Skip to content
2000
Volume 20, Issue 10
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Alkaloids are nitrogen-containing chemical compounds found in nature. Many alkaloids are heterocyclic in nature. They are nitrogen-based organic compounds with the nitrogen atoms enclosed in a heterocyclic ring. The chemical “pro alkaloid” is derived from the alkyl amines in it. Many ancient people, long before the advent of organic chemistry, recognized that many of these substances have measurable effects on the body's physiological functions. Alkaloids are a type of natural substances that are classified as secondary metabolites. Many different types of organisms create alkaloids, which are a class of natural products. Alkaloids showed antifungal, local anesthetic, anti-inflammatory, anticancer, analgesic, neuropharmacologic, antimicrobial, and many other activities. Amines, as opposed to alkaloids, are the more common classification for naturally occurring compounds that contain nitrogen in the exocyclic position (such as mescaline, serotonin, and dopamine). An amide molecule has a nitrogen atom that is chemically bound to a carbon atom in the carbonyl group. The -oic acid ending of the corresponding carboxylic acid is converted to -amide to form the correct nomenclature for an amide. This article offers an overview of numerous techniques for extracting, separating, and purifying alkaloids for use in natural medicine.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072284841240207104403
2024-12-01
2025-02-17
Loading full text...

Full text loading...

References

  1. KurekJ. Introductory Chapter: Alkaloids - their importance in nature and for human life.Alkaloids - Their Importance in Nature and Human LifentechOpen2019
    [Google Scholar]
  2. DeyP. KunduA. KumarA. GuptaM. LeeB.M. BhaktaT. DashS. KimH.S. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids).Recent Advances in Natural Products Analysis.Elsevier202050556710.1016/B978‑0‑12‑816455‑6.00015‑9
    [Google Scholar]
  3. ThawabtehA. JumaS. BaderM. KaramanD. ScranoL. BufoS. KaramanR. The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens.Toxins2019111165610.3390/toxins11110656 31717922
    [Google Scholar]
  4. JiY YuM WangB ZhangY The extraction, separation and purification of alkaloids in the natural medicine.J. Chem. Pharmaceut. Res.201461338345
    [Google Scholar]
  5. DaiJ.C. MaaloufN.M. HillK. AntonelliJ.A. PearleM.S. JohnsonB.A. Alkali citrate content of common over-the-counter and medical food supplements.J. Endourol.202337111211810.1089/end.2022.0274 35972746
    [Google Scholar]
  6. BardasovI.N. IevlevM.Y. 12.01 - Bicyclic 6-6 systems with one bridgehead (ring junction) nitrogen atom: no extra heteroatom.OxfordElsevier2022161
    [Google Scholar]
  7. BhambhaniS. KondhareK.R. GiriA.P. Diversity in chemical structures and biological properties of plant alkaloids.Molecules20212611337410.3390/molecules26113374 34204857
    [Google Scholar]
  8. HusseinR.A. El-AnssaryA.A. Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants.Herbal Medicine.IntechOpen2018
    [Google Scholar]
  9. NguyenT.D. DangT.T.T. Cytochrome P450 enzymes as key drivers of alkaloid chemical diversification in plants.Front. Plant Sci.20211268218110.3389/fpls.2021.682181
    [Google Scholar]
