Skip to content
2000
Volume 20, Issue 10
  • ISSN: 1573-4072
  • E-ISSN:

Abstract

Background

A new series of 2-(2-(substituted aldehyde)hydrazinyl)-4-(2-chlorophenyl)-1-methyl-6-oxo-1,6-dihydropyrimidine-5-carbonitrile analogs (1–19) was prepared by using the Biginelli reaction.

Methods

TLC was employed to ensure the progress and confirmation of the reactions. Silica gel G was employed as the stationary phase, and mobile phases such as chloroform: toluene and acetone: n-hexane were used for the synthesized compounds. NMR.MS, IR, CHN spectral techniques used for the characterization of synthesized compound.

Results

The prepared derivatives were evaluated for antimicrobial activity against various bacteria and fungi using the tube dilution technique. Notably, compounds T1, T6, and T16, displayed significant antibacterial activity, surpassing the standard drug Ampicillin. In the antifungal category, compounds T1, T2, and T13, were very much effective against both fungal strains as well as . Furthermore, compounds T6, T8, T12, and T14 demonstrated remarkable antioxidant properties, because of their low IC values in the DPPH assay. In the realm of anticancer activity, T9 outperformed the standard drug Adriamycin in terms of its effectiveness against human lung cancer cells (A-549) with a GI value of less than 10 according to the SRB assay. In addition, the antidiabetic assessment highlighted the excellent performance of compounds T8, T12, and T15, with low IC values, when tested for their inhibition of α-amylase enzyme activity.

Conclusions

The synthesized derivatives demonstrated strong antimicrobial, antioxidant, anticancer, and antidiabetic properties when assessed using specific methods and compared to established drugs. Notably, compounds T1, T6, and T13, T12 and T9 exhibited even higher activity levels than the standard medications. The presence of electron-releasing groups in the synthesized compounds enhanced their antibacterial and antioxidant effects, particularly against . On the other hand, electron-withdrawing groups improved their anticancer and antidiabetic properties.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072282575240213091008
2024-12-01
2024-11-22
Loading full text...

Full text loading...

