. WahedM.I.I. KaruppagounderV. HarimaM. SuzukiH. MiyashitaS. SuzukiK. YoneyamaH. UenoK. WatanabeK. Curcumin ameliorates liver damage and progression of NASH in NASH-HCC mouse model possibly by modulating HMGB1-NF-κB translocation.Int. Immunopharmacol.20174417418210.1016/j.intimp.2017.01.016 28110063
    [Google Scholar]
  30. ZabihiN.A. PirroM. JohnstonT.P. SahebkarA. Is there a role for curcumin supplementation in the treatment of non-alcoholic fatty liver disease? The data suggest yes.Curr. Pharm. Des.201723796998210.2174/1381612822666161010115235 27748192
    [Google Scholar]
  31. SubramaniamD. KaushikG. DandawateP. AnantS. Targeting cancer stem cells for chemoprevention of pancreatic cancer.Curr. Med. Chem.201825222585259410.2174/0929867324666170127095832 28137215
    [Google Scholar]
  32. GerseyZ.C. RodriguezG.A. BarbariteE. SanchezA. WaltersW.M. OhaetoK.C. KomotarR.J. GrahamR.M. Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species.BMC Cancer20171719910.1186/s12885‑017‑3058‑2 28160777
    [Google Scholar]
  33. HewlingsS. KalmanD. Curcumin: A review of its effects on human health.Foods20176109210.3390/foods6100092 29065496
    [Google Scholar]
  34. WürstleM.L. LaussmannM.A. RehmM. The central role of initiator caspase-9 in apoptosis signal transduction and the regulation of its activation and activity on the apoptosome.Exp. Cell Res.2012318111213122010.1016/j.yexcr.2012.02.013 22406265
    [Google Scholar]
  35. ChenW.C. LaiY.A. LinY.C. MaJ.W. HuangL.F. YangN.S. HoC.T. KuoS.C. WayT.D. Curcumin suppresses doxorubicin-induced epithelial-mesenchymal transition via the inhibition of TGF-β and PI3K/AKT signaling pathways in triple-negative breast cancer cells.J. Agric. Food Chem.20136148118171182410.1021/jf404092f 24236784
    [Google Scholar]
  36. ImranM. UllahA. SaeedF. NadeemM. ArshadM.U. SuleriaH.A.R. Cucurmin, anticancer, & antitumor perspectives: A comprehensive review.Crit. Rev. Food Sci. Nutr.20185881271129310.1080/10408398.2016.1252711 27874279
    [Google Scholar]
  37. SaadatS. BeigoliS. KhazdairM.R. AminF. BoskabadyM.H. Experimental and clinical studies on the effects of natural products on noxious agents-induced lung disorders, a review.Front. Nutr.2022986791410.3389/fnut.2022.867914 35662950
    [Google Scholar]
  38. ShenL. LiB. QiaoY. Fe3O4 nanoparticles in targeted drug/gene delivery systems.Materials201811232410.3390/ma11020324 29473914
    [Google Scholar]
  39. AlhusainiA. AlhumaidanS. AlmogrenR. AlsaifS. AlsultanE. HusseinI. Nano-curcumin protects against sodium nitrite–induced lung hypoxia through modulation of mitogen-activated protein kinases/c-jun nh2-terminal kinase signaling pathway.Dose Response202119310.1177/15593258211033148 34393686
    [Google Scholar]
  40. LakshmananA. AkasovR.A. SholinaN.V. DeminaP.A. GeneralovaA.N. GangadharanA. SardarD.K. LankamsettyK.B. KhochenkovD.A. KhaydukovE.V. GudkovS.V. JayaramanM. JayaramanS. Nanocurcumin-loaded UCNPs for cancer theranostics: Physicochemical properties, in vitro toxicity, and in vivo imaging studies.Nanomaterials2021119223410.3390/nano11092234 34578550
    [Google Scholar]
  41. HannaD.H. SaadG.R. Nanocurcumin: Preparation, characterization and cytotoxic effects towards human laryngeal cancer cells.RSC Advances20201035207242073710.1039/D0RA03719B 35517737
    [Google Scholar]
  42. ThamakeS.I. RautS.L. RanjanA.P. GryczynskiZ. VishwanathaJ.K. Surface functionalization of PLGA nanoparticles by non-covalent insertion of a homo-bifunctional spacer for active targeting in cancer therapy.Nanotechnology201122303510110.1088/0957‑4484/22/3/035101 21149963
    [Google Scholar]