  10. EguchiR. OnoN. Hirai MoritaA. KatsuragiT. NakamuraS. HuangM. Altaf-Ul-AminM. KanayaS. Classification of alkaloids according to the starting substances of their biosynthetic pathways using graph convolutional neural networks.BMC Bioinformatics201920138010.1186/s12859‑019‑2963‑6 31288752
    [Google Scholar]
  11. RajputA. SharmaR. BhartiR. Pharmacological activities and toxicities of alkaloids on human health.Mater. Today Proc.2022481407141510.1016/j.matpr.2021.09.189
    [Google Scholar]
  12. NcubeB. Van StadenJ. Tilting plant metabolism for improved metabolite biosynthesis and enhanced human benefit.Molecules2015207126981273110.3390/molecules200712698 26184148
    [Google Scholar]
  13. HeinrichM. MahJ. AmirkiaV. Alkaloids used as medicines: structural phytochemistry meets biodiversity-An update and forward look.Molecules2021267183610.3390/molecules26071836 33805869
    [Google Scholar]
  14. PlazasE. AvilaM. M.C.; Muñoz, D.R.; Cuca S, L.E. Natural isoquinoline alkaloids: Pharmacological features and multi-target potential for complex diseases.Pharmacol. Res.2022177January10612610.1016/j.phrs.2022.106126 35151857
    [Google Scholar]
  15. DiamondA. Desgagne-PenixI. Metabolic engineering for the production of plant isoquinoline alkaloids.Plant Biotechnol. J.201514 26503307
    [Google Scholar]
  16. Kohnen-JohannsenK. KayserO. Tropane alkaloids: Chemistry, pharmacology, biosynthesis and production.Molecules201924479610.3390/molecules24040796 30813289
    [Google Scholar]
  17. NunesC.R. Barreto ArantesM. Menezes de Faria PereiraS. Leandro da CruzL. de Souza PassosM. Pereira de MoraesL. VieiraI.J.C. Barros de OliveiraD. Plants as sources of anti-inflammatory agents.Molecules20202516372610.3390/molecules25163726 32824133
    [Google Scholar]
  18. TwaijB.M. HasanM.N. Bioactive secondary metabolites from plant sources: Types, synthesis, and their therapeutic uses.Int. J. Plant Biol.202213141410.3390/ijpb13010003
    [Google Scholar]
  19. UmerS.M. SolangiM. KhanK.M. SaleemR.S.Z. Indole-containing natural products 2019-2022: Isolations, reappraisals, syntheses, and biological activities.Molecules20222721758610.3390/molecules27217586 36364413
    [Google Scholar]
  20. AbookleeshF.L. Al-AnziB.S. UllahA. Potential antiviral action of alkaloids.Molecules202227390310.3390/molecules27030903 35164173
    [Google Scholar]
  21. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. BanachM. RollingerJ.M. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  22. OzyigitI.I. DoganI. Hocaoglu-OzyigitA. YalcinB. ErdoganA. YalcinI.E. CabiE. KayaY. Production of secondary metabolites using tissue culture-based biotechnological applications.Front. Plant Sci.202314113255510.3389/fpls.2023.1132555 37457343
    [Google Scholar]
  23. RiazM. KhalidR. AfzalM. AnjumF. FatimaH. ZiaS. RasoolG. EgbunaC. MtewaA.G. UcheC.Z. AslamM.A. Phytobioactive compounds as therapeutic agents for human diseases: A review.Food Sci. Nutr.20231162500252910.1002/fsn3.3308 37324906
    [Google Scholar]
  24. SteinigerK.A. LambM.C. LambertT.H. Cross-coupling of amines via photocatalytic denitrogenation of in situ generated diazenes.J. Am. Chem. Soc.202314521jacs.3c0363410.1021/jacs.3c03634 37201211
    [Google Scholar]
  25. LiuL. SimonS.A. Similarities and differences in the currents activated by capsaicin, piperine, and zingerone in rat trigeminal ganglion cells.J. Neurophysiol.19967631858186910.1152/jn.1996.76.3.1858 8890298
