Skip to content
2000
Volume 20, Issue 10
  • ISSN: 1573-4072
  • E-ISSN:

Abstract

Screening for novel bioactive compounds has become more critical since drug-resistant fungal infections have emerged and ethno-medicinal plants have been embarked as antifungal agents. The emphasis on medicinal plants has recently switched to the study of endophytes and their interactions with the host plant and screening of their antifungal activity. Endophytes are an endosymbiotic group of microorganisms that thrive within plant tissues without causing any symptoms or marking their presence. Endophytes have been looked into as potential resources for producing distinctive bioactive substances. The quest for bioactive natural compounds of endophytes isolated from higher plants is receiving a lot of interest from researchers worldwide, as seen by the recent surge in studies and publications on antifungal potential. This review aims to comprehend the role and applications of endophytes as a promising source of antifungal agents and enlighten on their most common mode of action.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072276049231207110314
2024-12-01
2024-10-09
Loading full text...

Full text loading...

References

  1. FisherM.C. HenkD.A. BriggsC.J. BrownsteinJ.S. MadoffL.C. McCrawS.L. GurrS.J. Emerging fungal threats to animal, plant and ecosystem health.Nature2012484739318619410.1038/nature10947 22498624
    [Google Scholar]
  2. BenedictK. JacksonB.R. ChillerT. BeerK.D. Estimation of direct healthcare costs of fungal diseases in the United States.Clin. Infect. Dis.201968111791179710.1093/cid/ciy776 30204844
    [Google Scholar]
  3. FisherM.C. GowN.A.R. GurrS.J. Tackling emerging fungal threats to animal health, food security and ecosystem resilience.Philos. Trans. R. Soc. London. Ser. B, Biol. Sci.2016371
    [Google Scholar]
  4. FisherM.C. HawkinsN.J. SanglardD. GurrS.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security.Science2018360639073974210.1126/science.aap7999 29773744
    [Google Scholar]
  5. DagenaisT.R.T. KellerN.P. Pathogenesis of Aspergillus fumigatus in invasive aspergillosis.Clin. Microbiol. Rev.200922344746510.1128/CMR.00055‑08 19597008
    [Google Scholar]
  6. KullbergB.J. ArendrupM.C. Invasive Candidiasis.N. Engl. J. Med.2015373151445145610.1056/NEJMra1315399 26444731
    [Google Scholar]
  7. KöhlerJ.R. HubeB. PucciaR. CasadevallA. PerfectJ.R. Fungi that infect humans.Microbiol. Spectr.2017535.3.0810.1128/microbiolspec.FUNK‑0014‑2016 28597822
    [Google Scholar]
  8. GigliottiF. LimperA.H. WrightT. Pneumocystis.Cold Spring Harb. Perspect. Med.2014412a01982810.1101/cshperspect.a019828 25367973
    [Google Scholar]
  9. BassettiM. BouzaE. Invasive mould infections in the ICU setting: Complexities and solutions.J. