Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Skin cancer has become the fifth most frequently reported form of cancer worldwide, imposing significant economic and public health challenges. Over the course of the last ten years, there has been a significant increase in the application of Nanoparticles (NPs) as a method of therapeutic administration to target skin cancer. The information has been gathered from many online databases, such as Scopus, Pubmed, Science Direct, and Web of Science, among others. An analysis of research articles that focused on the therapeutic effect of nanoformulations on skin cancer was included as part of the criteria for selecting the study. Nanoparticles have the potential to change the pharmacokinetics of the drug, increase the drug’s half-life by lowering immunogenicity, increase its bioavailability, decrease drug metabolism, and improve the solubility of poorly water-soluble drugs. The distribution of NP-based treatments to the skin requires special consideration due to the fact that the skin acts as both a physical and immunologic barrier. In addition, specialized technologies must take into consideration not only the target but also the channel of administration in order to be effective. The purpose of this review article was to provide an overview of many types of NPs, address the current landscape of NPs for skin cancer prevention and treatment, and provide a description of the application of NP-based technologies for drug delivery targeting the skin.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072320056240513054917
2024-05-20
2025-06-21
Loading full text...

Full text loading...

References

  1. Worldwide cancer data. https://www.wcrf.org/cancer-trends/worldwide-cancer-data.2020
  2. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.21820 38230766
    [Google Scholar]
  3. Al-DujailiZ. HenryM. DorizasA.S. SadickN.S. Skin cancer concerns particular to women.Int. J. Womens Dermatol.201731Suppl.S49S5110.1016/j.ijwd.2017.02.009 28492039
    [Google Scholar]
  4. Skin cancer. https://www.aad.org/media/stats-skin-cancer 2022
  5. Cancer Stat Facts: Melanoma of the Skin.Available From: https://seer.cancer.gov/statfacts/html/melan.html?TB_inline&inlineId=emailFormBox&focusOnCloseId=email 2022
  6. QuaziS.J. AslamN. SaleemH. RahmanJ. KhanS. Surgical margin of excision in basal cell carcinoma: A systematic review of literature.Cureus2020127e921110.7759/cureus.9211 32821563
    [Google Scholar]
  7. LeeC.T. LehrerE.J. AphaleA. LangoM. GallowayT.J. ZaorskyN.G. Surgical excision, Mohs micrographic surgery, external‐beam radiotherapy, or brachytherapy for indolent skin cancer: An international meta‐analysis of 58 studies with 21,000 patients.Cancer2019125203582359410.1002/cncr.32371 31355928
    [Google Scholar]
  8. PashazadehA. BoeseA. FriebeM. Radiation therapy techniques in the treatment of skin cancer: An overview of the current status and outlook.J. Dermatolog. Treat.201930883183910.1080/09546634.2019.1573310 30703334
    [Google Scholar]
  9. KuflikE.G. Cryosurgery for skin cancer: 30-year experience and cure rates.Dermatol. Surg.2004302 Pt 229730010.1097/00042728‑200402002‑00011 14871224
    [Google Scholar]
  10. YanovskyR.L. BartensteinD.W. RogersG.S. IsakoffS.J. ChenS.T. Photodynamic therapy for solid tumors: A review of the literature.Photodermatol. Photoimmunol. Photomed.201935529530310.1111/phpp.12489 31155747
    [Google Scholar]
  11. SinghV. SheikhA. AbourehabM. KesharwaniP. Dostarlimab as a Miracle Drug: Rising Hope against Cancer Treatment.Biosensors202212861710.3390/bios12080617 36005013
    [Google Scholar]
  12. ZengL. GowdaB.H.J. AhmedM.G. AbourehabM.A.S. ChenZ.S. ZhangC. LiJ. KesharwaniP. Advancements in nanoparticle-based treatment approaches for skin cancer therapy.Mol. Cancer20232211010.1186/s12943‑022‑01708‑4 36635761
    [Google Scholar]
  13. NurgaliK. JagoeR.T. AbaloR. Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae?Front. Pharmacol.20189245
    [Google Scholar]
  14. DianzaniC. ZaraG.P. MainaG. PettazzoniP. PizzimentiS. RossiF. GigliottiC.L. CiamporceroE.S. DagaM. BarreraG. Drug delivery nanoparticles in skin cancers.BioMed Res. Int.2014201411310.1155/2014/895986 25101298
    [Google Scholar]
  15. DiazM.J. NatarelliN. AflatooniS. AlemanS.J. NeelamS. TranJ.T. TanejaK. Lucke-WoldB. ForouzandehM. Nanoparticle-based treatment approaches for skin cancer: A systematic review.Curr. Oncol.20233087112713110.3390/curroncol30080516 37622997
    [Google Scholar]
  16. MolodtsovA.K. KhatwaniN. VellaJ.L. LewisK.A. ZhaoY. HanJ. SullivanD.E. SearlesT.G. PreissN.K. ShabanehT.B. ZhangP. HawkesA.R. MalikB.T. KollingF.W.IV UsherwoodE.J. WongS.L. PhillipsJ.D. ShiraiK. AngelesC.V. YanS. CurielT.J. HuangY.H. ChengC. TurkM.J. Resident memory CD8+ T cells in regional lymph nodes mediate immunity to metastatic melanoma.Immunity202154921172132.e710.1016/j.immuni.2021.08.019 34525340
    [Google Scholar]
  17. ChenM.K.Y. SebaratnamD.F. A non‐healing ulcer: Amelanotic melanoma.Med. J. Aust.2021215940510.5694/mja2.51294 34622449
    [Google Scholar]
  18. ChuchvaraN. FarabiB. MilgraumD. LeeY. ChamorroP. PappertA. RaoB. Amelanotic melanoma with features of keratinocytic tumor on reflectance confocal microscopy.J. Cutan. Pathol.202249331732010.1111/cup.14186 34904749
    [Google Scholar]
  19. LiD. HumayunL. VienneauE. VuT. YaoJ Seeing through the Skin: Photoacoustic tomography of skin vasculature and beyond.JID Innov202113100039
    [Google Scholar]
  20. RasmussenS.M. NielsenT. HodyS. HagerH. SchousboeL.P. Photoplethysmography for demarcation of cutaneous squamous cell carcinoma.Sci. Rep.20211112146710.1038/s41598‑021‑00645‑4 34728637
    [Google Scholar]
  21. WilliamsN.M. RojasK.D. ReynoldsJ.M. KwonD. Shum-TienJ. JaimesN. Assessment of diagnostic accuracy of dermoscopic structures and patterns used in melanoma detection: A systematic review and meta-analysis.JAMA Dermatol.202115791078108810.1001/jamadermatol.2021.2845 34347005
    [Google Scholar]
  22. JohnsonJ.D. YoungB. Demographics of brain metastasis.Neurosurg. Clin. N. Am.19967333734410.1016/S1042‑3680(18)30365‑6 8823767
    [Google Scholar]