    [Google Scholar]
  26. SaraeiP. AsadiI. KakarM.A. Moradi-KorN. The beneficial effects of metformin on cancer prevention and therapy: A comprehensive review of recent advances.Cancer Manag. Res.2019113295331310.2147/CMAR.S200059 31114366
    [Google Scholar]
  27. UllahA. MunirS. BadshahS.L. KhanN. GhaniL. PoulsonB.G. EmwasA.H. JaremkoM. Important flavonoids and their role as a therapeutic agent.Molecules20202522524310.3390/molecules25225243 33187049
    [Google Scholar]
  28. PretoA.J. CorreiaP.C. MoreiraI.S. DrugTax: Package for drug taxonomy identification and explainable feature extraction.J. Cheminform.20221417310.1186/s13321‑022‑00649‑w 36303244
    [Google Scholar]
  29. QaderiM.M. MartelA.B. StrugnellC.A. Environmental factors regulate plant secondary metabolites.Plants202312344710.3390/plants12030447 36771531
    [Google Scholar]
  30. ElshafieH.S. CameleI. MohamedA.A. A comprehensive review on the biological, agricultural and pharmaceutical properties of secondary metabolites based-plant origin.Int. J. Mol. Sci.2023244326610.3390/ijms24043266 36834673
    [Google Scholar]
  31. JanR. AsafS. NumanM. Lubna; Kim, K-M. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions.Agronomy202111596810.3390/agronomy11050968
    [Google Scholar]
  32. JamlokiA. BhattacharyyaM. NautiyalM.C. PatniB. Elucidating the relevance of high temperature and elevated CO2 in plant secondary metabolites (PSMs) production.Heliyon202178e0770910.1016/j.heliyon.2021.e07709 34430728
    [Google Scholar]
  33. ButnariuM. QuispeC. Herrera-BravoJ. PenteaM. SaracI. KüşümlerA.S. Papaver plants: Current insights on phytochemical and nutritional composition along with biotechnological applications.Oxid. Med. Cell. Longev.202220222041769
    [Google Scholar]
  34. ChowańskiS. AdamskiZ. MarciniakP. RosińskiG. BüyükgüzelE. BüyükgüzelK. FalabellaP. ScranoL. VentrellaE. LelarioF. BufoS. A review of bioinsecticidal activity of solanaceae alkaloids.Toxins2016836010.3390/toxins8030060 26938561
    [Google Scholar]
  35. Tlak GajgerI. DarS.A. Plant allelochemicals as sources of insecticides.Insects202112318910.3390/insects12030189 33668349
    [Google Scholar]
  36. GuerreP. Ergot alkaloids produced by endophytic fungi of the genus Epichloë.Toxins20157377379010.3390/toxins7030773 25756954
    [Google Scholar]
  37. KurekJ. Cytotoxic colchicine alkaloids: From plants to drugs.CytotoxicityIntechOpen201810.5772/intechopen.72622
    [Google Scholar]
  38. DhyaniP. QuispeC. SharmaE. BahukhandiA. SatiP. AttriD.C. SzopaA. Sharifi-RadJ. DoceaA.O. MardareI. CalinaD. ChoW.C. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine.Cancer Cell Int.202222120610.1186/s12935‑022‑02624‑9 35655306
    [Google Scholar]
  39. SayhanH. BeyazS.G. ÇeliktaşA. The local anesthetic and pain relief activity of alkaloids.Alkaloids - Alternatives in Synthesis, Modification and ApplicationIntechOpen201710.5772/intechopen.69847
    [Google Scholar]
  40. AdamskiZ. BlytheL.L. MilellaL. BufoS.A. Biological activities of alkaloids: From toxicology to pharmacology.Toxins202012421010.3390/toxins12040210 32224853
    [Google Scholar]
  41. HeY. ChenZ. QuH. GongX. Research progress on the separation of alkaloids from chinese medicines by column chromatography.Adv. Chem. Eng. Sci.202010435837710.4236/aces.2020.104023
    [Google Scholar]