References

  1. PatelA.A. MehtaA.G. Synthesis of novel heterocyclic compounds and their biological evaluation.Pharma Chem.201021215223
    [Google Scholar]
  2. SelvamTP JamesCR DniandevPV ValzitaSK A mini review of pyrimidine and fused pyrimidine marketed drugs.Pharm. Res.201524
    [Google Scholar]
  3. ChenP.J. YangA. GuY.F. ZhangX.S. ShaoK.P. XueD.Q. HeP. JiangT.F. ZhangQ.R. LiuH.M. Synthesis, in vitro antimicrobial and cytotoxic activities of novel pyrimidine–benzimidazol combinations.Bioorg. Med. Chem. Lett.201424122741274310.1016/j.bmcl.2014.04.037 24798098
    [Google Scholar]
  4. NarwalS. KumarS. VermaP.K. Design, synthesis and antimicrobial evaluation of pyrimidin-2-ol/thiol/amine analogues.Chem. Cent. J.20171115210.1186/s13065‑017‑0284‑2 29086852
    [Google Scholar]
  5. KhanZ.U.H. KhanA. WanP. KhanA.U. TahirK. MuhammadN. KhanF.U. ShahH.U. KhanZ.U. New natural product -an efficient antimicrobial applications of new newly synthesized pyrimidine derivatives by the electrochemical oxidation of hydroxyl phenol in the presence of 2-mercapto-6-(trifluoromethyl) pyrimidine-4-ol as nucleophile.Nat. Prod. Res.201832101161116910.1080/14786419.2017.1326043 28494613
    [Google Scholar]
  6. GoldH.S. MoelleringR.C. Jr Antimicrobial-Drug Resistance.N. Engl. J. Med.1996335191445145310.1056/NEJM199611073351907 8875923
    [Google Scholar]
  7. NairN. MajeedJ. PandeyP.K. SweetyR. ThakurR. Antioxidant potential of pyrimidine derivatives against oxidative stress.Indian J. Pharm. Sci.2022841
    [Google Scholar]
  8. CappuccinoJ.G. Microbiology: a laboratory manual/James G.Cappuccino and Natalie Sherman1999
    [Google Scholar]
  9. AndrewsB. KomathiK. MohanS. Synthesis and comparing the antibacterial activities of pyrimidine derivatives.J. Chem. Sci.2017129333534110.1007/s12039‑017‑1228‑z
    [Google Scholar]
  10. KhanZ.U.H. KhanA.U. WanP. ChenY. KongD. KhanS. TahirK. In vitro pharmacological screening of three newly synthesised pyrimidine derivatives.Nat. Prod. Res.2015291093393810.1080/14786419.2014.964707 25280048
    [Google Scholar]
  11. MaadadiR. BenmeracheA. MenacerR. ZianiB.E.C. KaboucheZ. SaherL. BachariK. HarakatD. Facile green in situ hemisynthesis of new chiral chromeno-pyrimidine derivatives: Antibacterial, antioxidant activities and molecular docking study.Nat. Prod. Res.202311110.1080/14786419.2023.2290148 38062847
    [Google Scholar]
  12. RahamanS.A. Rajendra PasadY. KumarP. KumarB. Synthesis and anti-histaminic activity of some novel pyrimidines.Saudi Pharm. J.200917325525810.1016/j.jsps.2009.08.001 23964169
    [Google Scholar]
  13. KumarS. LimS.M. RamasamyK. ManiV. ShahS.A.A. NarasimhanB. Design, synthesis, antimicrobial and cytotoxicity study on human colorectal carcinoma cell line of new 4,4′-(1,4-phenylene)bis(pyrimidin-2-amine) derivatives.Chem. Cent. J.20181217310.1186/s13065‑018‑0440‑3 29318401
    [Google Scholar]
  14. MallikarjunaswamyC. RanganathaV. MalleshaL. BhadregowdaD. Novel pyrimidine Schiff bases: synthesis and pharmacological screening.Indian. J. Pharm. Edu. Res.201722316876
    [Google Scholar]
  15. Shortnacy-FowlerA.T. TiwariK.N. MontgomeryJ.A. BuckheitR.W.Jr SecristJ.A.III SeelaF. Synthesis and biological activity of 2′-Fluoro-D-arabinofuranosylpyrazolo[3,4-d]pyrimidine nucleosides.Helv. Chim. Acta199982122240224510.1002/(SICI)1522‑2675(19991215)82:12<2240:AID‑HLCA2240>3.0.CO;2‑2
    [Google Scholar]