  23. ErogluZ. HolmenS.L. ChenQ. KhushalaniN.I. AmaravadiR. ThomasR. AhmedK.A. TawbiH. ChandraS. MarkowitzJ. SmalleyI. LiuJ.K.C. ChenY.A. NajjarY.G. KarrethF.A. Abate-DagaD. GlitzaI.C. SosmanJ.A. SondakV.K. BosenbergM. HerlynM. AtkinsM.B. KlugerH. MargolinK. ForsythP.A. DaviesM.A. SmalleyK.S.M. Melanoma central nervous system metastases: An update to approaches, challenges, and opportunities.Pigment Cell Melanoma Res.201932345846910.1111/pcmr.12771 30712316
    [Google Scholar]
  24. FalchookG.S. LewisK.D. InfanteJ.R. GordonM.S. VogelzangN.J. DeMariniD.J. SunP. MoyC. SzaboS.A. RoadcapL.T. PeddareddigariV.G.R. LebowitzP.F. LeN.T. BurrisH.A.III MessersmithW.A. O’DwyerP.J. KimK.B. FlahertyK. BendellJ.C. GonzalezR. KurzrockR. FecherL.A. Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: A phase 1 dose-escalation trial.Lancet Oncol.201213878278910.1016/S1470‑2045(12)70269‑3 22805292
    [Google Scholar]
  25. AkbaniR. AkdemirK.C. AksoyB.A. AlbertM. AllyA. AminS.B. ArachchiH. AroraA. AumanJ.T. AyalaB. BaboudJ. BalasundaramM. BaluS. BarnabasN. BartlettJ. BartlettP. BastianB.C. BaylinS.B. BeheraM. BelyaevD. BenzC. BernardB. BeroukhimR. BirN. BlackA.D. BodenheimerT. BoiceL. BolandG.M. BonoR. BootwallaM.S. BosenbergM. BowenJ. BowlbyR. BristowC.A. Brockway-LunardiL. BrooksD. BrzezinskiJ. BsharaW. BudaE. BurnsW.R. ButterfieldY.S.N. ButtonM. CalderoneT. CappelliniG.A. CarterC. CarterS.L. CherneyL. CherniackA.D. ChevalierA. ChinL. ChoJ. ChoR.J. ChoiY-L. ChuA. ChudamaniS. CibulskisK. CirielloG. ClarkeA. CoonsS. CopeL. CrainD. CurleyE. DanilovaL. D’AtriS. DavidsenT. DaviesM.A. DelmanK.A. DemchokJ.A. DengQ.A. DeribeY.L. DhallaN. DhirR. DiCaraD. DinikinM. DubinaM. EbromJ.S. EgeaS. EleyG. EngelJ. EschbacherJ.M. FedosenkoK.V. FelauI. FennellT. FergusonM.L. FisherS. FlahertyK.T. FrazerS. FrickJ. FulidouV. GabrielS.B. GaoJ. GardnerJ. GarrawayL.A. Gastier-FosterJ.M. GaudiosoC. GehlenborgN. GenoveseG. GerkenM. GershenwaldJ.E. GetzG. Gomez-FernandezC. GribbinT. GrimsbyJ. GrossB. GuinR. GutschnerT. HadjipanayisA. HalabanR. HanfB. HausslerD. HayduL.E. HayesD.N. HaywardN.K. HeimanD.I. HerbertL. HermanJ.G. HerseyP. HoadleyK.A. HodisE. HoltR.A. HoonD.S.B. HoppoughS. HoyleA.P. HuangF.W. HuangM. HuangS. HutterC.M. IbbsM. IypeL. JacobsenA. JakrotV. JanningA. JeckW.R. JefferysS.R. JensenM.A. JonesC.D. JonesS.J.M. JuZ. KakavandH. KangH. KeffordR.F. KhuriF.R. KimJ. KirkwoodJ.M. KlodeJ. KorkutA. KorskiK. KrauthammerM. KucherlapatiR. KwongL.N. KyclerW. LadanyiM. LaiP.H. LairdP.W. LanderE. LawrenceM.S. LazarA.J. ŁaźniakR. LeeD. LeeJ.E. LeeJ. LeeK. LeeS. LeeW. LeporowskaE. LeraasK.M. LiH.I. LichtenbergT.M. LichtensteinL. LinP. LingS. LiuJ. LiuO. LiuW. LongG.V. LuY. MaS. MaY. MackiewiczA. MahadeshwarH.S. MalkeJ. MalleryD. ManikhasG.M. MannG.J. MarraM.A. MatejkaB. MayoM. MehrabiS. MengS. MeyersonM. MieczkowskiP.A. MillerJ.P. MillerM.L. MillsG.B. MoiseenkoF. MooreR.A. MorrisS. MorrisonC. MortonD. MoschosS. MoseL.E. MullerF.L. MungallA.J. MurawaD. MurawaP. MurrayB.A. NeziL. NgS. NicholsonD. NobleM.S. OsunkoyaA. OwonikokoT.K. OzenbergerB.A. PaganiE. PaklinaO.V. PantaziA. ParfenovM. ParfittJ. ParkP.J. ParkW-Y. ParkerJ.S. PassarelliF. PennyR. PerouC.M. PihlT.D. PotapovaO. PrietoV.G. ProtopopovA. QuinnM.J. RadenbaughA. RaiK. RamalingamS.S. RamanA.T. RamirezN.C. RamirezR. RaoU. RathmellW.K. RenX. ReynoldsS.M. RoachJ. RobertsonA.G. RossM.I. RoszikJ. RussoG. SaksenaG. SallerC. SamuelsY. SanderC. SanderC. SanduskyG. SantosoN. SaulM. SawR.P.M. SchadendorfD. ScheinJ.E. SchultzN. SchumacherS.E. SchwallierC. ScolyerR.A. SeidmanJ. SekharP.C. SekhonH.S. SenbabaogluY. SethS. ShannonK.F. SharpeS. SharplessN.E. ShawK.R.M. SheltonC. SheltonT. ShenR. ShethM. ShiY. ShiauC.J. ShmulevichI. SicaG.L. SimonsJ.V. SinhaR. SipahimalaniP. SofiaH.J. SolowayM.G. SongX. SougnezC. SpillaneA.J. SpychałaA. StretchJ.R. StuartJ. SuchorskaW.M. SuckerA. SumerS.O. SunY. SynottM. TabakB. TablerT.R. TamA. TanD. TangJ. TarnuzzerR. TarvinK. TatkaH. TaylorB.S. TeresiakM. ThiessenN. ThompsonJ.F. ThorneL. ThorssonV. TrentJ.M. TricheT.J.Jr TsaiK.Y. TsouP. Van Den BergD.J. Van AllenE.M. VeluvoluU. VerhaakR.G. VoetD. VoroninaO. WalterV. WaltonJ.S. WanY. WangY. WangZ. WaringS. WatsonI.R. WeinholdN. WeinsteinJ.N. WeisenbergerD.J. WhiteP. WilkersonM.D. WilmottJ.S. WiseL. WiznerowiczM. WoodmanS.E. WuC-J. WuC-C. WuJ. WuY. XiR. XuA.W. YangD. YangL. YangL. ZackT.I. ZenklusenJ.C. ZhangH. ZhangJ. ZhangW. ZhaoX. ZhuJ. ZhuK. ZimmerL. ZmudaE. ZouL. Genomic classification of cutaneous melanoma.Cell201516171681169610.1016/j.cell.2015.05.044 26091043
    [Google Scholar]
  26. DamskyW. MicevicG. MeethK. MuthusamyV. CurleyD.P. SanthanakrishnanM. ErdelyiI. PlattJ.T. HuangL. TheodosakisN. ZaidiM.R. TigheS. DaviesM.A. DankortD. McMahonM. MerlinoG. BardeesyN. BosenbergM. mTORC1 activation blocks BrafV600E-induced growth arrest but is insufficient for melanoma formation.Cancer Cell2015271415610.1016/j.ccell.2014.11.014 25584893
    [Google Scholar]
  27. KrauthammerM. KongY. HaB.H. EvansP. BacchiocchiA. McCuskerJ.P. ChengE. DavisM.J. GohG. ChoiM. AriyanS. NarayanD. Dutton-RegesterK. CapatanaA. HolmanE.C. BosenbergM. SznolM. KlugerH.M. BrashD.E. SternD.F. MaterinM.A. LoR.S. ManeS. MaS. KiddK.K. HaywardN.K. LiftonR.P. SchlessingerJ. BoggonT.J. HalabanR. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma.Nat. Genet.20124491006101410.1038/ng.2359 22842228
    [Google Scholar]
  28. Van RaamsdonkC.D. BezrookoveV. GreenG. BauerJ. GauglerL. O’BrienJ.M. SimpsonE.M. BarshG.S. BastianB.C. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi.Nature2009457722959960210.1038/nature07586 19078957
    [Google Scholar]
  29. KwongL.N. CostelloJ.C. LiuH. JiangS. HelmsT.L. LangsdorfA.E. JakuboskyD. GenoveseG. MullerF.L. JeongJ.H. BenderR.P. ChuG.C. FlahertyK.T. WargoJ.A. CollinsJ.J. ChinL. Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma.Nat. Med.201218101503151010.1038/nm.2941 22983396
    [Google Scholar]
  30. MittalP. RobertsC.W.M. The SWI/SNF complex in cancer — biology, biomarkers and therapy.Nat. Rev. Clin. Oncol.202017743544810.1038/s41571‑020‑0357‑3 32303701
    [Google Scholar]
  31. ChapmanP.B. HauschildA. RobertC. HaanenJ.B. AsciertoP. LarkinJ. DummerR. GarbeC. TestoriA. MaioM. HoggD. LoriganP. LebbeC. JouaryT. SchadendorfD. RibasA. O’DayS.J. SosmanJ.A. KirkwoodJ.M. EggermontA.M.M. DrenoB. NolopK. LiJ. NelsonB. HouJ. LeeR.J. FlahertyK.T. McArthurG.A. Improved survival with vemurafenib in melanoma with BRAF V600E mutation.N. Engl. J. Med.2011364262507251610.1056/NEJMoa1103782 21639808