  43. DasR.K. KasojuN. BoraU. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells.Nanomedicine20106115316010.1016/j.nano.2009.05.009 19616123
    [Google Scholar]
  44. YuM.K. ParkJ. JonS. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy.Theranostics20122134410.7150/thno.3463 22272217
    [Google Scholar]
  45. GindyM.E. Prud’hommeR.K. Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy.Expert Opin. Drug Deliv.20096886587810.1517/17425240902932908 19637974
    [Google Scholar]
  46. MukhtarH. AdhamiV.M. ChamcheuJ.C. MukhtarH. Impact of nanotechnology in cancer: Emphasis on nanochemoprevention.Int. J. Nanomedicine2012759160510.2147/IJN.S26026 22346353
    [Google Scholar]
  47. BabaeiE. SadeghizadehM. HassanZ.M. FeiziM.A.H. NajafiF. HashemiS.M. Dendrosomal curcumin significantly suppresses cancer cell proliferation in vitro and in vivo.Int. Immunopharmacol.201212122623410.1016/j.intimp.2011.11.015 22155627
    [Google Scholar]
  48. ChenB-H. ChangH.B. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus.Int. J. Nanomedicine2015105059508010.2147/IJN.S87225 26345201
    [Google Scholar]
  49. BishtS. FeldmannG. SoniS. RaviR. KarikarC. MaitraA. MaitraA. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): A novel strategy for human cancer therapy.J. Nanobiotechnology200751310.1186/1477‑3155‑5‑3 17439648
    [Google Scholar]
  50. AshrafizadehM. NajafiM. MakvandiP. ZarrabiA. FarkhondehT. SamarghandianS. Versatile role of curcumin and its derivatives in lung cancer therapy.J. Cell. Physiol.2020235129241926810.1002/jcp.29819 32519340
    [Google Scholar]
  51. EsatbeyogluT. HuebbeP. ErnstI.M.A. ChinD. WagnerA.E. RimbachG. Curcumin--from molecule to biological function.Angew. Chem. Int. Ed.201251225308533210.1002/anie.201107724 22566109
    [Google Scholar]
  52. KanaiM. Therapeutic applications of curcumin for patients with pancreatic cancer.World J. Gastroenterol.201420289384939110.3748/wjg.v20.i28.9384 25071333
    [Google Scholar]
  53. BimonteS. BarbieriA. LeongitoM. PiccirilloM. GiudiceA. PivonelloC. de AngelisC. GranataV. PalaiaR. IzzoF. Curcumin anticancer studies in pancreatic cancer.Nutrients20168743310.3390/nu8070433 27438851
    [Google Scholar]
  54. PricciM. GirardiB. GiorgioF. LosurdoG. IerardiE. Di LeoA. Curcumin and colorectal cancer: From basic to clinical evidences.Int. J. Mol. Sci.2020217236410.3390/ijms21072364 32235371
    [Google Scholar]
  55. OjoO.A. AdeyemoT.R. RotimiD. BatihaG.E.S. Mostafa-HedeabG. IyobhebheM.E. ElebiyoT.C. AtunwaB. OjoA.B. LimaC.M.G. Conte-JuniorC.A. Anticancer properties of curcumin against colorectal cancer: A review.Front. Oncol.20221288164110.3389/fonc.2022.881641 35530318
    [Google Scholar]
  56. TianS. LiaoL. ZhouQ. HuangX. ZhengP. GuoY. DengT. TianX. Curcumin inhibits the growth of liver cancer by impairing myeloid derived suppressor cells in murine tumor tissues.Oncol. Lett.202121428610.3892/ol.2021.12547 33732362
    [Google Scholar]
  57. MarquardtJ.U. Gomez-QuirozL. Arreguin CamachoL.O. PinnaF. LeeY.H. KitadeM. DomínguezM.P. CastvenD. BreuhahnK. ConnerE.A. GalleP.R. AndersenJ.B. FactorV.M. ThorgeirssonS.S. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer.J. Hepatol.201563366166910.1016/j.jhep.2015.04.018 25937435
    [Google Scholar]
  58. CuiJ. YuB. ZhaoY. ZhuW. LiH. LouH. ZhaiG. Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems.Int. J. Pharm.20093711-214815510.1016/j.ijpharm.2008.12.009 19124065
    [Google Scholar]
  59. SouK. InenagaS. TakeokaS. TsuchidaE. Loading of curcumin into macrophages using lipid-based nanoparticles.Int. J. Pharm.20083521-228729310.1016/j.ijpharm.2007.10.033 18063327