  16. KadryH.H. Synthesis, biological evaluation of certain pyrazolo[3,4-d]pyrimidines as novel anti-inflammatory and analgesic agents.Med. Chem. Res.201423125269528110.1007/s00044‑014‑1079‑9
    [Google Scholar]
  17. GorleS MaddilaS ChokkakulaS LavanyaP SinghM JonnalagaddaS Synthesis, biological activity of pyrimidine linked with morpholinophenyl derivatives.J. Heterocycl. Chem.2015612
    [Google Scholar]
  18. BukhariS.N.A. ButtA.M. AmjadM.W.B. AhmadW. ShahV.H. TrivediA.R. Synthesis and evaluation of chalcone analogues based pyrimidines as angiotensin converting enzyme inhibitors.Pak. J. Biol. Sci.201316211368137210.3923/pjbs.2013.1368.1372 24511749
    [Google Scholar]
  19. BishnoiA. SinghS. TiwariA.K. SrivastavaK. RaghuvirR. TripathiC.M. Synthesis, characterization and biological activity of new cyclization products of 3-(4-substituted benzylidene)-2H-pyrido[1,2-a]pyrimidine 2,4-(3H)-diones.J. Chem. Sci.2013125230531210.1007/s12039‑013‑0367‑0
    [Google Scholar]
  20. ChaudharyA. SharmaP.K. VermaP. KumarN. DudheR. Microwave assisted synthesis of novel pyrimidine derivatives and investigation of their analgesic and ulcerogenic activity.Med. Chem. Res.201221113629364510.1007/s00044‑011‑9907‑7
    [Google Scholar]
  21. DongreR.S. BhatA.R. MeshramJ.S. Anticancer activity of assorted annulated pyrimidine: A comprehensive review.Am J Pharm Tech Res.201441138155
    [Google Scholar]
  22. MishraR. TomarI. Pyrimidine: The molecule of diverse biological and medicinal importance.Int. J. Pharm. Sci. Res.201124758
    [Google Scholar]
  23. GholapA.R. TotiK.S. ShiraziF. DeshpandeM.V. SrinivasanK.V. Efficient synthesis of antifungal pyrimidines via palladium catalyzed Suzuki/Sonogashira cross-coupling reaction from Biginelli 3,4-dihydropyrimidin-2(1H)-ones.Tetrahedron20086444102141022310.1016/j.tet.2008.08.033
    [Google Scholar]
  24. NakagawaY. BobrovS. SemerC.R. KucharekT.A. HarmotoM. Fungicidal pyrimidine derivatives.U.S. Patent 6,818,631B12004
  25. BalzariniJ. McGuiganC. Bicyclic pyrimidine nucleoside analogues (BCNAs) as highly selective and potent inhibitors of varicella-zoster virus replication.J. Antimicrob. Chemother.20025015910.1093/jac/dkf037 12096000
    [Google Scholar]
  26. VermaM. VermaP.K. Anticancer and antimicrobial prospective of Pyrimidine derivatives: A review.Pharm. Innov. J.20198566571
    [Google Scholar]
  27. AwadS.M. FathallaO.A. WietrzykJ. MilczarekM. SolimanA.M. MohamedM.S. Synthesis of new pyrimidine derivatives and their antiproliferative activity against selected human cancer cell lines.Res. Chem. Intermed.20154131789180110.1007/s11164‑013‑1312‑z
    [Google Scholar]
  28. AlamO. KhanS.A. SiddiquiN. AhsanW. VermaS.P. GilaniS.J. Antihypertensive activity of newer 1,4-dihydro-5-pyrimidine carboxamides: Synthesis and pharmacological evaluation.Eur. J. Med. Chem.201045115113511910.1016/j.ejmech.2010.08.022 20813434
    [Google Scholar]
  29. BassyouniF TarekM SalamaA Promising antidiabetic and antimicrobial agents based on fused pyrimidine derivatives: Molecular modeling and biological evaluation with histopathological effect.Molecules2021268237010.3390/molecules26082370
    [Google Scholar]
  30. GadhachandaV.R. WuB. WangZ. KuhenK.L. CaldwellJ. ZondlerH. WalterH. HavenhandM. HeY. 4-Aminopyrimidines as novel HIV-1 inhibitors.Bioorg. Med. Chem. Lett.200717126026510.1016/j.bmcl.2006.09.047 17035019
    [Google Scholar]
  31. OuyangY. YangH. ZhangP. WangY. KaurS. ZhuX. WangZ. SunY. HongW. NgeowY. WangH. Synthesis of 2, 4-diaminopyrimidine core-based derivatives and biological evaluation of their anti-tubercular activities.Molecules20172210159210.3390/molecules22101592 28937657