    [Google Scholar]
  32. LarkinJ. AsciertoP.A. DrénoB. AtkinsonV. LiszkayG. MaioM. MandalàM. DemidovL. StroyakovskiyD. ThomasL. de la Cruz-MerinoL. DutriauxC. GarbeC. SovakM.A. ChangI. ChoongN. HackS.P. McArthurG.A. RibasA. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma.N. Engl. J. Med.2014371201867187610.1056/NEJMoa1408868 25265494
    [Google Scholar]
  33. JohnsonD.B. ChildressM.A. ChalmersZ.R. FramptonG.M. AliS.M. RubinsteinS.M. FabrizioD. RossJ.S. BalasubramanianS. MillerV.A. StephensP.J. SosmanJ.A. LovlyC.M. BRAF internal deletions and resistance to BRAF/MEK inhibitor therapy.Pigment Cell Melanoma Res.201831343243610.1111/pcmr.12674 29171936
    [Google Scholar]
  34. SamsonJ.M. Ravindran MenonD. SmithD.E. BairdE. KitanoT. GaoD. TanA.C. FujitaM. Clinical implications of ALDH1A1 and ALDH1A3 mRNA expression in melanoma subtypes.Chem. Biol. Interact.201931410882210.1016/j.cbi.2019.108822 31580832
    [Google Scholar]
  35. FothM. McMahonM. Autophagy inhibition in BRAF-driven cancers.Cancers20211314349810.3390/cancers13143498 34298710
    [Google Scholar]
  36. LuH. LiuS. ZhangG. Bin Wu ZhuY. FrederickD.T. HuY. ZhongW. RandellS. SadekN. ZhangW. ChenG. ChengC. ZengJ. WuL.W. ZhangJ. LiuX. XuW. KreplerC. SproesserK. XiaoM. MiaoB. LiuJ. SongC.D. LiuJ.Y. KarakousisG.C. SchuchterL.M. LuY. MillsG. CongY. ChernoffJ. GuoJ. BolandG.M. SullivanR.J. WeiZ. FieldJ. AmaravadiR.K. FlahertyK.T. HerlynM. XuX. GuoW. PAK signalling drives acquired drug resistance to MAPK inhibitors in BRAF-mutant melanomas.Nature2017550767413313610.1038/nature24040 28953887
    [Google Scholar]
  37. SmithM.P. BruntonH. RowlingE.J. FergusonJ. ArozarenaI. MiskolcziZ. LeeJ.L. GirottiM.R. MaraisR. LevesqueM.P. DummerR. FrederickD.T. FlahertyK.T. CooperZ.A. WargoJ.A. WellbrockC. Inhibiting drivers of non-mutational drug tolerance is a salvage strategy for targeted melanoma therapy.Cancer Cell201629327028410.1016/j.ccell.2016.02.003 26977879
    [Google Scholar]
  38. SullivanR.J. FlahertyK.T. New strategies in melanoma: Entering the era of combinatorial therapy.Clin. Cancer Res.201521112424243510.1158/1078‑0432.CCR‑14‑1650 26034218
    [Google Scholar]
  39. SullivanR.J. InfanteJ.R. JankuF. WongD.J.L. SosmanJ.A. KeedyV. PatelM.R. ShapiroG.I. MierJ.W. TolcherA.W. Wang-GillamA. SznolM. FlahertyK. BuchbinderE. CarvajalR.D. VargheseA.M. LacoutureM.E. RibasA. PatelS.P. DeCrescenzoG.A. EmeryC.M. GrooverA.L. SahaS. VarterasianM. WelschD.J. HymanD.M. LiB.T. First-in-class ERK1/2 inhibitor ulixertinib (BVD-523) in patients with MAPK mutant advanced solid tumors: results of a phase I dose-escalation and expansion study.Cancer Discov.20188218419510.1158/2159‑8290.CD‑17‑1119 29247021
    [Google Scholar]
  40. GuoW. WangH. LiC. Signal pathways of melanoma and targeted therapy.Signal Transduct. Target. Ther.20216142410.1038/s41392‑021‑00827‑6 34924562
    [Google Scholar]
  41. ShengX. ChenH. HuB. YaoX. LiuZ. YaoX. GuoH. HuY. JiZ. LuoH. ShiB. LiuJ. WuJ. ZhouF. HeZ. FanJ. WangW. FengH. YaoS. KeeganP. HuangY. GuoJ. Safety, efficacy, and biomarker analysis of toripalimab in patients with previously treated advanced urothelial carcinoma: results from a multicenter phase II trial POLARIS-03.Clin. Cancer Res.202228348949710.1158/1078‑0432.CCR‑21‑2210 34740921
    [Google Scholar]
  42. EggermontA.M.M. BlankC.U. MandalaM. LongG.V. AtkinsonV. DalleS. HaydonA. LichinitserM. KhattakA. CarlinoM.S. SandhuS. LarkinJ. PuigS. AsciertoP.A. RutkowskiP. SchadendorfD. KoornstraR. Hernandez-AyaL. MaioM. van den EertweghA.J.M. GrobJ.J. GutzmerR. JamalR. LoriganP. IbrahimN. MarreaudS. van AkkooiA.C.J. SuciuS. RobertC. Adjuvant pembrolizumab versus placebo in resected stage III melanoma.N. Engl. J. Med.2018378191789180110.1056/NEJMoa1802357 29658430
    [Google Scholar]
  43. EggermontA.M.M. BlankC.U. MandalaM. LongG.V. AtkinsonV.G. DalleS. HaydonA.M. MeshcheryakovA. KhattakA. CarlinoM.S. SandhuS. LarkinJ. PuigS. AsciertoP.A. RutkowskiP. SchadendorfD. KoornstraR. Hernandez-AyaL. Di GiacomoA.M. van den EertweghA.J.M. GrobJ.J. GutzmerR. JamalR. LoriganP.C. van AkkooiA.C.J. KreplerC. IbrahimN. MarreaudS. KicinskiM. SuciuS. RobertC. Longer follow-up confirms recurrence-free survival benefit of adjuvant pembrolizumab in high-risk stage III melanoma: updated results from the EORTC 1325-MG/KEYNOTE-054 trial.J. Clin. Oncol.202038333925393610.1200/JCO.20.02110 32946353
    [Google Scholar]
  44. SosmanJ.A. KimK.B. SchuchterL. GonzalezR. PavlickA.C. WeberJ.S. McArthurG.A. HutsonT.E. MoschosS.J. FlahertyK.T. HerseyP. KeffordR. LawrenceD. PuzanovI. LewisK.D. AmaravadiR.K. ChmielowskiB. LawrenceH.J. ShyrY. YeF. LiJ. NolopK.B. LeeR.J. JoeA.K. RibasA. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib.N. Engl. J. Med.2012366870771410.1056/NEJMoa1112302 22356324
    [Google Scholar]
  45. Sade-FeldmanM. JiaoY.J. ChenJ.H. RooneyM.S. Barzily-RokniM. ElianeJ.P. BjorgaardS.L. HammondM.R. VitzthumH. BlackmonS.M. FrederickD.T. Hazar-RethinamM. NadresB.A. Van SeventerE.E. ShuklaS.A. YizhakK. RayJ.P. RosebrockD. LivitzD. AdalsteinssonV. GetzG. DuncanL.M. LiB. CorcoranR.B. LawrenceD.P. Stemmer-RachamimovA. BolandG.M. LandauD.A. FlahertyK.T. SullivanR.J. HacohenN. Resistance to checkpoint blockade therapy through inactivation of antigen presentation.Nat. Commun.201781113610.1038/s41467‑017‑01062‑w 29070816
    [Google Scholar]
  46. LiuD. SchillingB. LiuD. SuckerA. LivingstoneE. Jerby-ArnonL. ZimmerL. GutzmerR. SatzgerI. LoquaiC. GrabbeS. VokesN. MargolisC.A. ConwayJ. HeM.X. ElmarakebyH. DietleinF. MiaoD. TracyA. GogasH. GoldingerS.M. UtikalJ. BlankC.U. RauschenbergR. von BubnoffD. KrackhardtA. WeideB. HaferkampS. KieckerF. IzarB. GarrawayL. RegevA. FlahertyK. PaschenA. Van AllenE.M. SchadendorfD. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma.Nat. Med.201925121916192710.1038/s41591‑019‑0654‑5 31792460
    [Google Scholar]
  47. BowmanR.L. HennesseyR.C. WeissT.J. TallmanD.A. CrawfordE.R. MurphyB.M. WebbA. ZhangS. La PerleK.M.D. BurdC.J. LevineR.L. ShainA.H. BurdC.E. UVB mutagenesis differs in Nras - and Braf -mutant mouse models of melanoma.Life Sci. Alliance202149e20210113510.26508/lsa.202101135 34210801