  42. AcikaraO.B. Ion-exchange chromatography and its applications.Column Chromatography.IntechOpen2013
    [Google Scholar]
  43. KumarS. JainS. History, introduction, and kinetics of ion exchange materials.J. Chem.20132013957647
    [Google Scholar]
  44. ShamsK.A. NazifN.M. Abdel AzimN.S. Abdel ShafeekK.A. El-MissiryM.M. IsmailS.I. Seif El NasrM.M. Isolation and characterization of antineoplastic alkaloids from Catharanthus roseus L. Don. cultivated in Egypt.Afr. J. Tradit. Complement. Altern. Med.200962118122 20209002
    [Google Scholar]
  45. ZhangQ.W. LinL.G. YeW.C. Techniques for extraction and isolation of natural products: A comprehensive review.Chin. Med.20181312010.1186/s13020‑018‑0177‑x 29692864
    [Google Scholar]
  46. ChenJ. MaX. GaoK. WangY. ZhaoH. WuH. WangJ. XieH. OuYangY. LuoL. GuoS. HanJ. LiuB. WangW. The active ingredients of Jiang-Zhi-Ning: Study of the Nelumbo nucifera alkaloids and their main bioactive metabolites.Molecules20121789855986710.3390/molecules17089855 22898740
    [Google Scholar]
  47. LiuQ. LiX. LiC. ZhengY. PengG. 1-deoxynojirimycin alleviates insulin resistance via activation of insulin signaling PI3K/AKT pathway in skeletal muscle of db/db mice.Molecules20152012217002171410.3390/molecules201219794 26690098
    [Google Scholar]
  48. CouperJ.R. PenneyW.R. FairJ.R. WalasS.M. 15 - Adsorption and ion exchange.Chemical Process Equipment.Gulf Professional Publishing2010
    [Google Scholar]
  49. DragullK. BeckJ.J. Isolation of natural products by ion-exchange methods.Methods Mol. Biol.201286418921910.1007/978‑1‑61779‑624‑1_8 22367898
    [Google Scholar]
  50. PismenskayaN. SarapulovaV. KlevtsovaA. MikhaylinS. BazinetL. Adsorption of anthocyanins by cation and anion exchange resins with aromatic and aliphatic polymer matrices.Int. J. Mol. Sci.20202121787410.3390/ijms21217874 33114195
    [Google Scholar]
  51. AkramM.N. VerpoorteR. PomahačováB. Methods for the analysis of galanthamine and its extraction from laboratory to industrial scale.S. Afr. J. Bot.2021136516410.1016/j.sajb.2020.08.004
    [Google Scholar]
  52. LiQ. XuJ. YangL. ZhouX. CaiY. ZhangY. Transcriptome analysis of different tissues reveals key genes associated with galanthamine biosynthesis in lycoris longituba.Front. Plant Sci.20201151975210.3389/fpls.2020.519752 33042169
    [Google Scholar]
  53. FengW. LiM. HaoZ. ZhangJ. Analytical methods of isolation and identification.Phytochemicals in Human Health.IntechOpen2019
    [Google Scholar]
  54. AjanalM. GundkalleM. NayakS. Estimation of total alkaloid in Chitrakadivati by UV-Spectrophotometer.Anc. Sci. Life201231419820110.4103/0257‑7941.107361 23661869
    [Google Scholar]
  55. TangJ. LiangS. DongB. LiY. YaoS. Extraction and quantitative analysis of tropane alkaloids in Radix physochlainae by emulsion liquid membrane with tropine-based ionic liquid.J. Chromatogr. A2019158391810.1016/j.chroma.2018.11.009 30429086
    [Google Scholar]
  56. NguyenN-VT NguyenK-NH NguyenKT KimKH Aboul-EneinHY The impact of chirality on the analysis of alkaloids in plant.Pharmacia.202168364365610.3897/pharmacia.68.e71101
    [Google Scholar]
  57. ChoiY.H. ChinY.W. KimJ. JeonS.H. YooK.P. Strategies for supercritical fluid extraction of hyoscyamine and scopolamine salts using basified modifiers.J. Chromatogr. A19998631475510.1016/S0021‑9673(99)00962‑0 10591463
    [Google Scholar]
  58. AkhgariA. LaaksoI. Seppänen-LaaksoT. YrjönenT. VuorelaH. Oksman-CaldenteyK.M. RischerH. Analysis of indole alkaloids from Rhazya stricta hairy roots by ultra-performance liquid chromatography-mass spectrometry.Molecules20152012226212263410.3390/molecules201219873 26694342
    [Google Scholar]
  59. WeiX. ShenH. WangL. MengQ. LiuW. Analyses of total alkaloid extract of Corydalis yanhusuo by comprehensive RP × RP liquid chromatography with pH difference.J. Anal. Methods Chem.201620169752735
    [Google Scholar]
  60. BastidaJ. LavillaR. ViladomatF. Chemical and biological aspects of Narcissus alkaloids.Alkaloids Chem. Biol.2006638717910.1016/S1099‑4831(06)63003‑4 17133715
    [Google Scholar]
  61. MorrowG.W. Biosynthesis of alkaloids and related compounds.Bioorganic Synthesis: An Introduction.Oxford University Press2016
    [Google Scholar]
  62. YinX. MaK. DongY. DaiM. Pyrrole strategy for the γ-lactam-containing stemona alkaloids: (±)Stemoamide, (±)tuberostemoamide, and (±)sessilifoliamide A.Org. Lett.202022135001500410.1021/acs.orglett.0c01570 32551684
    [Google Scholar]
  63. XingW. ChenL. ZhangF. Separation of camptothecin from Camptotheca acuminate samples using cloud point extraction.Anal. Methods20146113644365010.1039/C3AY42289E
    [Google Scholar]
  64. PetruczynikA. Analysis of alkaloids from different chemical groups by different liquid chromatography methods.Cent. Eur. J. Chem.2012103802835
    [Google Scholar]
  65. TakedaS. YajimaN. KitazatoK. UnemiN. Antitumor activities of harringtonine and homoharringtonine, cephalotaxus alkaloids which are active principles from plant by intraperitoneal and oral administration.J. Pharmacobiodyn.198251084184710.1248/bpb1978.5.841 7161711
    [Google Scholar]
  66. AbubakarA. HaqueM. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes.J. Pharm. Bioallied Sci.202012111010.4103/jpbs.JPBS_175_19 32801594
    [Google Scholar]
  67. LiW.X. WangH. DongA.W. Systematic separation and purification of alkaloids from Euchresta tubulosa dunn. by various chromatographic methods.Processes201971292410.3390/pr7120924
    [Google Scholar]
  68. StéphaneF.F.Y. Extraction of bioactive compounds from medicinal plants and herbs.Natural Medicinal Plants.IntechOpen2021
    [Google Scholar]
  69. DaleyS. CordellG.A. Alkaloids in contemporary drug discovery to meet global disease needs.Molecules20212613380010.3390/molecules26133800 34206470
    [Google Scholar]
  70. DimitrijevićD. BösenhoferM. HarasekM. Liquid-liquid phase separation of two non-dissolving liquids-A mini review.Processes2023114114510.3390/pr11041145
    [Google Scholar]
  71. IqbalM. TaoY. XieS. ZhuY. ChenD. WangX. HuangL. PengD. SattarA. ShabbirM.A.B. HussainH.I. AhmedS. YuanZ. Aqueous two-phase system (ATPS): An overview and advances in its applications.Biol. Proced. Online20161811810.1186/s12575‑016‑0048‑8 27807400
    [Google Scholar]
  72. HuangX. AiC. YaoH. ZhaoC. XiangC. HongT. XiaoJ. Guideline for the extraction, isolation, purification, and structural characterization of polysaccharides from natural resources.eFood202236e3710.1002/efd2.37
    [Google Scholar]
  73. ChavesJ.O. de SouzaM.C. da SilvaL.C. Lachos-PerezD. Torres-MayangaP.C. MachadoA.P.F. Forster-CarneiroT. Vázquez-EspinosaM. González-de-PeredoA.V. BarberoG.F. RostagnoM.A. Extraction of flavonoids from natural sources using modern techniques.Front Chem.2020850788710.3389/fchem.2020.507887 33102442