    [Google Scholar]
  32. AshaD. KavithaC.V. ChandrappaS. PrasannaD.S. VinayaK. RaghavanS.C. RangappaK.S. Novel ethyl 2-(1-aminocyclobutyl)-5-(benzoyloxy)-6-hydroxy-pyrimidine-4-carboxylate derivatives: Synthesis and anticancer activities.J. Cancer Ther.201011212810.4236/jct.2010.11003
    [Google Scholar]
  33. KaplancıklıZ. YurttasL. Turan-ZitouniG. ÖzdemirA. GögerG. DemirciF. MohsenU. Synthesis and antimicrobial activity of new pyrimidine-hydrazones.Lett. Drug Des. Discov.2013111768110.2174/15701808113109990037
    [Google Scholar]
  34. CapdevilleR. BuchdungerE. ZimmermannJ. MatterA. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug.Nat. Rev. Drug Discov.20021749350210.1038/nrd839 12120256
    [Google Scholar]
  35. OzekiK. IchikawaT. TakeharaH. TanimuraK. SatoM. YaginumaH. Studies on antiallergy agents. III. Synthesis of 2-anilino-1,6-dihydro-6-oxo-5-pyrimidinecarboxylic acids and related compounds.Chem. Pharm. Bull.19893771780178710.1248/cpb.37.1780 2572333
    [Google Scholar]
  36. HassanA.S. MadyM.F. AwadH.M. HafezT.S. Synthesis and antitumor activity of some new pyrazolo[1,5- a]pyrimidines.Chin. Chem. Lett.201728238839310.1016/j.cclet.2016.10.022
    [Google Scholar]
  37. GuptaA.K. KayathH.P. AjitS. GeetaS. MishraK.C. Anticonvulsant activity of pyrimidine thiols.Indian J. Pharmacol.199426322710.4103/ijp.IJP_486_20
    [Google Scholar]
  38. LindnerW. BrandesW. Pesticidal thiazolopyrimidine derivatives.United States Patent US 4,996,2081991
  39. LiuX.H. WangQ. SunZ.H. WedgeD.E. BecnelJ.J. EstepA.S. TanC.X. WengJ.Q. Synthesis and insecticidal activity of novel pyrimidine derivatives containing urea pharmacophore against Aedes aegypti.Pest Manag. Sci.201773595395910.1002/ps.4370 27448764
    [Google Scholar]
  40. NezuY. MiyazakiM. SugiyamaK. KajiwaraI. Dimethoxypyrimidines as novel herbicides. Part 1. Synthesis and herbicidal activity of dimethoxyphenoxyphenoxypyrimidines and analogues.Pestic. Sci.199647210311310.1002/(SICI)1096‑9063(199606)47:2<103:AID‑PS396>3.0.CO;2‑Z
    [Google Scholar]
  41. PatilR. KumbharD. MohireP. JadhavS. PatravaleA. DeshmukhM. DBN catalyzed one-pot efficient synthesis and antioxidant activity of pyrano [2, 3-d] pyrimidine derivatives.Chem. Sci. Rev. Lett.2015416979984
    [Google Scholar]
  42. SharmaV. ChitranshiN. AgarwalA.K. Significance and biological importance of pyrimidine in the microbial world.Int. J. Med. Chem.2014201413110.1155/2014/202784 25383216
    [Google Scholar]
  43. AbidaM.I. AlsalmanA.J. Synthesis and evaluation of antimicrobial activity of some 2-morpholinomethylamino-4-(7-unsubstituted/] substituted coumarin-3-yl)-6-chlorosubstitutedphenyl pyrimidines.Trop. J. Pharm. Res.201615239340410.4314/tjpr.v15i2.24
    [Google Scholar]
  44. StevensD.L. DotterB. Madaras-KellyK. A review of linezolid: The first oxazolidinone antibiotic.Expert Rev. Anti Infect. Ther.200421515910.1586/14787210.2.1.51 15482171
    [Google Scholar]
  45. FandakliS. Kahri̇manN. YücelB.T. KaraoğluA.Ş. YayliN. Biological evaluation and synthesis of new pyrimidine-2(1H)-ol/-thiol derivatives derived from chalcones using the solid phase microwave method.Turk. J. Chem.201842252053510.3906/kim‑1711‑9
    [Google Scholar]
  46. KaurN. GautamS. SohalH.S. Anti-diabetic activity of pyrimidine derivatives.Intl J Res.201247199204
    [Google Scholar]