    [Google Scholar]
  48. Millán-EstebanD. Peña-ChiletM. García-CasadoZ. Manrique-SilvaE. RequenaC. BañulsJ. López-GuerreroJ.A. Rodríguez-HernándezA. TravesV. DopazoJ. VirósA. KumarR. NagoreE. Mutational characterization of cutaneous melanoma supports divergent pathways model for melanoma development.Cancers20211320521910.3390/cancers13205219 34680367
    [Google Scholar]
  49. TeixidoC. CastilloP. Martinez-VilaC. AranceA. AlosL. Molecular markers and targets in melanoma.Cells2021109232010.3390/cells10092320 34571969
    [Google Scholar]
  50. ZaarO. GillstedtM. LindelöfB. Wennberg-LarköA.M. PaoliJ. Merkel cell carcinoma incidence is increasing in Sweden.J. Eur. Acad. Dermatol. Venereol.201630101708171310.1111/jdv.13698 27136306
    [Google Scholar]
  51. CameronM.C. LeeE. HiblerB.P. BarkerC.A. MoriS. CordovaM. NehalK.S. RossiA.M. Basal cell carcinoma.J. Am. Acad. Dermatol.201980230331710.1016/j.jaad.2018.03.060 29782900
    [Google Scholar]
  52. ApallaZ. NashanD. WellerR.B. CastellsaguéX. Skin cancer: Epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches.Dermatol. Ther.20177S1Suppl. 151910.1007/s13555‑016‑0165‑y 28150105
    [Google Scholar]
  53. KimM.J. HaS.J. SoB.R. KimC.K. KimK.M. JungS.K. NADPH oxidase and epidermal growth factor receptor are promising targets of phytochemicals for ultraviolet-induced skin carcinogenesis.Antioxidants20211012190910.3390/antiox10121909 34943012
    [Google Scholar]
  54. WongS.Y. ReiterJ.F. The primary cilium at the crossroads of mammalian hedgehog signaling.Curr. Top. Dev. Biol.20088522526010.1016/S0070‑2153(08)00809‑0 19147008
    [Google Scholar]
  55. DessiniotiC. PlakaM. StratigosA.J. Vismodegib for the treatment of basal cell carcinoma: results and implications of the ERIVANCE BCC trial.Future Oncol.201410692793610.2217/fon.14.50 24941979
    [Google Scholar]
  56. SekulicA. MigdenM.R. OroA.E. DirixL. LewisK.D. HainsworthJ.D. SolomonJ.A. YooS. ArronS.T. FriedlanderP.A. MarmurE. RudinC.M. ChangA.L.S. LowJ.A. MackeyH.M. YauchR.L. GrahamR.A. ReddyJ.C. HauschildA. Efficacy and safety of vismodegib in advanced basal-cell carcinoma.N. Engl. J. Med.2012366232171217910.1056/NEJMoa1113713 22670903
    [Google Scholar]
  57. SharpeH.J. PauG. DijkgraafG.J. Basset-SeguinN. ModrusanZ. JanuarioT. TsuiV. DurhamA.B. DlugoszA.A. HavertyP.M. BourgonR. TangJ.Y. SarinK.Y. DirixL. FisherD.C. RudinC.M. SofenH. MigdenM.R. YauchR.L. de SauvageF.J. Genomic analysis of smoothened inhibitor resistance in basal cell carcinoma.Cancer Cell201527332734110.1016/j.ccell.2015.02.001 25759019
    [Google Scholar]
  58. RogersH.W. WeinstockM.A. HarrisA.R. HinckleyM.R. FeldmanS.R. FleischerA.B. ColdironB.M. Incidence estimate of nonmelanoma skin cancer in the United States, 2006.Arch. Dermatol.2010146328328710.1001/archdermatol.2010.19 20231499
    [Google Scholar]
  59. YanG. LiL. ZhuS. WuY. LiuY. ZhuL. ZhaoZ. WuF. JiaN. LiaoC. JiangL. ZengQ. WangP. ShiL. ZhengZ. FangS. ZhangG. TangY. WangX. Single-cell transcriptomic analysis reveals the critical molecular pattern of UV-induced cutaneous squamous cell carcinoma.Cell Death Dis.20211312310.1038/s41419‑021‑04477‑y 34934042
    [Google Scholar]
  60. BoukampP. Non-melanoma skin cancer: What drives tumor development and progression?Carcinogenesis200526101657166710.1093/carcin/bgi123 15905207
    [Google Scholar]
  61. ZhaoL. LiW. MarshallC. GriffinT. HansonM. HickR. DentchevT. WilliamsE. WerthA. MillerC. BashirH. PearW. SeykoraJ.T. Srcasm inhibits Fyn-induced cutaneous carcinogenesis with modulation of Notch1 and p53.Cancer Res.200969249439944710.1158/0008‑5472.CAN‑09‑2976 19934324
    [Google Scholar]
  62. MigdenM.R. RischinD. SchmultsC.D. GuminskiA. HauschildA. LewisK.D. ChungC.H. Hernandez-AyaL. LimA.M. ChangA.L.S. RabinowitsG. ThaiA.A. DunnL.A. HughesB.G.M. KhushalaniN.I. ModiB. SchadendorfD. GaoB. SeebachF. LiS. LiJ. MathiasM. BoothJ. MohanK. StankevichE. BabikerH.M. BranaI. Gil-MartinM. HomsiJ. JohnsonM.L. MorenoV. NiuJ. OwonikokoT.K. PapadopoulosK.P. YancopoulosG.D. LowyI. FuryM.G. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma.N. Engl. J. Med.2018379434135110.1056/NEJMoa1805131 29863979
    [Google Scholar]
  63. Hernandez-GuerreroT. DogerB. MorenoV. Cemiplimab for the treatment of advanced cutaneous squamous cell carcinoma.Expert Opin. Drug Saf.2019211212910.1358/dot.2019.55.8.3005176
    [Google Scholar]
  64. MigdenM.R. KhushalaniN.I. ChangA.L.S. LewisK.D. SchmultsC.D. Hernandez-AyaL. MeierF. SchadendorfD. GuminskiA. HauschildA. WongD.J. DanielsG.A. BerkingC. JankovicV. StankevichE. BoothJ. LiS. WeinreichD.M. YancopoulosG.D. LowyI. FuryM.G. RischinD. Cemiplimab in locally advanced cutaneous squamous cell carcinoma: results from an open-label, phase 2, single-arm trial.Lancet Oncol.202021229430510.1016/S1470‑2045(19)30728‑4 31952975
    [Google Scholar]
  65. PaulsonK.G. ParkS.Y. VandevenN.A. LachanceK. ThomasH. ChapuisA.G. HarmsK.L. ThompsonJ.A. BhatiaS. StangA. NghiemP. Merkel cell carcinoma: Current US incidence and projected increases based on changing demographics.J. Am. Acad. Dermatol.2018783457463.e210.1016/j.jaad.2017.10.028 29102486
    [Google Scholar]
  66. ConcannonR. LarcosG.S. VenessM. The impact of (18)F-FDG PET-CT scanning for staging and management of Merkel cell carcinoma: results from Westmead Hospital, Sydney, Australia.J. Am. Acad. Dermatol.2010621768410.1016/j.jaad.2009.06.021 20082888
    [Google Scholar]
  67. TaiP.T.H. YuE. WinquistE. HammondA. StittL. TonitaJ. GilchristJ. Chemotherapy in neuroendocrine/Merkel cell carcinoma of the skin: Case series and review of 204 cases.J. Clin. Oncol.200018122493249910.1200/JCO.2000.18.12.2493 10856110
    [Google Scholar]
  68. BeckerJ.C. LorenzE. UgurelS. EigentlerT.K. KieckerF. PföhlerC. KellnerI. MeierF. KählerK. MohrP. BerkingC. HaasG. HelwigC. OksenD. SchadendorfD. MahnkeL. BharmalM. Evaluation of real-world treatment outcomes in patients with distant metastatic Merkel cell carcinoma following second-line chemotherapy in Europe.Oncotarget2017845797317974110.18632/oncotarget.19218 29108353
    [Google Scholar]