    [Google Scholar]
  60. SandurS.K. IchikawaH. PandeyM.K. KunnumakkaraA.B. SungB. SethiG. AggarwalB.B. Role of pro-oxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin (diferuloylmethane).Free Radic. Biol. Med.200743456858010.1016/j.freeradbiomed.2007.05.009 17640567
    [Google Scholar]
  61. HuP. KeC. GuoX. RenP. TongY. LuoS. HeY. WeiZ. ChengB. LiR. LuoJ. MengZ. Both glypican-3/Wnt/β-catenin signaling pathway and autophagy contributed to the inhibitory effect of curcumin on hepatocellular carcinoma.Dig. Liver Dis.201951112012610.1016/j.dld.2018.06.012 30001951
    [Google Scholar]
  62. GouM. MenK. ShiH. XiangM. ZhangJ. SongJ. LongJ. WanY. LuoF. ZhaoX. QianZ. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo.Nanoscale2011341558156710.1039/c0nr00758g 21283869
    [Google Scholar]
  63. YallapuM.M. GuptaB.K. JaggiM. ChauhanS.C. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells.J. Colloid Interface Sci.20103511192910.1016/j.jcis.2010.05.022 20627257
    [Google Scholar]
  64. IresonC.R. JonesD.J. OrrS. CoughtrieM.W. BoocockD.J. WilliamsM.L. FarmerP.B. StewardW.P. GescherA.J. Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine.Cancer Epidemiol. Biomarkers Prev.2002111105111 11815407
    [Google Scholar]
  65. ShenZ. WeiW. TanakaH. KohamaK. MaG. DobashiT. MakiY. WangH. BiJ. DaiS. A galactosamine-mediated drug delivery carrier for targeted liver cancer therapy.Pharmacol. Res.201164441041910.1016/j.phrs.2011.06.015 21723392
    [Google Scholar]
  66. ChoK. WangX. NieS. ChenZ.G. ShinD.M. Therapeutic nanoparticles for drug delivery in cancer.Clin. Cancer Res.20081451310131610.1158/1078‑0432.CCR‑07‑1441 18316549
    [Google Scholar]
  67. BarretoJ.A. O’MalleyW. KubeilM. GrahamB. StephanH. SpicciaL. Nanomaterials: Applications in cancer imaging and therapy.Adv. Mater.20112312H18H4010.1002/adma.201100140 21433100
    [Google Scholar]
  68. LuoF. SongX. ZhangY. ChuY. Low-dose curcumin leads to the inhibition of tumor growth via enhancing CTL-mediated antitumor immunity.Int. Immunopharmacol.20111191234124010.1016/j.intimp.2011.04.002 21497674
    [Google Scholar]
  69. AggarwalB.B. ShishodiaS. TakadaY. BanerjeeS. NewmanR.A. Bueso-RamosC.E. PriceJ.E. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice.Clin. Cancer Res.200511207490749810.1158/1078‑0432.CCR‑05‑1192 16243823
    [Google Scholar]
  70. ZengY. QiuF. LiuY. QuG. YaoX. Isolation and identification of phase 1 metabolites of demethoxycurcumin in rats.Drug Metab. Dispos.20073591564157310.1124/dmd.107.015008 17553917
    [Google Scholar]
  71. SinghS. AggarwalB.B. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected].J. Biol. Chem.199527042249952500010.1074/jbc.270.42.24995 7559628
    [Google Scholar]
  72. LinC.L. LinJ.K. Curcumin: A potential cancer chemopreventive agent through suppressing NF-kB signaling.J. Cancer Mol.200841116
    [Google Scholar]
  73. KhanM.M. MadniA. TahirN. ParveenF. KhanS. JanN. AliA. AbdurrahimM. FarooqU. KhanM.I. Co-delivery of curcumin and cisplatin to enhance cytotoxicity of cisplatin using lipid-chitosan hybrid nanoparticles.Int. J. Nanomedicine2020152207221710.2147/IJN.S247893 32280215
    [Google Scholar]
  74. ShishodiaS. AminH.M. LaiR. AggarwalB.B. Curcumin (diferuloylmethane) inhibits constitutive NF-κB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma.Biochem. Pharmacol.200570570071310.1016/j.bcp.2005.04.043 16023083
    [Google Scholar]
  75. GargA. TisdaleA.W. HaidariE. KokkoliE. Targeting colon cancer cells using PEGylated liposomes modified with a fibronectin-mimetic peptide.Int. J. Pharm.20093661-220121010.1016/j.ijpharm.2008.09.016 18835580
