Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Background

Due to the fact that animal parasitic diseases often occur in the form of mixed infections, it is necessary to use complex drugs with a combination of active substances that act against different classes of helminths. Fenbendazole has a wide spectrum of nematocidal action and is less effective against cestodes. Considering that sheep are often infected with both gastro-intestinal nematodes and cestodes, a complex drug based on fenbendazole, niclosamide with polyvinylpyrrolidone polymer, was developed using mechanochemical technology in order to increase its solubility and bioavailability and reduce the dosages and side effects.

Objective

This study aimed to evaluate the influence of mechanochemical technology on the efficacy of complex solid dispersions of anthelmintics against cestodoses and nematodoses.

Methods

The influence of different types of mills (roller and planetary mills), levels of energy intensity (20, 40, 60 g), and component ratio (2:20:78; 3:30:67; 4:40:56) during mechanochemical processing was studied on the anthelmintic efficacy of complex solid dispersions of fenbendazole, niclosamide, and polyvinylpyrrolidone in laboratory models of trichinellosis and hymenolepiosis of white mice, and on sheep naturally infected with helminths.

Results

The efficacy of complex solid dispersions obtained in the planetary mill was higher than the activity of dispersions obtained in a roller mill. It showed 87.5, 96.36, 83.77, and 99.39% efficacy, respectively, against experimental trichinellosis, hymenolepiosis of white mice, gastro-intestinal nematode infection and monieziosis of sheep at a ratio of 2:20:78. The basic drug - fenbendazole demonstrated 31.37 and 22.77% activity against experimental trichinellosis and gastro-intestinal nematode infection of sheep. The basic drug, niclosamide, showed 36.37% efficacy against hymenolepiosis in mice and 28.31% against monieziosis in sheep. It was established that with an increase in the energy intensity level of the planetary mill (20, 40, and 60 g), the decrease in the efficacy of solid dispersion occurred from 73.90 to 59.12% against and from 92.73% to 79.81% against

Conclusion

The use of mechanochemical technology for the production of solid dispersions of fenbendazole and niclosamide with polyvinylpyrrolidone makes it possible to increase the anthelmintic efficacy by 2.7–3 times compared to the activity of basic substances. It was noted that the complex solid dispersions of anthelmintics obtained in a planetary mill had 7.51–10.17% greater activity in comparison with the samples obtained in a roller mill. The most optimal ratio of active substances was 2:20:78 at a 20 g level of energy intensity of the planetary mill.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072303357240528095424
2024-06-07
2025-05-29
Loading full text...

Full text loading...

