Skip to content
2000
Volume 20, Issue 10
  • ISSN: 1573-4072
  • E-ISSN:

Abstract

Background

is considered one of the famous plants from ancient times for its therapeutic ability in many diseases, such as headache, spasms, brain disorders, and some pathological conditions associated with toxicity cases in the liver and kidneys.

Aim

The current research has aimed, for the first time, to evaluate anti-urolithiatic effect of aqueous extract (RMAE) on calcium oxalate stones formation in male rats and its possible therapeutic mechanisms of action. Evaluation of total phenolic and flavonoid contents in the extract was also performed.

Methods

A calcium oxalate nephrolithiasis case was established in rats by adding ethylene glycol (1%) to the rats' daily drinking water for a duration of one month. Treatment was achieved by oral co-administration of RMAE to rats administrated ethylene glycol.

Results

Phytochemical results showed that LC/MS-MS analysis led to the identification of 37 compounds in the phytoconstituent profile of RMAE. The biochemical results revealed significant improvement in serum kidney functions (urea, creatinine, and uric acid) in addition to restoring the calcium x phosphorous product and parathyroid hormone (PTH) levels in the plant-treated group compared to the non-treated one. The data have been supported by the significant decrease in lactate dehydrogenase enzyme (LDH) expression in the liver tissues, reflecting the decrease in oxalate synthesis in the liver compared to the non-treated group. Kidneys' histological examinations showed the absence of oxalate crystals in the treated group and the immunohistochemical findings of osteopontin (OPN) protein revealed the impact of RMAE on OPN expression in kidney tissues. Improvements in the femur bone fractures and the parathyroid gland in the treated group were also noticed during microscopic examinations.

Conclusion

The anti-lithiatic effect of the extract was attributed to its influence on serum phosphate, serum PTH, and OPN levels in kidney tissues and decreasing synthesis of LDH in liver tissues in addition to the prevention of secondary disease incidences, such as secondary hyperparathyroidism and cardiovascular diseases. On the other hand, the plant's considerable content of phenolics and flavonoids has been found to play a role in controlling kidney stone progression episodes.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072282832240122020523
2024-12-01
2024-11-22
Loading full text...

Full text loading...

References

  1. AndradeJ.M. FaustinoC. GarciaC. LadeirasD. ReisC.P. RijoP. Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity.Future Sci. OA201844FSO28310.4155/fsoa‑2017‑0124 29682318
    [Google Scholar]
  2. de MacedoL.M. SantosÉ.M.D. MilitãoL. TundisiL.L. AtaideJ.A. SoutoE.B. MazzolaP.G. Rosemary (Rosmarinus officinalis L., syn Salvia rosmarinus Spenn.) and its topical applications: A review.Plants20209565110.3390/plants9050651
    [Google Scholar]
  3. SenanayakeS.P.J.N. Rosemary extract as a natural source of bioactive compounds.J. Food Bioact.20182515710.31665/JFB.2018.2140
    [Google Scholar]
  4. ElSherifN. IssaN. Protective effect of rosemary (rosmarinus officinalis) extract on naphthalene induced nephrotoxicity in adult male albino rat.J. Interdiscip. Histopathol.201531243210.5455/jihp.20150213020636
    [Google Scholar]
  5. BahriS. Ben AliR. GasmiK. MlikaM. FazaaS. KsouriR. SerairiR. JameleddineS. ShlyonskyV. Prophylactic and curative effect of rosemary leaves extract in a bleomycin model of pulmonary fibrosis.Pharm. Biol.201755146247110.1080/13880209.2016.1247881 28093019
    [Google Scholar]
  6. de Almeida GonçalvesG. de Sá-NakanishiA.B. ComarJ.F. BrachtL. DiasM.I. BarrosL. PeraltaR.M. FerreiraI.C.F.R. BrachtA. Water soluble compounds of Rosmarinus officinalis L. improve the oxidative and inflammatory states of rats with adjuvant-induced arthritis.Food Funct.2018942328234010.1039/C7FO01928A 29578222