  69. Garcia-CarboneroR. Marquez-RodasI. de la Cruz-MerinoL. Martinez-TruferoJ. CabreraM.A. PiulatsJ.M. CapdevilaJ. GrandeE. Martin-AlgarraS. BerrocalA. Recent therapeutic advances and change in treatment paradigm of patients with Merkel cell carcinoma.Oncologist201924101375138310.1634/theoncologist.2018‑0718 30962295
    [Google Scholar]
  70. PommierY. SordetO. AntonyS. HaywardR.L. KohnK.W. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks.Oncogene200423162934294910.1038/sj.onc.1207515 15077155
    [Google Scholar]
  71. AlviI.A. MadanJ. KaushikD. SardanaS. PandeyR.S. AliA. Comparative study of transfersomes, liposomes, and niosomes for topical delivery of 5-fluorouracil to skin cancer cells.Anticancer Drugs201122877478210.1097/CAD.0b013e328346c7d6 21799471
    [Google Scholar]
  72. BunkerA. MagarkarA. ViitalaT. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation.Biochim. Biophys. Acta Biomembr.20161858102334235210.1016/j.bbamem.2016.02.025 26915693
    [Google Scholar]
  73. DorraniM. GarbuzenkoO.B. MinkoT. Michniak-KohnB. Development of edge-activated liposomes for siRNA delivery to human basal epidermis for melanoma therapy.J. Control. Release201622815015810.1016/j.jconrel.2016.03.010 26965957
    [Google Scholar]
  74. ShiK. LiJ. CaoZ. YangP. QiuY. YangB. WangY. LongY. LiuY. ZhangQ. QianJ. ZhangZ. GaoH. HeQ. A pH-responsive cell-penetrating peptide-modified liposomes with active recognizing of integrin αvβ3 for the treatment of melanoma.J. Control. Release201521713815010.1016/j.jconrel.2015.09.009 26368312
    [Google Scholar]
  75. ChenZ. ZhangT. WuB. ZhangX. Insights into the therapeutic potential of hypoxia-inducible factor-1α small interfering RNA in malignant melanoma delivered via folate-decorated cationic liposomes.Int. J. Nanomedicine2016119911002 27042054
    [Google Scholar]
  76. FangY.P. TsaiY.H. WuP.C. HuangY.B. Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy.Int. J. Pharm.20083561-214415210.1016/j.ijpharm.2008.01.020 18325699
    [Google Scholar]
  77. SuQ. WangC. SongH. ZhangC. LiuJ. HuangP. ZhangY. ZhangJ. WangW. Co-delivery of anionic epitope/CpG vaccine and IDO inhibitor by self-assembled cationic liposomes for combination melanoma immunotherapy.J. Mater. Chem. B Mater. Biol. Med.20219183892389910.1039/D1TB00256B 33928989
    [Google Scholar]
  78. GeethaT. KapilaM. PrakashO. DeolP.K. KakkarV. KaurI.P. Sesamol-loaded solid lipid nanoparticles for treatment of skin cancer.J. Drug Target.201523215916910.3109/1061186X.2014.965717 25268273
    [Google Scholar]
  79. de JesusM.B. FerreiraC.V. de PaulaE. HoekstraD. ZuhornI.S. Design of solid lipid nanoparticles for gene delivery into prostate cancer.J. Control. Release20101481e89e9010.1016/j.jconrel.2010.07.065 21529650
    [Google Scholar]
  80. SasidharanM. NakashimaK. Core-shell-corona polymeric micelles as a versatile template for synthesis of inorganic hollow nanospheres.Acc. Chem. Res.201447115716710.1021/ar4001026 23962222
    [Google Scholar]
  81. FelberA.E. DufresneM.H. LerouxJ.C. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates.Adv. Drug Deliv. Rev.2012641197999210.1016/j.addr.2011.09.006 21996056
    [Google Scholar]
  82. ReddyB.P.K. YadavH.K.S. NageshaD.K. RaizadayA. KarimA. Polymeric micelles as novel carriers for poorly soluble drugs.J. Nanosci. Nanotechnol.20151564009401810.1166/jnn.2015.9713 26369007
    [Google Scholar]
  83. LetchfordK. BurtH. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes.Eur. J. Pharm. Biopharm.200765325926910.1016/j.ejpb.2006.11.009 17196803
    [Google Scholar]
  84. MiP. DewiN. YanagieH. KokuryoD. SuzukiM. SakuraiY. LiY. AokiI. OnoK. TakahashiH. CabralH. NishiyamaN. KataokaK. Hybrid calcium phosphate-polymeric micelles incorporating gadolinium chelates for imaging-guided gadolinium neutron capture tumor therapy.ACS Nano2015965913592110.1021/acsnano.5b00532 26033034
    [Google Scholar]
  85. HetaY. KumakiK. HifumiH. CitterioD. TanimotoA. SuzukiK. Gadolinium containing photochromic micelles as potential magnetic resonance imaging traceable drug carriers.Photochem. Photobiol.201288487688310.1111/j.1751‑1097.2012.01124.x 22364381
    [Google Scholar]
  86. SinghI. RehniA.K. KalraR. JoshiG. KumarM. Dendrimers and their pharmaceutical applications--a review.Pharmazie2008637491496 18717480
    [Google Scholar]
  87. AgarwalA. AsthanaA. GuptaU. JainN.K. Tumour and dendrimers: A review on drug delivery aspects.J. Pharm. Pharmacol.201060667168810.1211/jpp.60.6.0001 18498702
    [Google Scholar]
  88. BharaliD.J. KhalilM. GurbuzM. SimoneT.M. MousaS.A. Nanoparticles and cancer therapy: A concise review with emphasis on dendrimers.Int. J. Nanomedicine2009417 19421366
    [Google Scholar]
  89. YanJ. LiW. ZhangA. Dendronized supramolecular polymers.Chem. Commun.20145082122211223310.1039/C4CC03119A 25028702
    [Google Scholar]
  90. KumariM. GuptaS. AchaziK. BöttcherC. KhandareJ. SharmaS.K. HaagR. Dendronized multifunctional amphiphilic polymers as efficient nanocarriers for biomedical applications.Macromol. Rapid Commun.201536225426110.1002/marc.201400467 25400250
    [Google Scholar]
  91. KesharwaniP. JainK. JainN.K. Dendrimer as nanocarrier for drug delivery.Prog. Polym. Sci.201439226830710.1016/j.progpolymsci.2013.07.005
    [Google Scholar]
  92. YanJ. LiW. LiuK. WuD. ChenF. WuP. ZhangA. Thermoresponsive supramolecular dendronized polymers.Chem. Asian J.20116123260326910.1002/asia.201100528 21905233
    [Google Scholar]
  93. MakovecD. ČampeljS. BeleM. MaverU. ZorkoM. DrofenikM. JamnikJ. GaberščekM. Nanocomposites containing embedded superparamagnetic iron oxide nanoparticles and rhodamine 6G.Colloids Surf. A Physicochem. Eng. Asp.20093341-3747910.1016/j.colsurfa.2008.10.006
    [Google Scholar]
  94. UkmarT. MaverU. PlaninšekO. KaučičV. GaberščekM. GodecA. Understanding controlled drug release from mesoporous silicates: Theory and experiment.J. Control. Release2011155340941710.1016/j.jconrel.2011.06.038 21763374
    [Google Scholar]
  95. Dutta GuptaY. MackeyevY. KrishnanS. BhandaryS. Mesoporous silica nanotechnology: promising advances in augmenting cancer theranostics.Cancer Nanotechnol.2024151910.1186/s12645‑024‑00250‑w
    [Google Scholar]
  96. MaverU. GodecA. BeleM. PlaninšekO. GaberščekM. SrčičS. JamnikJ. Novel hybrid silica xerogels for stabilization and controlled release of drug.Int. J. Pharm.20073301-216417410.1016/j.ijpharm.2006.09.024 17055199