References

  1. DushkinA.V. SuncovL.P. KhalikovS.S. Mechanochemical technology for increasing the solubility of drugs.J. Fund. Res.20131448457
    [Google Scholar]
  2. KhalikovS.S. LokshinB.V. IlyinM.M.Jr VarlamovaA.I. MusaevM.B. ArhipovI.A. Methods for obtaining solid dispersions of drugs and their properties.Russ. Chem. Bull.201968101924193210.1007/s11172‑019‑2648‑3
    [Google Scholar]
  3. LapshinO.V. BoldyrevaE.V. BoldyrevV.V. Role of mixing and milling in mechanochemical synthesis.Russ. J. Inorg. Chem.202166343345310.1134/S0036023621030116
    [Google Scholar]
  4. SarmahK.K. NathN. RaoD.R. ThakuriaR. Mechanochemical synthesis of drug–drug and drug–nutraceutical multicomponent solids of olanzapine.Cryst Eng Comm20202261120113010.1039/C9CE01504C
    [Google Scholar]
  5. BoldyrevV.V. TkáčováK. Mechanochemistry of solids: past, present, and prospects.J. Mater. Synth. Process.200083/412113210.1023/A:1011347706721
    [Google Scholar]
  6. BalážP. Mechanochemistry in nanoscience and minerals engineering.HeidelbergSpringer200810.1007/978‑3‑540‑74855‑7
    [Google Scholar]
  7. JamesS.L. AdamsC.J. BolmC. BragaD. CollierP. FriščićT. GrepioniF. HarrisK.D.M. HyettG. JonesW. KrebsA. MackJ. MainiL. OrpenA.G. ParkinI.P. ShearouseW.C. SteedJ.W. WaddellD.C. Mechanochemistry: opportunities for new and cleaner synthesis.Chem. Soc. Rev.201241141344710.1039/C1CS15171A 21892512
    [Google Scholar]
  8. TodresZ.V. Organic Mechanochemistry and Its Practical Applications.1st edBoca RatonCRC Press200610.1201/9781420005882
    [Google Scholar]
  9. KhalikovS.S. ChistyachenkoYu.S. DushkinA.V. MetelevaE.S. PolyakovN.E. ArkhipovI.A. VarlamovaA.I. GlamazdinI.I. DanilevskayaN.V. Development of antihelminthics of increased efficiency on the basis of intermolecular complexes of active substances with water-soluble polymers including polysaccharides.J. Chem. Sustain. Develop.20155567577
    [Google Scholar]
  10. ArkhipovI.A. SadovK.M. LimovaY.V. SadovaA.K. VarlamovaA.I. KhalikovS.S. DushkinA.V. ChistyachenkoY.S. The efficacy of the supramolecular complexes of niclosamide obtained by mechanochemical technology and targeted delivery against cestode infection of animals.Vet. Parasitol.2017246252910.1016/j.vetpar.2017.08.019 28969776
    [Google Scholar]
  11. ArkhipovI. KhalikovS. DushkinA. SadovK. MetelevaE. ArisovM. VarlamovaA. Anthelmintic efficacy of supramolecular complex of praziquantel by mechanochemical technology.Iran. J. Parasitol.202015336437310.18502/ijpa.v15i3.4201 33082801
    [Google Scholar]
  12. VarlamovaA.I. KotchetkovP.P. ArkhipovI.A. KhalikovS.S. ArisovM.V. AbramovV.E. Pharmacokinetic profile, tissue residue depletion and anthelmintic efficacy of supramolecular fenbendazole.Int. J. Pharm.202160712095710.1016/j.ijpharm.2021.120957 34332062
    [Google Scholar]
  13. NovakM.D. SokolovaV.M. MakshakovaE.B. Distribution, treatment and prevention of mixed infections of sheep and goats in the Central region of the Russian Federation.Bulletin of the FSBEI of HE RSATU20133193642
    [Google Scholar]
  14. RiviereJ.E. PapichM.G. Veterinary pharmacology Therapeutics.HobokenWilley-Blackwell2009
    [Google Scholar]
  15. M10 bioanalytical method validation and study sample analysis.Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/m10-bioanalytical-method-validation-and-study-sample-analysis 2022
  16. Guidance for the validation of analytical methodology and calibration of equipment used for testing of illicit drugs in seized materials and biological specimens.Available from: https://www.unodc.org/unodc/en/scientists/guidance-for-the-validation-of-analytical-methodology-and-calibration-of-equipment.html 2009
  17. BoulangerB. ChiapP. DeweW. CrommenJ. HubertP. An analysis of the SFSTP guide on validation of chromatographic bioanalytical methods: progresses and limitations.J. Pharm. Biomed. Anal.2003324-575376510.1016/S0731‑7085(03)00182‑1 12899965
    [Google Scholar]
  18. HartmannC. Smeyers-VerbekeJ. MassartD.L. McDowallR.D. Validation of bioanalytical chromatographic methods.J. Pharm. Biomed. Anal.199817219321810.1016/S0731‑7085(97)00198‑2 9638572
    [Google Scholar]
  19. ErmerJ. MillerJ.H.McB. Method Validation in Pharmaceutical Analysis. A Guide to Best Practice.2nd edWeinheimWiley VCH2015
    [Google Scholar]