  47. AgrebiA. AlloucheF. FetouiH. ChabchoubF. Synthesis and biological evaluation of new pyrazolo[3,4-d]pyrimidine derivatives.Mediterr. J. Chem.20143286487610.13171/mjc.3.2.2014.13.05.23
    [Google Scholar]
  48. SharmaA. VermaR. SinghH. VermaA.K. VarshneyS. A review on the synthesis and biological evaluation of pyrido-pyrimidine derivatives.World J. Pharm. Pharm. Sci.2018107955965
    [Google Scholar]
  49. MatadaG.S.P. AbbasN. DhiwarP.S. BasuR. DevasahayamG. Design, synthesis, in silico and in vitro evaluation of novel pyrimidine derivatives as EGFR inhibitors.Anticancer. Agents Med. Chem.202121445146110.2174/1871520620666200721102726 32698735
    [Google Scholar]
  50. Abdel-RahmanA.A.H. ZeidI.F. BarakatH.A. El-SayedW.A. Anti-hepatitis B virus activity of new substituted pyrimidine acyclic nucleoside analogues.Z. Naturforsch. C J. Biosci.20096411-1276777210.1515/znc‑2009‑11‑1202 20158143
    [Google Scholar]
  51. AgarwalA. SrivastavaK. PuriS.K. ChauhanP.M.S. Synthesis of 2,4,6-trisubstituted pyrimidines as antimalarial agents.Bioorg. Med. Chem.200513154645465010.1016/j.bmc.2005.04.061 15896965
    [Google Scholar]
  52. DudheR. SharmaP.K. VermaP.K. Synthesis and biological activities of some new pyrimidine derivatives from chalcones.Int J Res Dev Pharm Life Sci.201541
    [Google Scholar]
  53. PandeyS. SuryawanshiS.N. GuptaS. SrivastavaV.M. Synthesis and antileishmanial profile of some novel terpenyl pyrimidines.Eur. J. Med. Chem.2004391196997310.1016/j.ejmech.2004.03.007 15501546
    [Google Scholar]
  54. RamV.J. HaqueN. GuruP.Y. Chemotherapeutic agents XXV: synthesis and leishmanicidal activity of carbazolylpyrimidines.Eur. J. Med. Chem.199227885185510.1016/0223‑5234(92)90121‑G
    [Google Scholar]
  55. ShiJ.B. ChenL.Z. WangB.S. HuangX. JiaoM.M. LiuM.M. TangW.J. LiuX.H. Novel pyrazolo [4, 3-d] pyrimidine as potent and orally active inducible nitric oxide synthase (iNOS) dimerization inhibitor with efficacy in rheumatoid arthritis mouse model.J. Med. Chem.20196284013403110.1021/acs.jmedchem.9b00039 30925056
    [Google Scholar]
  56. KotaiahY. HarikrishnaN. NagarajuK. Venkata RaoC. Synthesis and antioxidant activity of 1,3,4-oxadiazole tagged thieno[2,3-d]pyrimidine derivatives.Eur. J. Med. Chem.20125834034510.1016/j.ejmech.2012.10.007 23149297
    [Google Scholar]
  57. RaniJ. SainiM. KumarS. VermaP.K. Design, synthesis and biological potentials of novel tetrahydroimidazo[1,2-a]pyrimidine derivatives.Chem. Cent. J.2017111610.1186/s13065‑017‑0245‑9
    [Google Scholar]
  58. SarkarA. KumarK.A. DuttaN.K. ChakrabortyP. DastidarS.G. Evaluation of in vitro and in vivo antibacterial activity of dobutamine hydrochloride.Indian J. Med. Microbiol.200321317217810.1016/S0255‑0857(21)03067‑X 17643013
    [Google Scholar]
  59. LiuZ. WuS. WangY. LiR. WangJ. WangL. ZhaoY. GongP. Design, synthesis and biological evaluation of novel thieno[3,2-d]pyrimidine derivatives possessing diaryl semicarbazone scaffolds as potent antitumor agents.Eur. J. Med. Chem.20148778279310.1016/j.ejmech.2014.10.022 25440879
    [Google Scholar]
  60. KotbE.R. MorsyE.M. AnwarM. MohiE.M. AwadH. New pyrimidine derivatives: Synthesis, antitumor and antioxidant evaluation.Int. J. Pharm. Technol.2015780618085
    [Google Scholar]
  61. SenbagamR. RajarajanM. VijayakumarR. ManikandanV. BalajiS. VanangamudiG. ThirunarayanaG. Synthesis, spectral correlations and antimicrobial activities of 2-pyrimidine Schiff’s bases.ILCPA201553154164
    [Google Scholar]