    [Google Scholar]
  97. LiangF. ChenB. A review on biomedical applications of single-walled carbon nanotubes.Curr. Med. Chem.2010171102410.2174/092986710789957742 19941481
    [Google Scholar]
  98. TessonnierJ.P. SuD.S. Recent progress on the growth mechanism of carbon nanotubes: A review.ChemSusChem20114782484710.1002/cssc.201100175 21732543
    [Google Scholar]
  99. ZhuZ. Garcia-GancedoL. FlewittA.J. XieH. MoussyF. MilneW.I. A critical review of glucose biosensors based on carbon nanomaterials: Carbon nanotubes and graphene.Sensors20121255996602210.3390/s120505996 22778628
    [Google Scholar]
  100. VairavapandianD. VichchuladaP. LayM.D. Preparation and modification of carbon nanotubes: Review of recent advances and applications in catalysis and sensing.Anal. Chim. Acta2008626211912910.1016/j.aca.2008.07.052 18790113
    [Google Scholar]
  101. DineshkumarB. KrishnakumarK. BhattA.R. PaulD. CherianJ. JohnA. SureshS. Single-walled and multi-walled carbon nanotubes based drug delivery system: Cancer therapy: A review.Indian J. Cancer201552326226410.4103/0019‑509X.176720 26905103
    [Google Scholar]
  102. CirilloG. HampelS. SpizzirriU.G. ParisiO.I. PicciN. IemmaF. Carbon nanotubes hybrid hydrogels in drug delivery: A perspective review.BioMed Res. Int.2014201411710.1155/2014/825017 24587993
    [Google Scholar]
  103. BurkertS.C. ShurinG.V. WhiteD.L. HeX. KapralovA.A. KaganV.E. ShurinM.R. StarA. Targeting myeloid regulators by paclitaxel-loaded enzymatically degradable nanocups.Nanoscale20181037179901800010.1039/C8NR04437F 30226240
    [Google Scholar]
  104. SinghM. Harris-BirtillD.C.C. MarkarS.R. HannaG.B. ElsonD.S. Application of gold nanoparticles for gastrointestinal cancer theranostics: A systematic review.Nanomedicine20151182083209810.1016/j.nano.2015.05.010 26115635
    [Google Scholar]
  105. AliM.R.K. PanikkanvalappilS.R. El-SayedM.A. Enhancing the efficiency of gold nanoparticles treatment of cancer by increasing their rate of endocytosis and cell accumulation using rifampicin.J. Am. Chem. Soc.2014136124464446710.1021/ja4124412 24467386
    [Google Scholar]
  106. KumarA. MaH. ZhangX. HuangK. JinS. LiuJ. WeiT. CaoW. ZouG. LiangX.J. Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment.Biomaterials20123341180118910.1016/j.biomaterials.2011.10.058 22056754
    [Google Scholar]
  107. GonçalvesJ.P. da CruzA.F. NunesÁ.M. MeneghettiM.R. de BarrosH.R. BorgesB.S. de MedeirosL.C.A.S. SoaresM.J. dos SantosM.P. GrassiM.T. RossiG.R. BellanD.L. BiscaiaS.M.P. CristalA.M. BuzzoJ.L.A. RibeiroY.C. AccoA. CardosoM.B. SimasF.F. TrindadeE.S. Riegel-VidottiI.C. de OliveiraC.C. Biocompatible gum arabic-gold nanorod composite as an effective therapy for mistreated melanomas.Int. J. Biol. Macromol.202118555156110.1016/j.ijbiomac.2021.06.172 34216657
    [Google Scholar]
  108. AlgarW.R. TavaresA.J. KrullU.J. Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction.Anal. Chim. Acta2010673112510.1016/j.aca.2010.05.026 20630173
    [Google Scholar]
  109. PetryayevaE. AlgarW.R. MedintzI.L. Quantum dots in bioanalysis: A review of applications across various platforms for fluorescence spectroscopy and imaging.Appl. Spectrosc.201367321525210.1366/12‑06948 23452487
    [Google Scholar]
  110. TanA. YildirimerL. RajadasJ. De La PeñaH. PastorinG. SeifalianA. Quantum dots and carbon nanotubes in oncology: A review on emerging theranostic applications in nanomedicine.Nanomedicine2011661101111410.2217/nnm.11.64 21955079
    [Google Scholar]
  111. FeaganB.G. LémannM. BefritsR. ConnellW. DʼHaensG. GhoshS. MichettiP. OchsenkühnT. PanaccioneR. SchreiberS. SilverbergM. SorrentinoD. van der WoudeJ.C. VermeireS. RutgeertsP. Recommendations for the treatment of Crohnʼs disease with tumor necrosis factor antagonists: An expert consensus report.Inflamm. Bowel Dis.201218115216010.1002/ibd.21870 22038857
    [Google Scholar]
  112. SultanaS. KhanM.R. KumarM. KumarS. AliM. Nanoparticles-mediated drug delivery approaches for cancer targeting: A review.J. Drug Target.201321210712510.3109/1061186X.2012.712130 22873288
    [Google Scholar]
  113. WangH. LeeD.K. ChenK.Y. ChenJ.Y. ZhangK. SilvaA. HoC.M. HoD. Mechanism-independent optimization of combinatorial nanodiamond and unmodified drug delivery using a phenotypically driven platform technology.ACS Nano2015933332334410.1021/acsnano.5b00638 25689511
    [Google Scholar]
  114. BertrandN. WuJ. XuX. KamalyN. FarokhzadO.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology.Adv. Drug Deliv. Rev.20146622510.1016/j.addr.2013.11.009 24270007
    [Google Scholar]
  115. StieM.B. ThokeH.S. IssingerO.G. HochscherfJ. GuerraB. OlsenL.F. Delivery of proteins encapsulated in chitosan-tripolyphosphate nanoparticles to human skin melanoma cells.Colloids Surf. B Biointerfaces201917421622310.1016/j.colsurfb.2018.11.005 30465996
    [Google Scholar]
  116. WuT. ZhangD. QiaoQ. QinX. YangC. KongM. DengH. ZhangZ. Biomimetic nanovesicles for enhanced antitumor activity of combinational photothermal and chemotherapy.Mol. Pharm.20181531341135210.1021/acs.molpharmaceut.7b01142 29397741
    [Google Scholar]
  117. LiT.F. XuH.Z. XuY.H. YuT.T. TangJ.M. LiK. WangC. PengX.C. LiQ.R. SangX.Y. ZhengM.Y. LiuY. ZhaoL. ChenX. Efficient delivery of chlorin e6 by polyglycerol-coated iron oxide nanoparticles with conjugated doxorubicin for enhanced photodynamic therapy of melanoma.Mol. Pharm.20211893601361510.1021/acs.molpharmaceut.1c00510 34388342
    [Google Scholar]
  118. Yepes-MolinaL. CarvajalM. Nanoencapsulation of sulforaphane in broccoli membrane vesicles and their in vitro antiproliferative activity.Pharm. Biol.20215911488150210.1080/13880209.2021.1992450 34714214
    [Google Scholar]
  119. YiG. SonJ. YooJ. ParkC. KooH. Emulsan-based nanoparticles for in vivo drug delivery to tumors.Biochem. Biophys. Res. Commun.2019508132633110.1016/j.bbrc.2018.11.106 30502086
    [Google Scholar]
  120. Malgarim CordenonsiL. FaccendiniA. CatanzaroM. BonferoniM.C. RossiS. MalavasiL. Platcheck RaffinR. Scherman SchapovalE.E. LanniC. SandriG. FerrariF. The role of chitosan as coating material for nanostructured lipid carriers for skin delivery of fucoxanthin.Int. J. Pharm.201956711848710.1016/j.ijpharm.2019.118487 31271813