  20. AstafyevB.A. YarotskiiL.S. LebedevaM.N. Experimental models of parasitosis in biology and medicine.MoscowNauka1989
    [Google Scholar]
  21. ArkhipovI.A. VarlamovaA.I. OdoevskayaI.M. Methodological recommendations for testing and assessment of efficiency of medications against trichinellosis and hymenolepiosis in laboratory model.Ross. Parazitol. Z.2019132586310.31016/1998‑8435‑2019‑13‑2‑58‑63
    [Google Scholar]
  22. KalashnikovA.P. FisininV.P. ShcheglovaV.V. KleimenovaN.I. Norms and ratios of feeding livestock.MoscowRosselkhozakademiya2003
    [Google Scholar]
  23. Ministry of Agriculture Fisheries and Food. Manual of Veterinary Parasitological Laboratory Techniques.LondonH.M.S.O.1986
    [Google Scholar]
  24. WoodI.B. AmaralN.K. BairdenK. DunkanJ.L. KassaiT. MaloneJ.B. PancavichJ.A. ReineckeR.K. SlocombeO. TaylorS.M. VercruysseJ. World association for the advancement of veterinary parasitology (WAAVP) second edition of guidelines for evaluating the effectiveness of anthelmintics in ruminants (bovine, ovine, caprine).Vet. Parasitol.199558318121310.1016/0304‑4017(95)00806‑2
    [Google Scholar]
  25. KuzmichYu.V. KorotkovV.G. Simulation of the energy characteristics of the planetary mill.Proc. of the Kola Scientific Center of the RAS20152015380384
    [Google Scholar]
  26. MottierM.L. AlvarezL.I. PisM.A. LanusseC.E. Transtegumental diffusion of benzimidazole anthelmintics into Moniezia benedeni: correlation with their octanol–water partition coefficients.Exp. Parasitol.20031031-21710.1016/S0014‑4894(03)00060‑2 12810040
    [Google Scholar]
  27. HoN.F.H. GearyT.G. BarsuhnC.L. SimsS.M. ThompsonD.P. Mechanistic studies in the transcuticular delivery of antiparasitic drugs II: ex vivo/in vitro correlation of solute transport by Ascaris suum.Mol. Biochem. Parasitol.199252111310.1016/0166‑6851(92)90031‑E 1625697
    [Google Scholar]
  28. GonnertR. SchraufstatterE. Niclosamide – new drug against cestodes.Arzneimittelforschung1960102881884
    [Google Scholar]
  29. ShortC.R. FloryW. HsiehL.C. BarkerS.A. The oxidative metabolism of fenbendazole: a comparative study.J. Vet. Pharmacol. Ther.1988111505510.1111/j.1365‑2885.1988.tb00120.x 3379664
    [Google Scholar]
  30. VarlamovaA.I. ArkhipovI.A. AbramovV.E. ArisovM.V. KhalikovS.S. DushkinA.V. Pharmacological activity and targeted delivery of supramolecular fenbendazole obtained by mechanochemical technology with various components.Russian Journal of Parasitology2021152647110.31016/1998‑8435‑2021‑15‑2‑64‑71
    [Google Scholar]
  31. MetelevaE.S. ChistyachenkoY.S. SuntsovaL.P. KhvostovM.V. PolyakovN.E. SelyutinaO.Y. TolstikovaT.G. FrolovaT.S. MordvinovV.A. DushkinA.V. LyakhovN.Z. Disodium salt of glycyrrhizic acid – A novel supramolecular delivery system for anthelmintic drug praziquantel.J. Drug Deliv. Sci. Technol.201950667710.1016/j.jddst.2019.01.014
    [Google Scholar]
  32. ChistyachenkoY. MetelevaE. PakharukovaM. KatokhinA. KhvostovM. VarlamovaA. GlamazdinI. KhalikovS. PolyakovN. ArkhipovI. TolstikovaT. MordvinovV. DushkinA. LyakhovN. A physicochemical and pharmacological study of the newly synthesized complex of albendazole and the polysaccharide arabinogalactan from Larch Wood.Curr. Drug Deliv.201512547749010.2174/1567201812666150518094739 25981412
    [Google Scholar]
  33. DushkinA.V. ChistyachenkoY.S. KomarovD.A. KhvostovM.V. TolstikovaT.G. ZhurkoI.F. KirilyukI.A. Grigor’evI.A. LyakhovN.Z. About the mechanism of membrane permeability enhancement by substances in their intermolecular complexes with polysaccharide arabinogalactan from larches Larix sibirica and Larix gmelinii.Dokl. Biochem. Biophys.2015460191210.1134/S1607672915010020 25772980
    [Google Scholar]
  34. KongR. ZhuX. MetelevaE.S. ChistyachenkoYu Enhanced solubility and bioavailability of simvastatin mechanochemically obtained complex-es.Int. J. Pharm.2017534(1-2)108118
    [Google Scholar]
  35. DushkinA.V. Mechanochemical synthesis of organic compounds and rapidly soluble materials.High-energy Ball Milling. Mechanochemical Processing of Nanopowders Sopicka-LizerM. Woodhead Publishing LimitedOxford201024927310.1533/9781845699444.2.224
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072303357240528095424
Loading
/content/journals/cbc/10.2174/0115734072303357240528095424
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test