    [Google Scholar]
  7. RagabM.R. Protective effect of rosemary on liver cirrhosis induced experimentally in rats.World J. Pharm. Pharm. Sci.20199141342310.20959/wjpps20201‑15370
    [Google Scholar]
  8. FodaD.S. IbrahimN.E. Deleterious effects of hyperoxaluria on some rats’ organs and the promising in vitro oxalate fragmentation influence of aqueous extract of Rosmarinus officinalis Linn.Egypt. J. Vet. Sci.202455242144310.21608/ejvs.2023.226926.1553
    [Google Scholar]
  9. SofiaN.H. ManickavasakamK. WalterT.M. Prevalence and risk factors of kidney stone.Glob. J. Res. Anal.20165318318710.36106/gjra
    [Google Scholar]
  10. EkekeO.N. OkpaniC.P. Management of urinary stone disease in a resource limited tertiary hospital.IOSR J. Dent. Med. Sci.2018172384510.9790/0853‑1702153845
    [Google Scholar]
  11. KhaliliP. JamaliZ. SadeghiT. Esmaeili-nadimiA. MohamadiM. Moghadam-AhmadiA. AyoobiF. NazariA. Risk factors of kidney stone disease: A cross-sectional study in the southeast of Iran.BMC Urol.202121114110.1186/s12894‑021‑00905‑5 34625088
    [Google Scholar]
  12. AlelignT. PetrosB. Kidney stone disease: An update on current concepts.Adv. Urol.2018201811210.1155/2018/3068365 29515627
    [Google Scholar]
  13. SafdarO.Y. AlzahraniW. A. kurdiM. A. GhanimA.A. NagadiS.A. AlghamdiS.J. ZaherZ. F. AlbokhariS.M. The prevalence of renal stones among local residents in Saudi Arabia.J. Family Med. Prim. Care202110297497710.4103/jfmpc
    [Google Scholar]
  14. AtmokoW. RaharjaP.A.R. BirowoP. HamidA.R.A.H. TaherA. RasyidN. Genetic polymorphisms as prognostic factors for recurrent kidney stones: A systematic review and meta-analysis.PLoS One2021165e025123510.1371/journal.pone.0251235 33956883
    [Google Scholar]
  15. ChienT.M. LuY.M. LiC.C. WuW.J. ChangH.W. ChouY.H. A retrospective study on sex difference in patients with urolithiasis: Who is more vulnerable to chronic kidney disease?Biol. Sex Differ.20211214010.1186/s13293‑021‑00382‑3 34099045
    [Google Scholar]
  16. IslamA.K. HoltS. ReischJ. NwariakuF. AntonelliJ. MaaloufN.M. What predicts recurrent kidney stone after parathyroidectomy in patients with primary hyperparathyroidism?J. Am. Coll. Surg.20202311748210.1016/j.jamcollsurg.2020.04.015 32330575
    [Google Scholar]
  17. SigurjonsdottirV.K. RunolfsdottirH.L. IndridasonO.S. PalssonR. EdvardssonV.O. Impact of nephrolithiasis on kidney function.BMC Nephrol.20151611710.1186/s12882‑015‑0126‑1
    [Google Scholar]
  18. TaylorE.N. FeskanichD. PaikJ.M. CurhanG.C. Nephrolithiasis and risk of incident bone fracture.J. Urol.2016195514821486
    [Google Scholar]
  19. KhanS.R. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis.Transl. Androl. Urol.20143325627610.3978/j.issn.2223‑4683.2014.06.04 25383321
    [Google Scholar]
  20. SohgauraA. BigoniyaP. A review on epidemiology and etiology of renal stone.Am. J. Drug Discov. Dev.201772546210.3923/ajdd.2017.54.62
    [Google Scholar]
  21. ManzoorM.A.P. AgrawalA.K. SinghB. MujeeburahimanM. RekhaP.D. Morphological characteristics and microstructure of kidney stones using synchrotron radiation μCT reveal the mechanism of crystal growth and aggregation in mixed stones.PLoS ONE2019143e0214003
    [Google Scholar]
  22. BirdV.Y. KhanS.R. How do stones form? Is unification of theories on stone formation possible?Arch. Esp. Urol.20177011227 28221139
    [Google Scholar]
  23. KokD.J. BoellaardW. RidwanY. LevchenkoV.A. Timelines of the “free-particle” and “fixed-particle” models of stone-formation: Theoretical and experimental investigations.Urolithiasis2017451334110.1007/s00240‑016‑0946‑x 27915394
    [Google Scholar]
  24. AggarwalK.P. NarulaS. KakkarM. TandonC. Nephrolithiasis: Molecular mechanism of renal stone formation and the critical role played by modulators.BioMed Res. Int.2013201312110.1155/2013/292953 24151593