    [Google Scholar]
  76. MahmudM. PiwoniA. FiliczakN. JanickaM. GubernatorJ. Long-circulating curcumin-loaded liposome formulations with high incorporation efficiency, stability and anticancer activity towards pancreatic adenocarcinoma cell lines in vitro.PLoS One20161112e016778710.1371/journal.pone.0167787 27936114
    [Google Scholar]
  77. PortneyN.G. OzkanM. Nano-oncology: Drug delivery, imaging, and sensing.Anal. Bioanal. Chem.2006384362063010.1007/s00216‑005‑0247‑7 16440195
    [Google Scholar]
  78. MisraR. AcharyaS. SahooS.K. Cancer nanotechnology: Application of nanotechnology in cancer therapy.Drug Discov. Today20101519-2084285010.1016/j.drudis.2010.08.006 20727417
    [Google Scholar]
  79. BishtS. MizumaM. FeldmannG. OttenhofN.A. HongS.M. PramanikD. ChennaV. KarikariC. SharmaR. GogginsM.G. RudekM.A. RaviR. MaitraA. MaitraA. Systemic administration of polymeric nanoparticle-encapsulated curcumin (NanoCurc) blocks tumor growth and metastases in preclinical models of pancreatic cancer.Mol. Cancer Ther.2010982255226410.1158/1535‑7163.MCT‑10‑0172 20647339
    [Google Scholar]
  80. SharmaR.A. McLellandH.R. HillK.A. IresonC.R. EudenS.A. MansonM.M. PirmohamedM. MarnettL.J. GescherA.J. StewardW.P. Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer.Clin. Cancer Res.20017718941900 11448902
    [Google Scholar]
  81. Lev-AriS. ZingerH. KazanovD. YonaD. Ben-YosefR. StarrA. FigerA. ArberN. Curcumin synergistically potentiates the growth inhibitory and pro-apoptotic effects of celecoxib in pancreatic adenocarcinoma cells.Biomed. Pharmacother.200559Suppl. 2S276S28010.1016/S0753‑3322(05)80045‑9 16507392
    [Google Scholar]
  82. YangK.Y. LinL.C. TsengT.Y. WangS.C. TsaiT.H. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC–MS/MS.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20078531-218318910.1016/j.jchromb.2007.03.010 17400527
    [Google Scholar]
  83. PanM.H. Lin-ShiauS.Y. LinJ.K. Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IκB kinase and NFκB activation in macrophages.Biochem. Pharmacol.200060111665167610.1016/S0006‑2952(00)00489‑5 11077049
    [Google Scholar]
  84. AnandP. NairH.B. SungB. KunnumakkaraA.B. YadavV.R. TekmalR.R. AggarwalB.B. RETRACTED: Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo.Biochem. Pharmacol.201079333033810.1016/j.bcp.2009.09.003 19735646
    [Google Scholar]
  85. SahuA. BoraU. KasojuN. GoswamiP. Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)–palmitate nanocarrier for curcumin delivery to cancer cells.Acta Biomater.2008461752176110.1016/j.actbio.2008.04.021 18524701
    [Google Scholar]
  86. MarjanehR.M. RahmaniF. HassanianS.M. RezaeiN. HashemzehiM. BahramiA. AriakiaF. FiujiH. SahebkarA. AvanA. KhazaeiM. Phytosomal curcumin inhibits tumor growth in colitis‐associated colorectal cancer.J. Cell. Physiol.2018233106785679810.1002/jcp.26538 29737515
    [Google Scholar]
  87. BalaI. HariharanS. KumarM.N.V.R. PLGA nanoparticles in drug delivery: The state of the art.Crit. Rev. Ther. Drug Carrier Syst.200421538742210.1615/CritRevTherDrugCarrierSyst.v21.i5.20 15719481
    [Google Scholar]
  88. Sanoj RejinoldN. SreerekhaP.R. ChennazhiK.P. NairS.V. JayakumarR. Biocompatible, biodegradable and thermo-sensitive chitosan-g-poly (N-isopropylacrylamide) nanocarrier for curcumin drug delivery.Int. J. Biol. Macromol.201149216117210.1016/j.ijbiomac.2011.04.008 21536066
    [Google Scholar]
  89. SawickaD. HryniewickaA. GohalS. SadowskaA. PryczyniczA. Guzińska-UstymowiczK. SokołowskaE. MorzyckiJ.W. CarH. Establishment of in vitro and in vivo anticolorectal cancer efficacy of lithocholic acid-based imidazolium salts.Int. J. Mol. Sci.20222313701910.3390/ijms23137019 35806024