    [Google Scholar]
  74. SasidharanS. ChenY. SaravananD. SundramK.M. Yoga LathaL. Extraction, isolation and characterization of bioactive compounds from plants’ extracts.Afr. J. Tradit. Complement. Altern. Med.201181110 22238476
    [Google Scholar]
  75. UsmanI. HussainM. ImranA. AfzaalM. SaeedF. JavedM. Traditional and innovative approaches for the extraction of bioactive compounds.Int. J. Food Prop.20222511215123310.1080/10942912.2022.2074030
    [Google Scholar]
  76. TenaM.T. Extraction | pressurized liquid extraction.Worsfold P, Poole C, Townshend A, Miró MBT-E of AS. ThirdE. OxfordAcademic Press20197883
    [Google Scholar]
  77. BladergroenM.R. van der BurgtY.E.M. Solid-phase extraction strategies to surmount body fluid sample complexity in high-throughput mass spectrometry-based proteomics.J. Anal. Methods Chem.201520151810.1155/2015/250131 25692071
    [Google Scholar]
  78. KostanyanA.A. VoshkinA.A. BelovaV.V. Analytical, preparative, and industrial-scale separation of substances by methods of countercurrent liquid-liquid chromatography.Molecules20202524602010.3390/molecules25246020 33353256
    [Google Scholar]
  79. SteinS. Isolation of natural proteins.Bioprocess Technol.199073137160 1370012
    [Google Scholar]
  80. SharmaS. BhattacharyaA. Drinking water contamination and treatment techniques.Appl. Water Sci.2017731043106710.1007/s13201‑016‑0455‑7
    [Google Scholar]
  81. TangY.Q. WengN. Salting-out assisted liquid–liquid extraction for bioanalysis.Bioanalysis20135121583159810.4155/bio.13.117 23795935
    [Google Scholar]
  82. FuC. LiZ. SunZ. XieS. A review of salting-out effect and sugaring-out effect: Driving forces for novel liquid-liquid extraction of biofuels and biochemicals.Front. Chem. Sci. Eng.2020
    [Google Scholar]
  83. YangJ. SuY. LuoJ.F. GuW. NiuH.M. LiY. WangY-H. LongC-L. New amide alkaloids from Piper longum fruits.Nat. Prod. Bioprospect.20133627728110.1007/s13659‑013‑0073‑0
    [Google Scholar]
  84. SunX. LiC. MaJ. ZangY. HuangJ. ChenN. WangX. ZhangD. New amide alkaloids and carbazole alkaloid from the stems of Clausena lansium.Fitoterapia2021154July10499910.1016/j.fitote.2021.104999 34302918
    [Google Scholar]
  85. XuW. YingZ. TaoX. YingX. YangG. Two new amide alkaloids from Portulaca oleracea L. and their anticholinesterase activities.Nat. Prod. Res.20200017 32193952
    [Google Scholar]
  86. LanX. YingZ. GuoS. DuanY. CuiX. LengA. YingX. Two novel amide alkaloids from Portulaca oleracea L. and their anti-inflammatory activities.Nat. Prod. Res.202236215567557410.1080/14786419.2021.2021519 34963386
    [Google Scholar]
  87. LongZ. ZhangY. GuoZ. WangL. XueX. ZhangX. WangS. WangZ. CivelliO. LiangX. Amide alkaloids from Scopolia tangutica.Planta Med.201480131124113010.1055/s‑0034‑1382961 25127021
    [Google Scholar]
  88. WenH. LiY. LiuX. YeW. YaoX. CheY. Fusagerins A-F, new alkaloids from the fungus fusarium sp.Nat. Prod. Bioprospect.20155419520310.1007/s13659‑015‑0067‑1 26329590
    [Google Scholar]
  89. HuangKP XuLL LiS WeiYL YangL HaoXJ Uncarialines A-E, new alkaloids from Uncaria rhynchophylla and their anticoagulant activity.Nat Prod Bioprosp.20231318
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072284841240207104403
Loading
/content/journals/cbc/10.2174/0115734072284841240207104403
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test