    [Google Scholar]
  25. CunninghamP. NobleH. Al-ModheferA.K. WalshI. Kidney stones: Pathophysiology, diagnosis and management.Br. J. Nurs.201625201112111610.12968/bjon.2016.25.20.1112 27834524
    [Google Scholar]
  26. WangZ. ZhangY. ZhangJ. DengQ. LiangH. Recent advances on the mechanisms of kidney stone formation (Review).Int. J. Mol. Med.202148214910.3892/ijmm.2021.4982 34132361
    [Google Scholar]
  27. RodríguezD. SaccoD.E. Minimally invasive surgical treatment for kidney stone disease.Adv. Chronic Kidney Dis.201522426627210.1053/j.ackd.2015.03.005 26088070
    [Google Scholar]
  28. ItoK. TakahashiT. SomiyaS. KannoT. HigashiY. YamadaH. Predictors of repeat surgery and stone-related events after flexible ureteroscopy for renal stones.Urology20211549610210.1016/j.urology.2021.02.025 33667526
    [Google Scholar]
  29. NirumandM. HajialyaniM. RahimiR. FarzaeiM. ZingueS. NabaviS. BishayeeA. Dietary plants for the prevention and management of kidney stones: Preclinical and clinical evidence and molecular mechanisms.Int. J. Mol. Sci.201819376578910.3390/ijms19030765 29518971
    [Google Scholar]
  30. AkramM. IdreesM. Progress and prospects in the management of kidney stones and developments in phyto-therapeutic modalities.Int. J. Immunopathol. Pharmacol.20193310.1177/2058738419848220 31046493
    [Google Scholar]
  31. MohammedJ. HateemS.M. Abdul SattarO.D. Effect of aqueous, alcoholic and acidic extract of rosemary leaves Rosmarinus officinalis in inhibiting the effect of free radicals manufactured and inhibitory effect in some microorganisms and detection of some active compounds.J. Phys. Conf. Ser.20201664101207910.1088/1742‑6596/1664/1/012079
    [Google Scholar]
  32. AttardE. (2013). A rapid microtitre plate Folin-Ciocalteu method for the assessment of polyphenols.Cent. Eur. J. Biol.81485310.2478/s11535‑012‑0107‑3
    [Google Scholar]
  33. KiranmaiM. KumarC.B.M. IbrahimM. Comparison of total flavanoid content of Azadirachtaindica root bark extracts prepared by different methods of extraction.Res. J. Pharm. Biol. Chem. Sci.201123254261
    [Google Scholar]
  34. KasparavičienėG. RamanauskienėK. SavickasA. VelžienėS. KalvėnienėZ. KazlauskienėD. RagažinskienėO. IvanauskasK. Evaluation of total phenolic content and antioxidant activity of different Rosmarinus officinalis L. ethanolic extracts.Biologija2013591394410.6001/biologija.v59i1.2650
    [Google Scholar]
  35. MegateliS. KreaM. Enhancement of total phenolic and flavonoids extraction from Rosmarinus officinalis L using electromagnetic induction heating (EMIH) process.Physiol. Mol. Biol. Plants201824588989710.1007/s12298‑018‑0585‑5 30150863
    [Google Scholar]
  36. JacksonM.L. Soil chemical analysis. Prentice- Hall Inc.N.J.U.D.A.1973
    [Google Scholar]
  37. ShakerK.H. ZohairM.M. HassanA.Z. SweelamH.M. AshourW.E. LC–MS/MS and GC–MS based phytochemical perspectives and antimicrobial effects of endophytic fungus Chaetomium ovatoascomatis isolated from Euphorbia milii.Arch. Microbiol.20222041166110.1007/s00203‑022‑03262‑5 36192448
    [Google Scholar]
  38. LiX. LiangQ. SunY. DiaoL. QinZ. WangW. LuJ. FuS. MaB. YueZ. Potential mechanisms responsible for the antinephrolithic effects of an aqueous extract of Fructus aurantii.Evid. Based Complement. Alternat. Med.2015201511110.1155/2015/491409 26170875
    [Google Scholar]
  39. FodaD.S. NourS.A. IsmailS.A. HashemA.M. Safety evaluation of β-mannanase enzyme extracted from the mutant pathogenic fungal strain Penicilliumcitrinumin female Wistar rats.Int. J. Vet. Sci.2022111748110.47278/journal.ijvs/2021.074
    [Google Scholar]
  40. VassaultA. GrafmeyerD. NaudinC. Protocole de validation de techniques (document B).Ann. Biol. Clin. (Paris)198644686745
    [Google Scholar]
