Skip to content
2000
Volume 20, Issue 10
  • ISSN: 1573-4072
  • E-ISSN:

Abstract

Background

4-Substituted- 5-oxo-prolinates (pyroglutamates) are important components in various natural products, (-)-bulgecinine, (-)-anatoxin, salinosporamide, as well as ACE inhibitors.

Aim

These also act as important intermediates in the synthesis of many of the bioactive molecules. Due to these reasons, the synthesis of 4-substituted-(2)-5-oxo-prolinates has received much attention over the globe in the last three decades. However, most of the synthetic strategies available in the literature describe either the use of expensive lithium enolate-derived low-temperature chemistry or the rigorous reaction conditions, and therefore, a simple, environment-friendly, and cost-effective approach was truly demanding.

Methods

In our ongoing research program, we required different 4-substituted pyroglutamates as intermediates, and with that very basic objective, we were looking for an alternate strategy which should be simple, requiring cheap reagents and consequently, in the process, it was thought to attempt proline catalyzed aldol/alkylation reactions on pyroglutamates, and the idea provided excellent outcome.

Results

Herein we wish to report the L-proline catalyzed asymmetric functionalization at C-4 of (2S)-5-oxoproline methyl ester, which furnished desired products at room temperature at the same time, not requiring expensive reagents and, therefore, in turn, cost-effective.

Conclusion

This new strategy explored for synthesizing 4-substituted pyroglutamates could be useful for researchers across the globe working in the area and requiring substitution at C-4 of pyroglutamates for synthesizing bioactive molecules/natural products.

Funding
This study was supported by the:
  • Ministry of Human Resource Development (MHRD), Government of India
Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072278257231224171735
2024-12-01
2024-11-22
Loading full text...

Full text loading...

References

  1. NájeraC. YusM. Pyroglutamic acid: A versatile building block in asymmetric synthesis.Tetrahedron Asymmetry199910122245230310.1016/S0957‑4166(99)00213‑X
    [Google Scholar]
  2. PandayS.K. PrasadJ. DikshitD.K. Pyroglutamic acid: A unique chiral synthon.Tetrahedron Asymmetry200920141581163210.1016/j.tetasy.2009.06.011
    [Google Scholar]
  3. MollicaA. StefanucciA. CostanteR. NovellinoE. Pyroglutamic acid derivatives: Building blocks for drug discovery.Heterocycles20148981801182510.3987/REV‑14‑800
    [Google Scholar]
  4. PandayS.K. Pyroglutamic acid and its derivatives: The privileged precursors for the asymmetric synthesis of bioactive natural products.Mini Rev. Org. Chem.202017662664610.2174/1570193X16666190917142814
    [Google Scholar]
  5. ThaisrivongsS. PalsD.T. TurnerS.R. KrollL.T. Conformationally constrained renin inhibitory peptides. gamma.-lactam-bridged dipeptide isostere as conformational restriction.J. Med. Chem.19883171369137610.1021/jm00402a021 3290485
    [Google Scholar]
  6. RobertsC.J. WalkerR.J. The actions of L-glutamate and putative glutamate agonists on the central neurons of Limulus polyphemus.Comp. Biochem. Physiol. C Comp. Pharmacol.198273116717510.1016/0306‑4492(82)90186‑1
    [Google Scholar]
  7. DikshitD.K. MaheshwariA. PandayS.K. Self reproduction of chirality in pyroglutamates: Reactions at α- position with electrophiles.Tetrahedron Lett.199536346131613410.1016/0040‑4039(95)01160‑J
    [Google Scholar]
  8. CaiC. YamadaT. TiwariR. HrubyV.J. SoloshonokV.A. Application of (S)- and (R)-methyl pyroglutamates as inexpensive, yet highly efficient chiral auxiliaries in the asymmetric Michael addition reactions.Tetrahedron Lett.200445376855685810.1016/j.tetlet.2004.07.096
    [Google Scholar]
  9. SeebachD. BoesM. NaefR. SchweizerW.B. Alkylation of amino acids without loss of the optical activity: Preparation of. alpha.-substituted proline derivatives. A case of self-reproduction of chirality.J. Am. Chem. Soc.1983105165390539810.1021/ja00354a034
    [Google Scholar]
  10. MaJ. ZhouQ. SongG. SongY. ZhaoG. DingK. ZhaoB. Enantioselective synthesis of pyroglutamic acid esters from glycinate via carbonyl catalysis.Angew. Chem. Int. Ed.20216019105881059210.1002/anie.202017306 33554429
    [Google Scholar]
  11. PincekovaL. BerkesD. Synthesis of (2S,3S)-3-aroyl pyroglutamic acid amides.Chem. Proc.202031869610.3390/ecsoc‑24‑08377
    [Google Scholar]
  12. MaugerA.B. Diastereoisomers of 3-methylpyroglutamic acid and. beta.-methylglutamic acid.J. Org. Chem.19814651032103510.1021/jo00318a042
    [Google Scholar]
  13. BaldwinJ.E. MoloneyM.G. Bo ShimS. ()-pyroglutamic acid as a chiral starting material for asymmetric synthesis.Tetrahedron Lett.199132101379138010.1016/S0040‑4039(00)79672‑9
    [Google Scholar]
  14. HerdeisC. KelmB. A stereoselective synthesis of 3-substituted (S)-pyroglutamic and glutamic acids via OBO ester derivatives.Tetrahedron200359221722910.1016/S0040‑4020(02)01490‑4
    [Google Scholar]
  15. ShiosakiK. RapoportH. alpha.-Amino acids as chiral educts for asymmetric products. Chirospecific syntheses of the 5-butyl-2-heptylpyrrolidines from glutamic acid.J. Org. Chem.19855081229123910.1021/jo00208a016
    [Google Scholar]
  16. KoskinenA.M.P. RapoportH. Synthesis of 4-substituted prolines as conformationally constrained amino acid analogs.J. Org. Chem.19895481859186610.1021/jo00269a022
    [Google Scholar]
  17. ThottathilJ.K. MoniotJ.L. MuellerR.H. WongM.K.Y. KissickT.P. Conversion of L-pyroglutamic acid to 4-alkyl-substituted L-prolines. The synthesis of trans-4-cyclohexyl-L-proline.J. Org. Chem.198651163140314310.1021/jo00366a011
    [Google Scholar]
  18. BowlerA.N. DoyleP.M. HitchcockP.B. YoungD.W. Synthesis of non-proteinogenic amino acids with three chiral centres.Tetrahedron Lett.199132232679268210.1016/S0040‑4039(00)78817‑4
    [Google Scholar]
  19. BaldwinJ.E. MirandaT. MoloneyM. HokelekT. Amino acid synthesis using ()-pyroglutamic acid as a chiral starting material.Tetrahedron198945237459746810.1016/S0040‑4020(01)89208‑5
    [Google Scholar]
  20. DikshitD.K. PandayS.K. Aldol reactions of pyroglutamates: Chiral synthesis of 4.α.(S)- and 4.β.(R)-(arylmethyl)] pyroglutamates.J. Org. Chem.19925761920192410.1021/jo00032a056
    [Google Scholar]
  21. PrasadJ. GolayP.K. PandayS.K. Sodium enolate derived reactions of N-Boc and N-benzyl-2-(S)- pyroglutamates with electrophiles: Synthesis of 4-substituted and 2- substituted pyroglutamates.Curr. Bioact. Compd.201814324825310.2174/1573407213666161221125542
    [Google Scholar]
  22. DikshitD.K. BajpaiS.N. Titanium enolates from pyroglutamates: Exclusive formation of 4-α aldol adducts.Tetrahedron Lett.199536183231323210.1016/0040‑4039(95)00450‑Q
    [Google Scholar]
  23. Kumar PandayS. Griffart-BrunetD. LangloisN. A short and efficient synthesis of (S)-4-methylene proline benzyl ester from (S)-pyroglutamic acid.Tetrahedron Lett.199435366673667610.1016/S0040‑4039(00)73465‑4
    [Google Scholar]
  24. DikshitD.K. MaheshwariA. RemoteO. RemoteO. C-dianion chemistry of pyroglutamates: Reaction at C-4 with electrophiles.Tetrahedron Lett.199940234411441210.1016/S0040‑4039(99)00759‑5
    [Google Scholar]
  25. GoswamiL.N. SrivastavaS. PandayS.K. DikshitD.K. Cycloaddition–hydrogenolysis strategy for the synthesis of 2,4-disubstituted pyroglutamates.Tetrahedron Lett.200142447891789210.1016/S0040‑4039(01)01629‑X
    [Google Scholar]
  26. EzquerraJ. PedregalC. YruretagoyenaB. RubioA. CarrenoM.C. EscribanoA. RuanoJ.L.G. Synthesis of enantiomerically pure 4-substituted glutamic acids and prolines: General aldol reaction of pyroglutamate lactam lithium enolate mediated by Et2O.BF3.J. Org. Chem.19956092925293010.1021/jo00114a054
    [Google Scholar]
  27. OhtaT. HosoiA. NozoeS. Stereoselective hydroxylation of N-carbamoyl-L-pyroglutamate. Synthesis of (−)-bulgecinine.Tetrahedron Lett.198829332933210.1016/S0040‑4039(00)80087‑8
    [Google Scholar]
  28. a PrasadJ. PathakM.B. PandayS.K. An efficient and straight forward synthesis of (5S)-1-benzyl-5-(1H-imidazol-1-ylmethyl)-2-pyrrolidinone (MM1): A novel antihypertensive agent.Med. Chem. Res.201221321324
    [Google Scholar]
  29. b PandayS.K. PathakM.B. PrasadJ. An efficient and straight forward strategy for the synthesis of enantiomerically pure(S)-1-Benzyl-5-((Alkyl/Aryl amino-methyl)-Pyrrolidin-2-ones.Indian J. Chem201554B936939
    [Google Scholar]
  30. c PandayS.K. PrasadJ. PathakM.B. A straight forward and facile approach towards the N- derivatization of pyroglutamates through mitsunobu reaction: Synthesis of N-alkyl/N-acyl pyroglutamates.Synth. Commun.2011412436543661
    [Google Scholar]
  31. PandayS.K. LangloisN. An efficient straightforward synthesis of (-)- bulgecinine.Synth. Commun.19972781373138410.1080/00397919708006067
    [Google Scholar]
  32. PetersenJ.S. FelsG. RapoportH. Chirospecific syntheses of (+)- and (-)-anatoxin a.J. Am. Chem. Soc.1984106164539454710.1021/ja00328a040
    [Google Scholar]
  33. CaubertV. MasséJ. RetailleauP. LangloisN. Stereoselective formal synthesis of the potent proteasome inhibitor.Salinosporamide A. Tetrahedron Lett.200748338138410.1016/j.tetlet.2006.11.087
    [Google Scholar]
  34. OhfuneY. TomitaM. Total synthesis of (-)-domoic acid. A revision of the original structure.J. Am. Chem. Soc.1982104123511351310.1021/ja00376a048
    [Google Scholar]
  35. CossyJ. CasesM. Gomez PardoD. Approaches to a synthesis of α-kainic acid.Tetrahedron199955196153616610.1016/S0040‑4020(99)00284‑7
    [Google Scholar]
  36. HanessianS. NinkovicS. Stereoselective synthesis of (−)-α-Kainic acid and (+)-α-allokainic acid via trimethylstannyl mediated radical carbo-cyclization and oxidative destannylation.J. Org. Chem.199661165418542410.1021/jo9604088
    [Google Scholar]
  37. BaldwinJ.E. MoloneyM.G. ParsonsA.F. Enantioselective kainoid synthesis by cobalt-mediated cyclisation of an amino acid derivative.Tetrahedron199046207263728210.1016/S0040‑4020(01)87906‑0
    [Google Scholar]
  38. CohenJ.L. ChamberlinA.R. Diastereoselective synthesis of glutamate-appended oxolane rings: Synthesis of (s)-(+)-lycoperdic acid.J. Org. Chem.200772249240924710.1021/jo7017137 17975930
    [Google Scholar]
  39. LangloisN. Stereoselective formal synthesis of pseudodistomin C.Org. Lett.20024218518710.1021/ol010221p 11796046
    [Google Scholar]
  40. Le NguyenB.K. LangloisN. Concise syntheses of racemic and enantiopure deoxydysibetaine.Tetrahedron Lett.200344325961596310.1016/S0040‑4039(03)01505‑3
    [Google Scholar]
  41. LangloisN. Le NguyenB.K. Diastereoselective syntheses of deoxydysibetaine, dysibetaine, and its 4-epimer.J. Org. Chem.200469227558756410.1021/jo040216+ 15497982
    [Google Scholar]
  42. HanessianS. MargaritaR. HallA. JohnstoneS. TremblayM. ParlantiL. Total synthesis and structural confirmation of the marine natural product Dysinosin A: A novel inhibitor of thrombin and Factor VIIa.J. Am. Chem. Soc.200212445133421334310.1021/ja0208153 12418860
    [Google Scholar]
  43. ToyookaN. ZhouD. NemotoH. TezukaY. KadotaS. JonesT. GarraffoH. SpandeT. DalyJ. First enantioselective synthesis of a hydroxyindolizidine alkaloid from the ant myrmicaria melanogaster.Synlett20082008121894189610.1055/s‑2008‑1078502
    [Google Scholar]
  44. WierzejskaJ. MotogoeS. MakinoY. SengokuT. TakahashiM. YodaH. A new approach toward the total synthesis of (+)- batzellaside B.Beilstein J. Org. Chem.201281831183810.3762/bjoc.8.210
    [Google Scholar]
  45. SengokuT. SatohY. OshimaM. TakahashiM. YodaH. First asymmetric synthesis of pyrrolizidine alkaloids, (+)-hyacinthacine B1 and (+)-B2.Tetrahedron200864358052805810.1016/j.tet.2008.06.078
    [Google Scholar]
  46. ThottathilJ.K. MoniotJ.L. Lithium diphenylcuprate reactions with 4-tosyloxy-L-prolines: An interesting stereochemical outcome.Tetrahedron Lett.198627215115410.1016/S0040‑4039(00)83964‑7
    [Google Scholar]
  47. ImakiK. SakuyamaS. OkadaT. TodaM. HayashiM. MiyamotoT. KawasakiA. OkegawaT. Potent orally active inhibitors of angiotensin-converting enzyme (ACE).Chem. Pharm. Bull.19812982210221410.1248/cpb.29.2210 6274523
    [Google Scholar]
  48. PandayS.K. DikshitM. DikshitD.K. Synthesis of N-[3′-(acetylthio)alkanoyl] and N-[3′-mercaptoalkanoyl]-4-α(s)-(phenylmethyl) pyroglutamic acids and prolines as potent ACE inhibitors.Med. Chem. Res.200918756657810.1007/s00044‑008‑9150‑z
    [Google Scholar]
  49. PandayS.K. Advances in the chemistry of proline and its derivatives: An excellent amino acid with versatile applications in asymmetric synthesis.Tetrahedron Asymmetry20112220-221817184710.1016/j.tetasy.2011.09.013
    [Google Scholar]
  50. HardyP.M. A convenient one-step synthesis of pyroglutamic acid (2- oxotetrahydropyrrole-5-carboxylic acid.Synthesis19781978429029110.1055/s‑1978‑24726
    [Google Scholar]
  51. BrañaM.F. GarranzoM. Pérez-CastellsJ. On the chemoselectivity of pyroglutamates in reactions with indole derivatives.Tetrahedron Lett.199839366569657210.1016/S0040‑4039(98)01368‑9
    [Google Scholar]
  52. MavromoustakosT. Moutevelis-MinakakisP. KokotosC.G. KontogianniP. PolitiA. ZoumpoulakisP. FindlayJ. CoxA. BalmforthA. ZogaA. IliodromitisE. Synthesis, binding studies and in vivo biological evaluation of novel non-peptide antihypertensive analogues.Bioorg. Med. Chem.200614134353436010.1016/j.bmc.2006.02.044 16546395
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072278257231224171735
Loading
/content/journals/cbc/10.2174/0115734072278257231224171735
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test