    [Google Scholar]
  121. FerrazL.S. WatashiC.M. Colturato-KidoC. PelegrinoM.T. Paredes-GameroE.J. WellerR.B. SeabraA.B. RodriguesT. Antitumor potential of S-nitrosothiol-containing polymeric nanoparticles against melanoma.Mol. Pharm.20181531160116810.1021/acs.molpharmaceut.7b01001 29378125
    [Google Scholar]
  122. GanB.K. YongC.Y. HoK.L. OmarA.R. AlitheenN.B. TanW.S. Targeted delivery of cell penetrating peptide virus-like nanoparticles to skin cancer cells.Sci. Rep.201881849910.1038/s41598‑018‑26749‑y 29855618
    [Google Scholar]
  123. NawazA. WongT.W. Chitosan-carboxymethyl-5-fluorouracil-folate conjugate particles: microwave modulated uptake by skin and melanoma cells.J. Invest. Dermatol.2018138112412242210.1016/j.jid.2018.04.037 29857069
    [Google Scholar]
  124. LiS. ZhangF. YuY. ZhangQ. A dermatan sulfate-functionalized biomimetic nanocarrier for melanoma targeted chemotherapy.Carbohydr. Polym.202023511598310.1016/j.carbpol.2020.115983 32122513
    [Google Scholar]
  125. AliD. AlarifiS. AlkahtaniS. AlKahtaneA.A. AlmalikA. Cerium oxide nanoparticles induce oxidative stress and genotoxicity in human skin melanoma cells.Pharm. Res.20153887388310.1007/s12013‑014‑0386‑6
    [Google Scholar]
  126. AmatyaR. HwangS. ParkT. ChungY.J. RyuS. LeeJ. CheongH. MoonC. MinK.A. ShinM.C. BSA/silver nanoparticle-loaded hydrogel film for local photothermal treatment of skin cancer.Pharm. Res.202138587388310.1007/s11095‑021‑03038‑4 33835356
    [Google Scholar]
  127. FakhriA. TahamiS. NejadP.A. Preparation and characterization of Fe 3 O 4 -Ag 2 O quantum dots decorated cellulose nanofibers as a carrier of anticancer drugs for skin cancer.J. Photochem. Photobiol. B2017175838810.1016/j.jphotobiol.2017.08.032 28865318
    [Google Scholar]
  128. JiW. LiL. ZhouS. QiuL. QianZ. ZhangH. ZhaoP. Combination immunotherapy of oncolytic virus nanovesicles and PD-1 blockade effectively enhances therapeutic effects and boosts antitumour immune response.J. Drug Target.202028998299010.1080/1061186X.2020.1766473 32379004
    [Google Scholar]
  129. MoC. LuL. LiuD. WeiK. Development of erianin-loaded dendritic mesoporous silica nanospheres with pro-apoptotic effects and enhanced topical delivery.J. Nanobiotechnology20201815510.1186/s12951‑020‑00608‑3 32228604
    [Google Scholar]
  130. SackM. AliliL. KaramanE. DasS. GuptaA. SealS. BrenneisenP. Combination of conventional chemotherapeutics with redox-active cerium oxide nanoparticles--a novel aspect in cancer therapy.Mol. Cancer Ther.20141371740174910.1158/1535‑7163.MCT‑13‑0950 24825856
    [Google Scholar]
  131. SafwatM.A. SolimanG.M. SayedD. AttiaM.A. Fluorouracil-loaded gold nanoparticles for the treatment of skin cancer: Development, in vitro characterization, and in vivo evaluation in a mouse skin cancer xenograft model.Mol. Pharm.20181562194220510.1021/acs.molpharmaceut.8b00047 29701979
    [Google Scholar]
  132. ShivashankarappaA. SanjayK.R. Photodynamic therapy on skin melanoma and epidermoid carcinoma cells using conjugated 5-aminolevulinic acid with microbial synthesised silver nanoparticles.J. Drug Target.201927443444110.1080/1061186X.2018.1531418 30281374
    [Google Scholar]
  133. LiY. ChenX. JiJ. LiL. ZhaiG. Redox-responsive nanoparticles based on chondroitin sulfate and docetaxel prodrug for tumor targeted delivery of Docetaxel.Carbohydr. Polym.202125511739310.1016/j.carbpol.2020.117393 33436222
    [Google Scholar]
  134. HuangW. XingY. ZhuL. ZhuoJ. CaiM. Sorafenib derivatives-functionalized gold nanoparticles confer protection against tumor angiogenesis and proliferation via suppression of EGFR and VEGFR-2.Exp. Cell Res.2021406111263310.1016/j.yexcr.2021.112633 34089726
    [Google Scholar]
  135. ZhangY. GuoC. LiuL. XuJ. JiangH. LiD. LanJ. LiJ. YangJ. TuQ. SunX. AlamgirM. ChenX. ShenG. ZhuJ. TaoJ. ZnO-based multifunctional nanocomposites to inhibit progression and metastasis of melanoma by eliciting antitumor immunity via immunogenic cell death.Theranostics20201024111971121410.7150/thno.44920 33042278
    [Google Scholar]
  136. ZhanX. TengW. SunK. HeJ. YangJ. TianJ. HuangX. ZhouL. ZhouC. CD47-mediated DTIC-loaded chitosan oligosaccharide-grafted nGO for synergistic chemo-photothermal therapy against malignant melanoma.Mater. Sci. Eng. C202112311201410.1016/j.msec.2021.112014 33812633
    [Google Scholar]
  137. CarboneC. Martins-GomesC. PepeV. SilvaA.M. MusumeciT. PuglisiG. FurneriP.M. SoutoE.B. Repurposing itraconazole to the benefit of skin cancer treatment: A combined azole-DDAB nanoencapsulation strategy.Colloids Surf. B Biointerfaces201816733734410.1016/j.colsurfb.2018.04.031 29684903
    [Google Scholar]
  138. GandhapudiS.K. WardM. BushJ.P.C. Bedu-AddoF. ConnG. WoodwardJ.G. Antigen priming with enantiospecific cationic lipid nanoparticles induces potent antitumor CTL responses through novel induction of a type I IFN response.J. Immunol.2019202123524353610.4049/jimmunol.1801634 31053626
    [Google Scholar]
  139. IqubalM.K. IqubalA. ImtiyazK. RizviM.M.A. GuptaM.M. AliJ. BabootaS. Combinatorial lipid-nanosystem for dermal delivery of 5-fluorouracil and resveratrol against skin cancer: Delineation of improved dermatokinetics and epidermal drug deposition enhancement analysis.Eur. J. Pharm. Biopharm.202116322323910.1016/j.ejpb.2021.04.007 33864904
    [Google Scholar]
  140. KhallafR.A. SalemH.F. AbdelbaryA. 5-Fluorouracil shell-enriched solid lipid nanoparticles (SLN) for effective skin carcinoma treatment.Drug Deliv.20162393452346010.1080/10717544.2016.1194498 27240935
    [Google Scholar]
  141. LiuJ.Q. ZhangC. ZhangX. YanJ. ZengC. TalebianF. LynchK. ZhaoW. HouX. DuS. KangD.D. DengB. McCombD.W. BaiX.F. DongY. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy.J. Control. Release202234530631310.1016/j.jconrel.2022.03.021 35301053
    [Google Scholar]
  142. PalliyageG.H. HusseinN. MimlitzM. WeederC. AlnasserM.H.A. SinghS. EkpenyongA. TiwariA.K. ChauhanH. Novel curcumin-resveratrol solid nanoparticles synergistically inhibit proliferation of melanoma cells.Pharm. Res.202138585187110.1007/s11095‑021‑03043‑7 33982225
    [Google Scholar]
  143. ReddyT.L. GarikapatiK.R. ReddyS.G. ReddyB.V.S. YadavJ.S. BhadraU. BhadraM.P. Simultaneous delivery of Paclitaxel and Bcl-2 siRNA via pH-Sensitive liposomal nanocarrier for the synergistic treatment of melanoma.Sci. Rep.2016613522310.1038/srep35223 27786239