  41. FodaD. FarragE. MetwallyN. MaghrabyA. FarragA. RawiS. Protective and therapeutic impact of taurine on some biochemical, immunological and histological parameters in diabetic rats.J. Appl. Pharm. Sci.201661004505410.7324/JAPS.2016.601006
    [Google Scholar]
  42. BanchroftJ.D. StevensA.A. TurnerD.R. Theory and practice of histological techniques., Forth edition.New York, London, San Francisco, TokyoChurchil Livingstone1996
    [Google Scholar]
  43. MukaiK. YoshimuraS. AnzaiM. Effects of decalcification on immunoperoxidase staining.Am. J. Surg. Pathol.198610641341910.1097/00000478‑198606000‑00006 2424325
    [Google Scholar]
  44. OkadaA. NomuraS. SaekiY. HigashibataY. HamamotoS. HiroseM. ItohY. YasuiT. TozawaK. KohriK. Morphological conversion of calcium oxalate crystals into stones is regulated by osteopontin in mouse kidney.J. Bone Miner. Res.200823101629163710.1359/jbmr.080514 18505365
    [Google Scholar]
  45. SharmaY. VelamuriR. FaganJ. SchaeferJ. Full-spectrum analysis of bioactive compounds in rosemary (Rosmarinus officinalis L.) as influenced by different extraction methods.Molecules20202520459910.3390/molecules25204599 33050282
    [Google Scholar]
  46. VelamuriR. SharmaY. FaganJ. SchaeferJ. Application of UHPLC-ESI-QTOF-MS in phytochemical profiling of sage (Salvia officinalis) and rosemary (Rosmarinus officinalis).Planta Medica International Open202074e133e14410.1055/a‑1272‑2903
    [Google Scholar]
  47. BervinovaA.V. PalikovV.A. MikhailovE.S. PalikovaY.A. BorozdinaN.A. KazakovV.A. RudenkoP.A. TukhovskayaE.A. DyachenkoI.A. SlashchevaG.A. GoryachevaN.A. SadovnikovaE.S. KravchenkoI.N. KalabinaE.A. ShinelevM.V. WuP. MurashevA.N. Efficacy of Ficus tikoua Bur. extract in ethylene glycol-induced urolithiasis model in SD rats.Front. Pharmacol.20221397494710.3389/fphar.2022.974947 36105205
    [Google Scholar]
  48. GhelaniH. ChapalaM. JadavP. Diuretic and antiurolithiatic activities of an ethanolic extract of Acorus calamus L. rhizome in experimental animal models.J. Tradit. Complement. Med.20166443143610.1016/j.jtcme.2015.12.004 27774431
    [Google Scholar]
  49. PrathibhakumariP.V. PrasadG. Inhibition of CaOx crystals by Neolamarckia cadamba: An in vivo approach.Bio Rxiv201812310.1101/253179
    [Google Scholar]
  50. ZhaoB. SuB. ZhangH. LiuW. DuQ. LiY. Antiurolithiatic effect of ferulic acid on ethylene glycolinduced renal calculus in experimental rats.Trop. J. Pharm. Res.201918110910.4314/tjpr.v18i1.16
    [Google Scholar]
  51. SaleemU. AhmadN. ShahM.A. AnwarF. AhmadB. Anti-urolithiatic activity of Salvia hispanica L. seeds in ethylene glycol induced urolithiasis rat’s model.An Acad Bras Cienc202092411310.1590/0001‑3765202020200067
    [Google Scholar]
  52. ArcidiaconoM.V. YangJ. FernandezE. DussoA. Parathyroid-specific epidermal growth factor-receptor inactivation prevents uremia-induced parathyroid hyperplasia in mice.Nephrol. Dial. Transplant.201530343444010.1093/ndt/gfu318 25324357
    [Google Scholar]
  53. KanS. ZhangW. MaoJ. WangM. NiL. ZhangM. ZhangQ. ChenJ. NF-κB activation contributes to parathyroid cell proliferation in chronic kidney disease.J. Nephrol.201831694195110.1007/s40620‑018‑0530‑2 30171599
    [Google Scholar]
  54. DingY. ZouQ. JinY. ZhouJ. WangH. Relationship between parathyroid oxyphil cell proportion and clinical characteristics of patients with chronic kidney disease.Int. Urol. Nephrol.202052115515910.1007/s11255‑019‑02330‑y 31686279
    [Google Scholar]
  55. Rodríguez-OrtizM.E. Pendón-Ruiz de MierM.V. RodríguezM. Parathyroidectomy in dialysis patients: Indications, methods, and consequences.Semin. Dial.201932544445110.1111/sdi.12772 30656752
    [Google Scholar]
  56. GentryJ. WebbJ. DavenportD. MallucheH.H. Serum phosphorus adds to value of serum parathyroid hormone for assessment of bone turnover in renal osteodystrophy.Clin. Nephrol.201686791710.5414/CN108823 27191663
    [Google Scholar]