  62. ChaudharyA. SinghA. VermaP.K. Method development and validation of potent pyrimidine derivative by UV-VIS spectrophotometer.Org. Med. Chem. Lett.2014411510.1186/s13588‑014‑0015‑9 26548991
    [Google Scholar]
  63. BaumannM. BaxendaleI.R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles.Beilstein J. Org. Chem.2013912265231910.3762/bjoc.9.265 24204439
    [Google Scholar]
  64. Mohammadi ZiaraniG. Hosseini NasabN. RahimifardM. Abolhasani SoorkiA. One-pot synthesis of pyrido[2,3-d]pyrimidine derivatives using sulfonic acid functionalized SBA-15 and the study on their antimicrobial activities.J. Saudi Chem. Soc.201519667668110.1016/j.jscs.2014.06.007
    [Google Scholar]
  65. MohanaK.N. KumarB.N. MalleshaL. Synthesis and biological activity of some pyrimidine derivatives.Drug Invent. Today.20135321622210.1016/j.dit.2013.08.004
    [Google Scholar]
  66. Abdel-latifE. Abdel-fattahS. GafferH.E. EtmanH.A. Synthesis and antitumor activity of some new pyrazolo[3,4-d]pyrimidine and pyrazolo[3,4-b]pyridine derivatives. Egypt.J. Basic Appl. Sci.20163111812410.1016/j.ejbas.2015.11.001
    [Google Scholar]
  67. El-AgrodyA.M. HalawaA.H. FoudaA.M. Al-DiesA.A.M. The anti-proliferative activity of novel 4H-benzo[h]chromenes, 7H-benzo[h]-chromeno[2,3-d]pyrimidines and the structure–activity relationships of the 2-, 3-positions and fused rings at the 2, 3-positions.J. Saudi Chem. Soc.2017211829010.1016/j.jscs.2016.03.002
    [Google Scholar]
  68. AbuelizzH.A. IwanaN.A.N.I. AhmadR. AnouarE.H. MarzoukM. Al-SalahiR. Synthesis, biological activity and molecular docking of new tricyclic series as α-glucosidase inhibitors.BMC Chem.20191315210.1186/s13065‑019‑0560‑4 31384800
    [Google Scholar]
  69. PragnaT. DhavalH. JayeshM. Synthesis and characterization of aroylhydrazino derivatives of pharmacologically active pyrimidine-5-carbonitrile.Int. Lett. Chem. Phys. Astron201439129135
    [Google Scholar]
  70. PharmacopoeiaI. Ministry of Health and Family Welfare. Govt. of IndiaIndian Pharmacopoeia CommissionGhaziabad200721050
    [Google Scholar]
  71. MukherjeeP.K. Pharmacological screening of herbal drugs.Quality control of herbal drugs.IntechOpen2012564
    [Google Scholar]
  72. SkehanP. StorengR. ScudieroD. MonksA. McMahonJ. VisticaD. WarrenJ.T. BokeschH. KenneyS. BoydM.R. New colorimetric cytotoxicity assay for anticancer-drug screening.J. Natl. Cancer Inst.199082131107111210.1093/jnci/82.13.1107 2359136
    [Google Scholar]
  73. NickavarB. AminG. Bioassay-guided separation of an α-amylase inhibitor anthocyanin from Vaccinium arctostaphylos berries.Z. Naturforsch. C J. Biosci.2010659-1056757010.1515/znc‑2010‑9‑1006 21138057
    [Google Scholar]
  74. KumarP. MehtaM. SatijaS. GargM. Enzymatic in vitro anti-diabetic activity of few traditional Indian medicinal plants.J. Biol. Sci.201313654054410.3923/jbs.2013.540.544
    [Google Scholar]
  75. AhmedO.M. HusseinA.M. AhmedR.R. Antidiabetic and antioxidant effects of newly synthesized pyrimido [1, 6-a] pyrimidine derivatives in neonatal streptozotocin-induced diabetic Rats.Med. Chem.201221
    [Google Scholar]
  76. AlwanS.M. Al-KaabiJ.A. HashimR.M. Synthesis and preliminary antimicrobial activity of new Schiff bases of pyrido [1, 2-a] pyrimidine derivatives with certain amino acids.Med. Chem.201449635639
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072282575240213091008
Loading
/content/journals/cbc/10.2174/0115734072282575240213091008
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test