    [Google Scholar]
  144. TupalA. SabzichiM. RamezaniF. KouhsoltaniM. HamishehkarH. Dermal delivery of doxorubicin-loaded solid lipid nanoparticles for the treatment of skin cancer.J. Microencapsul.201633437238010.1080/02652048.2016.1200150 27338131
    [Google Scholar]
  145. ValizadehA. KhaleghiA.A. RoozitalabG. OsanlooM. High anticancer efficacy of solid lipid nanoparticles containing Zataria multiflora essential oil against breast cancer and melanoma cell lines.BMC Pharmacol. Toxicol.20212215210.1186/s40360‑021‑00523‑9 34587996
    [Google Scholar]
  146. HuJ.K. SuhH.W. QureshiM. LewisJ.M. YaqoobS. MoscatoZ.M. GriffS. LeeA.K. YinE.S. SaltzmanW.M. GirardiM. Nonsurgical treatment of skin cancer with local delivery of bioadhesive nanoparticles.Proc. Natl. Acad. Sci. USA20211187e202057511810.1073/pnas.2020575118 33526595
    [Google Scholar]
  147. MengH. ZouY. ZhongP. MengF. ZhangJ. ChengR. ZhongZ. A smart nano‐prodrug platform with reactive drug loading, superb stability, and fast responsive drug release for targeted cancer therapy.Macromol. Biosci.20171710160051810.1002/mabi.201600518 28464449
    [Google Scholar]
  148. MukherjeeS. KotcherlakotaR. HaqueS. BhattacharyaD. KumarJ.M. ChakravartyS. PatraC.R. Improved delivery of doxorubicin using rationally designed PEGylated platinum nanoparticles for the treatment of melanoma.Mater. Sci. Eng. C202010811037510.1016/j.msec.2019.110375 31924026
    [Google Scholar]
  149. DaréR.G. CostaA. NakamuraC.V. TruitiM.C.T. XimenesV.F. LautenschlagerS.O.S. SarmentoB. Evaluation of lipid nanoparticles for topical delivery of protocatechuic acid and ethyl protocatechuate as a new photoprotection strategy.Int. J. Pharm.202058211933610.1016/j.ijpharm.2020.119336 32304728
    [Google Scholar]
  150. FelippimE.C. MarcatoP.D. Maia CamposP.M.B.G. Development of photoprotective formulations containing nanostructured lipid carriers: sun protection factor, physical-mechanical and sensorial properties.AAPS PharmSciTech202021831110.1208/s12249‑020‑01858‑y 33161472
    [Google Scholar]
  151. Netto MPharmG. JoseJ. Development, characterization, and evaluation of sunscreen cream containing solid lipid nanoparticles of silymarin.J. Cosmet. Dermatol.20181761073108310.1111/jocd.12470 29226503
    [Google Scholar]
  152. AbadiP.G.S. ShiraziF.H. JoshaghaniM. MoghimiH.R. Ag+-promoted zinc oxide [Zn(O):Ag]: A novel structure for safe protection of human skin against UVA radiation.Toxicol. In Vitro20185031832710.1016/j.tiv.2018.02.016 29499336
    [Google Scholar]
  153. AdityaA. ChattopadhyayS. GuptaN. AlamS. VeeduA.P. PalM. SinghA. SanthiyaD. AnsariK.M. GanguliM. ZnO nanoparticles modified with an amphipathic peptide show improved photoprotection in skin.ACS Appl. Mater. Interfaces2019111567210.1021/acsami.8b08431 30507150
    [Google Scholar]
  154. HoY.Y. SunD.S. ChangH.H. Silver nanoparticles protect skin from ultraviolet b-induced damage in mice.Int. J. Mol. Sci.20202119708210.3390/ijms21197082 32992921
    [Google Scholar]
  155. MiriA. Akbarpour BirjandiS. SaraniM. Survey of cytotoxic and UV protection effects of biosynthesized cerium oxide nanoparticles.J. Biochem. Mol. Toxicol.2020346e2247510.1002/jbt.22475 32053270
    [Google Scholar]
  156. MiriA. BeikiH. NajafidoustA. KhatamiM. SaraniM. Cerium oxide nanoparticles: Green synthesis using Banana peel, cytotoxic effect, UV protection and their photocatalytic activity.Bioprocess Biosyst. Eng.20214491891189910.1007/s00449‑021‑02569‑9 33891183
    [Google Scholar]
  157. RizziV. GubitosaJ. FiniP. NuzzoS. AgostianoA. CosmaP. Snail slime-based gold nanoparticles: An interesting potential ingredient in cosmetics as an antioxidant, sunscreen, and tyrosinase inhibitor.J. Photochem. Photobiol. B202122411230910.1016/j.jphotobiol.2021.112309 34563935
    [Google Scholar]
  158. TorbatiT.V. JavanbakhtV. Fabrication of TiO2/Zn2TiO4/Ag nanocomposite for synergic effects of UV radiation protection and antibacterial activity in sunscreen.Colloids Surf. B Biointerfaces202018711065210.1016/j.colsurfb.2019.110652 31785852
    [Google Scholar]
  159. YooJ. KimH. ChangH. ParkW. HahnS.K. KwonW. Biocompatible organosilica nanoparticles with self-encapsulated phenyl motifs for effective UV protection.ACS Appl. Mater. Interfaces20201289062906910.1021/acsami.9b21990 32019301
    [Google Scholar]
  160. JoshiH. HegdeA.R. ShettyP.K. GollavilliH. ManaguliR.S. KalthurG. MutalikS. Sunscreen creams containing naringenin nanoparticles: Formulation development and in vitro and in vivo evaluations.Photodermatol. Photoimmunol. Photomed.2018341698110.1111/phpp.12335 28767160
    [Google Scholar]
  161. PradoV.C. Marcondes SariM.H. BorinB.C. do Carmo PinheiroR. CruzL. SchuchA. NogueiraC.W. ZeniG. Development of a nanotechnological-based hydrogel containing a novel benzofuroazepine compound in association with vitamin E: An in vitro biological safety and photoprotective hydrogel.Colloids Surf. B Biointerfaces202119911155510.1016/j.colsurfb.2020.111555 33434881
    [Google Scholar]
  162. MoghassemiS. HadjizadehA. Nano-niosomes as nanoscale drug delivery systems: An illustrated review.J. Control. Release2014185223610.1016/j.jconrel.2014.04.015 24747765
    [Google Scholar]
  163. Aguilar-PérezK.M. Avilés-CastrilloJ.I. MedinaD.I. Parra-SaldivarR. IqbalH.M.N. Insight into nanoliposomes as smart nanocarriers for greening the twenty-first century biomedical settings.Front. Bioeng. Biotechnol.2020857953610.3389/fbioe.2020.579536 33384988
    [Google Scholar]
  164. DuanY. DharA. PatelC. KhimaniM. NeogiS. SharmaP. Siva KumarN. VekariyaR.L. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems.RSC Advances20201045267772679110.1039/D0RA03491F 35515778
    [Google Scholar]
  165. Skin cancer statistics.Available From: https://www.wcrf.org/cancer-trends/skin-cancer-statistics 2020
/content/journals/cbc/10.2174/0115734072320056240513054917
Loading
/content/journals/cbc/10.2174/0115734072320056240513054917
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): liposomes; melanoma; nanoparticles; non-melanoma; pharmacokinetics; Skin cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test