  57. CentenoP.P. HerbergerA. MunH.C. TuC. NemethE.F. ChangW. ConigraveA.D. WardD.T. Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion.Nat. Commun.2019101469310.1038/s41467‑019‑12399‑9 31619668
    [Google Scholar]
  58. NewmanC.L. ChenN.X. SmithE. SmithM. BrownD. MoeS.M. AllenM.R. Compromised vertebral structural and mechanical properties associated with progressive kidney disease and the effects of traditional pharmacological interventions.Bone201577505610.1016/j.bone.2015.04.021 25892482
    [Google Scholar]
  59. BajwaN.M. SanchezC.P. LindseyR.C. WattH. MohanS. Cortical and trabecular bone are equally affected in rats with renal failure and secondary hyperparathyroidism.BMC Nephrol.20181912410.1186/s12882‑018‑0822‑8 29394885
    [Google Scholar]
  60. ElbahnasawyA.S. ValeevaE.R. El-SayedE.M. RakhimovI.I. The impact of thyme and rosemary on prevention of osteoporosis in rats.J. Nutr. Metab.2019201911010.1155/2019/1431384 31049223
    [Google Scholar]
  61. HanS.G. Kidney stones and risk of osteoporotic fracture in chronic kidney disease.Scientific Reports2019911710.1038/s41598‑018‑38191‑1
    [Google Scholar]
  62. DuqueE.J. EliasR.M. MoysésR.M.A. Parathyroid hormone: A uremic toxin.Toxins202012318910.3390/toxins12030189 32192220
    [Google Scholar]
  63. KaletaB. The role of osteopontin in kidney diseases.Inflamm. Res.20196829310210.1007/s00011‑018‑1200‑5 30456594
    [Google Scholar]
  64. JiaQ. HuangZ. WangG. SunX. WuY. YangB. YangT. LiuJ. LiP. LiJ. Osteopontin: An important protein in the formation of kidney stones.Front. Pharmacol.202213103642310.3389/fphar.2022.1036423 36452224
    [Google Scholar]
  65. TavafiM. AhmadvandH. KhalatbariA. Rosmarinic acid ameliorates diabetic nephropathy in uninephrectomized diabetic rats.Iran. J. Basic Med. Sci.20111427528310.22038/IJBMS.2011.5006
    [Google Scholar]
  66. AyazN.O. Antidiabetic and renoprotective effects of water extract of Rosmarinus officinalis in streptozotocin-induced diabetic rat.Afr. J. Pharm. Pharmacol.201262664266910.5897/AJPP12.319
    [Google Scholar]
  67. Changizi AshtiyaniS. ZohrabiM. HassanpoorA. HosseiniN. HajihashemiS. Oral administration of the aqueous extract of Rosmarinus officinalis in rats before renal reperfusion injury.Iran. J. Kidney Dis.201375367375 24072149
    [Google Scholar]
  68. HeaderE. ElsawyN. El-BoshyM. MubarakM. Ben HaddaT. (2015). POM analyses of constituents of Rosmarinus officinalis and their synergistic effect in experimental diabetic rats.Journal of Bioanalysis and Biomedicine.7182310.4172/1948‑593X.1000118
    [Google Scholar]
  69. CheungpasitpornW. ThongprayoonC. HansrivijitP. MedauraJ. ChewcharatA. BathiniT. MaoM. EricksonS. Impact of admission calcium-phosphate product on 1-year mortality among hospitalized patients.Adv. Biomed. Res.2020911410.4103/abr.abr_249_19 32775307
    [Google Scholar]
  70. AbeS. YoshihisaA. TakeishiR. OharaH. IchijoY. WatanabeK. Yu HotsukiY. Yu SatoY. Yusuke KimishimaY. Calcium-phosphorus product is associated with adverse prognosis in hospitalized patients with heart failure and chronic kidney disease.Circulation20211441A9958
    [Google Scholar]
  71. KaulS. AyodeleO. ChenK. CookE.E. SwallowE. RejnmarkL. GosmanovaE.O. Association of serum calcium and phosphate with incident cardiovascular disease in patients with hypoparathyroidism.Am. J. Cardiol.2023194607010.1016/j.amjcard.2023.01.029 36989548
    [Google Scholar]
  72. DaudonM. BazinD. LetavernierE. Randall’s plaque as the origin of calcium oxalate kidney stones.Urolithiasis201543S1Suppl. 151110.1007/s00240‑014‑0703‑y 25098906
    [Google Scholar]
  73. TaguchiK. HamamotoS. OkadaA. SuginoT. UnnoR. AndoR. GaoB. TozawaK. KohriK. YasuiT. Helper T‐cell signaling and inflammatory pathway lead to formation of calcium phosphate but not calcium oxalate stones on Randall’s plaques.Int. J. Urol.201926667067710.1111/iju.13950 30919502
    [Google Scholar]