    [Google Scholar]
  90. YallapuM.M. MaherD.M. SundramV. BellM.C. JaggiM. ChauhanS.C. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth.J. Ovarian Res.2010311110.1186/1757‑2215‑3‑11 20429876
    [Google Scholar]
  91. ShaoJ. ZhengD. JiangZ. XuH. HuY. LiX. LuX. Curcumin delivery by methoxy polyethylene glycol–poly(caprolactone) nanoparticles inhibits the growth of C6 glioma cells.Acta Biochim. Biophys. Sin.201143426727410.1093/abbs/gmr011 21349881
    [Google Scholar]
  92. MhaidatN.M. BouklihaceneM. ThorneR.F. 5-Fluorouracil-induced apoptosis in colorectal cancer cells is caspase-9-dependent and mediated by activation of protein kinase C-δ.Oncol. Lett.20148269970410.3892/ol.2014.2211 25013487
    [Google Scholar]
  93. Moballegh NaseryM. AbadiB. PoormoghadamD. ZarrabiA. KeyhanvarP. KhanbabaeiH. AshrafizadehM. MohammadinejadR. TavakolS. SethiG. Curcumin delivery mediated by bio-based nanoparticles: A review.Molecules202025368910.3390/molecules25030689 32041140
    [Google Scholar]
  94. MeyerD.E. ShinB.C. KongG.A. DewhirstM.W. ChilkotiA. Drug targeting using thermally responsive polymers and local hyperthermia.J. Control. Release2001741-321322410.1016/S0168‑3659(01)00319‑4 11489497
    [Google Scholar]
  95. MudduluruG. George-WilliamJ.N. MuppalaS. AsanganiI.A. KumarswamyR. NelsonL.D. AllgayerH. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer.Biosci. Rep.201131318519710.1042/BSR20100065 20815812
    [Google Scholar]
  96. UdompornmongkolP. ChiangB.H. Curcumin-loaded polymeric nanoparticles for enhanced anti-colorectal cancer applications.J. Biomater. Appl.201530553754610.1177/0885328215594479 26170212
    [Google Scholar]
  97. MeybodiS.M. RezaeiP. FarajiN. JamehbozorgK. AshnaS. ShokriF. GoleijP. MoradiS. KashianM. ArefnezhadR. SahebkarA. Curcumin and its novel formulations for the treatment of hepatocellular carcinoma: New trends and future perspectives in cancer therapy.J. Funct. Foods202310810570510.1016/j.jff.2023.105705
    [Google Scholar]
  98. WangX. TianY. LinH. CaoX. ZhangZ. Curcumin induces apoptosis in human hepatocellular carcinoma cells by decreasing the expression of STAT3/VEGF/HIF-1α signaling.Open Life Sci.20231812022061810.1515/biol‑2022‑0618 37333486
    [Google Scholar]
  99. JantawongC. PripremA. IntuyodK. PairojkulC. PinlaorP. WaraasawapatiS. MongkonI. ChamgramolY. PinlaorS. Curcumin-loaded nanocomplexes: Acute and chronic toxicity studies in mice and hamsters.Toxicol. Rep.202181346135710.1016/j.toxrep.2021.06.021 34277359
    [Google Scholar]
  100. LooC.Y. SiewE.L. YoungP.M. TrainiD. LeeW.H. Toxicity of curcumin nanoparticles towards alveolar macrophage: Effects of surface charges.Food Chem. Toxicol.202216311297610.1016/j.fct.2022.112976 35364129
    [Google Scholar]
  101. Ashtary-LarkyD. Rezaei KelishadiM. BagheriR. MoosavianS.P. WongA. DavoodiS.H. KhaliliP. DutheilF. SuzukiK. AsbaghiO. The effects of nano-curcumin supplementation on risk factors for cardiovascular disease: A GRADE-assessed systematic review and meta-analysis of clinical trials.Antioxidants2021107101510.3390/antiox10071015 34202657
    [Google Scholar]
  102. Mohamed IbrahimR. El Zahraa Ali Abd ElaalF. ZakiS. Effect of curcumin and nano-curcumin on reduce aluminum toxicity in rats.Int. J. Food Sci. Biotechnol.2019436410.11648/j.ijfsb.20190403.12
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072294675240502065442
Loading
/content/journals/cbc/10.2174/0115734072294675240502065442
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test