  74. KhanS.R. CanalesB.K. Dominguez-GutierrezP.R. Randall’s plaque and calcium oxalate stone formation: role for immunity and inflammation.Nat. Rev. Nephrol.202117641743310.1038/s41581‑020‑00392‑1 33514941
    [Google Scholar]
  75. JaiswalS.K. SiddiqiN.J. SharmaB. Studies on the ameliorative effect of curcumin on carbofuran induced perturbations in the activity of lactate dehydrogenase in wistar rats.Saudi J. Biol. Sci.20182581585159210.1016/j.sjbs.2016.03.002 30591774
    [Google Scholar]
  76. PrabhaM. KaranthA. NeethuP. RameshV. SuneethaP. Caffeine induces significant higher protein activity for cell activation and lower carboxyl esterase activity in male Wistar rat’s brain and liver.J BiochemEng Bioprocess Technol.201812110
    [Google Scholar]
  77. KouM.J. XueZ. LiuY.Y. LiuY.Y. LiuY. ChenJ.X. Differentially expressed proteins in rat hippocampus after chronic immobilization stress and intervention using xiao yao san decoction.Digital Chinese Medicine20181321922710.1016/S2589‑3777(19)30029‑1
    [Google Scholar]
  78. KellyD. RothwellP.M. Disentangling the multiple links between renal dysfunction and cerebrovascular disease.J. Neurol. Neurosurg. Psychiatry2020911889710.1136/jnnp‑2019‑320526 31511306
    [Google Scholar]
  79. LahouelZ. KharoubiO. BoussadiaA. BekkoucheZ. AouesA. Effect of aluminium and aqueous extract of rosmarinus officinalis on rat brain: Impact on neurobehavioral and histological study.J. Drug Deliv. Ther.202010417918710.22270/jddt.v10i4.4252
    [Google Scholar]
  80. BrichacekA.L. BrownC.M. Alkaline phosphatase: A potential biomarker for stroke and implications for treatment.Metab. Brain Dis.201934131910.1007/s11011‑018‑0322‑3 30284677
    [Google Scholar]
  81. WangC.C. KongJ.Y. XueC.H. ZhangT.T. WangY.M. Antarctic Krill oil exhibited synergistic effects with nobiletin and theanine on regulating ligand‐specific receptor‐mediated transcytosis in blood–brain barrier by inhibiting alkaline phosphatase in SAMP8 Mice.Mol. Nutr. Food Res.2023678220082510.1002/mnfr.202200825 36815232
    [Google Scholar]
  82. TaoX. YangC. HeJ. LiuQ. WuS. TangW. WangJ. Serum alkaline phosphatase was independently associated with depression in patients with cerebrovascular disease.Front. Psychiatry202314118467310.3389/fpsyt.2023.1184673 37469359
    [Google Scholar]
  83. CoryH. PassarelliS. SzetoJ. TamezM. MatteiJ. The role of polyphenols in human health and food systems: A mini-review.Frontiers in Nutrition2018510.3389/fnut.2018.00087
    [Google Scholar]
  84. GorlenkoC.L. KiselevH.Y. BudanovaE.V. ZamyatninA.A.Jr IkryannikovaL.N. Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: New heroes or worse clones of antibiotics?Antibiotics20209417010.3390/antibiotics9040170 32290036
    [Google Scholar]
  85. PanossianA. Challenges in phytotherapy research.Front. Pharmacol.202314119951610.3389/fphar.2023.1199516 37324491
    [Google Scholar]
  86. AhmedS. HasanM.M. KhanH. MahmoodZ.A. PatelS. The mechanistic insight of polyphenols in calcium oxalate urolithiasis mitigation.Biomed. Pharmacother.20181061292129910.1016/j.biopha.2018.07.080 30119199
    [Google Scholar]
  87. ZengH.H. TuP.F. ZhouK. WangH. WangB.H. LuJ.F. Antioxidant properties of phenolic diterpenes from Rosmarinus officinalis.Acta Pharmacol. Sin.2001221210941098[Pub-Med]. [Google Scholar]. 11749806
    [Google Scholar]
  88. OlahN.K. BenedecD. SocaciS. TomaC.C. FilipL. MorgovanC. HanganuD. Terpenic profile of different Rosmarinus officinalis extracts.Pak. J. Pharm. Sci.2017304Suppl.14391443 29043994
    [Google Scholar]
  89. AlviS.S. AhmadP. IshratM. IqbalD. KhanM.S. Secondary metabolites from rosemary (Rosmarinus officinalis L.): Structure, biochemistry and therapeutic implications against neurodegenerative diseases.Natural Bio-active Compounds.Chemistry, Pharmacology and Health Care Practices2019Vol. 210.1007/978‑981‑13‑7205‑6_1
    [Google Scholar]
  90. BellumoriM. InnocentiM. CongiuF. CencettiG. RaioA. MenicucciF. MulinacciN. MichelozziM. Within-plant variation in rosmarinus officinalis l. Terpenes and phenols and their antimicrobial activity against the rosemary phytopathogens alternaria alternata and pseudomonas viridiflava.Molecules20212611342510.3390/molecules26113425 34198771
    [Google Scholar]
  91. Razzaghi-AslN. GarridoJ. KhazraeiH. BorgesF. FiruziO. Antioxidant properties of hydroxycinnamic acids: A review of structure- activity relationships.Curr. Med. Chem.201320364436445010.2174/09298673113209990141 23834166
    [Google Scholar]
  92. GrasesF. PrietoR.M. Fernandez-CabotR.A. Costa-BauzáA. TurF. TorresJ.J. Effects of polyphenols from grape seeds on renal lithiasis.Oxid. Med. Cell. Longev.201520151610.1155/2015/813737 25883748
    [Google Scholar]
  93. CikmanO. SoylemezO. OzkanO.F. KirazH.A. SayarI. AdemogluS. TaysiS. KaraayvazM. Antioxidant activity of syringic acid prevents oxidative stress in l-arginine–induced acute pancreatitis: An experimental study on rats.Int. Surg.2015100589189610.9738/INTSURG‑D‑14‑00170.1 26011211
    [Google Scholar]
  94. GolshanA. HayatdavoudiP. HadjzadehM.A. Khajavi RadA. Mohamadian RoshanN. AbbasnezhadA. MousaviS.M. PakdelR. ZareiB. AghaeeA. Kidney stone formation and antioxidant effects of Cynodon dactylon decoction in male Wistar rats.Avicenna J. Phytomed.201772180190 28348973
    [Google Scholar]
  95. HeferM. HuskicI.M. PetrovicA. Raguz-LucicN. KizivatT. GjoniD. HorvaticE. UdiljakZ. SmolicR. VcevA. SmolicM. A mechanistic insight into beneficial effects of polyphenols in the prevention and treatment of nephrolithiasis: evidence from recent in vitro studies.Crystals2023137107010.3390/cryst13071070
    [Google Scholar]
  96. AneklaphakijC. SaigoT. WatanabeM. NaakeT. FernieA.R. BunsupaS. SatitpatipanV. TohgeT. Diversity of chemical structures and biosynthesis of polyphenols in nut-bearing species.Frontiers in Plant Science20211210.3389/fpls.2021.642581
    [Google Scholar]
  97. KhanS.R. Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations.J. Urol.2013189380381110.1016/j.juro.2012.05.078 23022011
    [Google Scholar]
  98. AlsawafS. AlnuaimiF. AfzalS. ThomasR.M. ChelakkotA.L. RamadanW.S. HodeifyR. MatarR. MerhebM. SiddiquiS.S. VazhappillyC.G. Plant flavonoids on oxidative stress-mediated kidney inflammation.Biology20221112171710.3390/biology11121717 36552226
    [Google Scholar]
  99. BadrinathanS. ShijuM.T. AryaR. RajeshG.N. ViswanathanP. Citrus bioflavonoids ameliorate hyperoxaluria induced renal injury and calcium oxalate crystal deposition in wistar rats.Adv. Pharm. Bull.20155341942710.15171/apb.2015.057 26504765
    [Google Scholar]
  100. ZengX. XiY. JiangW. Protective roles of flavonoids and flavonoid-rich plant extracts against urolithiasis: A review.Crit. Rev. Food Sci. Nutr.201959132125213510.1080/10408398.2018.1439880 29432040
    [Google Scholar]
  101. SimunkovaM. BarbierikovaZ. JomovaK. HudecovaL. LauroP. AlwaselS.H. AlhazzaI. RhodesC.J. ValkoM. Antioxidant vs. Prooxidant properties of the flavonoid, kaempferol, in the presence of Cu(ii) ions: A ros-scavenging activity, fenton reaction and dna damage study.Int. J. Mol. Sci.2021224161910.3390/ijms22041619 33562744
    [Google Scholar]
  102. MajewskaM. SkrzyckiM. PodsiadM. CzeczotH. Evaluation of antioxidant potential of flavonoids: An in vitro study.Acta Pol. Pharm.2011684611615 21796946
    [Google Scholar]
  103. PopovA.M. OsipovA.N. KorepanovaE.A. KrivoshapkoO.N. ArtyukovA.A. KlimovichA.A. A study of the antioxidant and membranotropic activities of luteolin using different model systems.Biophysics201661684385010.1134/S0006350916060221
    [Google Scholar]
  104. LendeA.B. KshirsagarA.D. DeshpandeA.D. MuleyM.M. PatilR.R. BafnaP.A. NaikS.R. Anti-inflammatory and analgesic activity of protocatechuic acid in rats and mice.Inflammopharmacology201119525526310.1007/s10787‑011‑0086‑4 21748471
    [Google Scholar]
  105. ShengY. SunY. TangY. YuY. WangJ. ZhengF. LiY. SunY. Catechins: Protective mechanism of antioxidant stress in atherosclerosis.Frontiers in Pharmacology20231410.3389/fphar.2023.1144878
    [Google Scholar]
  106. KhanF.A. MaalikA. MurtazaG. Inhibitory mechanism against oxidative stress of caffeic acid.J. Food Drug Anal.201624469570210.1016/j.jfda.2016.05.003 28911606
    [Google Scholar]
  107. RaškovićA. GigovS. ČapoI. Paut KusturicaM. MilijaševićB. Kojić-DamjanovS. MartićN. Antioxidative and protective actions of apigenin in a paracetamol-induced hepatotoxicity rat model.Eur. J. Drug Metab. Pharmacokinet.201742584985610.1007/s13318‑017‑0407‑0 28255865
    [Google Scholar]
  108. HawulaZ.J. SecondesE.S. WallaceD.F. RishiG. SubramaniamV.N. The effect of the flavonol rutin on serum and liver iron content in a genetic mouse model of iron overload.Biosci. Rep.2021417BSR2021072010.1042/BSR20210720 34156073
    [Google Scholar]
  109. MuvhulawaN. DludlaP.v. ZiqubuK. MthembuS.X.H. MthiyaneF. NkambuleB.B. Mazibuko-MbejeS.E. Rutin ameliorates inflammation and improves metabolic function: A comprehensive analysis of scientific literature.Pharmacological Research202217810.1016/j.phrs.2022.106163
    [Google Scholar]
  110. JeonI. KimH. KangH. LeeH.S. JeongS. KimS. JangS. Anti-inflammatory and antipruritic effects of luteolin from Perilla (P. frutescens L.) leaves.Molecules20141966941695110.3390/molecules19066941 24871572
    [Google Scholar]
  111. ZhuH. LiangQ. XiongX. WangY. ZhangZ. SunM. LuX. WuD. Anti-inflammatory effects of p-coumaric acid, a natural compound of Oldenlandia diffusa, on arthritis model rats.Evid. Based Complement. Alternat. Med.201820181910.1155/2018/5198594 29681976
    [Google Scholar]
  112. PragasamS.J. VenkatesanV. RasoolM. Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats.Inflammation201336116917610.1007/s10753‑012‑9532‑8 22923003
    [Google Scholar]
  113. HwangS.J. KimY.W. ParkY. LeeH.J. KimK.W. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells.Inflamm. Res.2014631819010.1007/s00011‑013‑0674‑4 24127072
    [Google Scholar]
  114. HamJ.R. LeeH.I. ChoiR.Y. SimM.O. SeoK.I. LeeM.K. Anti-steatotic and anti-inflammatory roles of syringic acid in high-fat diet-induced obese mice.Food Funct.20167268969710.1039/C5FO01329A 26838182
    [Google Scholar]
  115. Abd El-AzizT.A. MohamedR.H. PashaH.F. Abdel-AzizH.R. Catechin protects against oxidative stress and inflammatory-mediated cardiotoxicity in adriamycin-treated rats.Clin. Exp. Med.201212423324010.1007/s10238‑011‑0165‑2 22080234
    [Google Scholar]
  116. HeimfarthL. NascimentoL.S. Amazonas da SilvaM.J. Lucca JuniorW. LimaE.S. Quintans-JuniorL.J. Veiga-JuniorV.F. Neuroprotective and anti-inflammatory effect of pectolinarigenin, a flavonoid from Amazonian Aegiphila integrifolia (Jacq.), against lipopolysaccharide-induced inflammation in astrocytes via NFκB and MAPK pathways.Food Chem. Toxicol.202115711253810.1016/j.fct.2021.112538 34500010
    [Google Scholar]
  117. AlyaevY.G. RudenkoV.I. PerekalinaA.N. KraevI.G. InoyatovZ.S. Plant-derived terpenes in treating patients with urolithiasis.UrologiiaMoscowRussia20162
    [Google Scholar]
  118. LešnikS. FurlanV. BrenU. Rosemary (Rosmarinus officinalis L.): Extraction techniques, analytical methods and health-promoting biological effects.Phytochem. Rev.20212061273132810.1007/s11101‑021‑09745‑5
    [Google Scholar]
  119. OkamuraN. FujimotoY. KuwabaraS. YagiA. High-performance liquid chromatographic determination of carnosic acid and carnosol in Rosmarinus officinalis and Salvia officinalis.J. Chromatogr. A1994679238138610.1016/0021‑9673(94)80582‑2
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072282832240122020523
Loading
/content/journals/cbc/10.2174/0115734072282832240122020523
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test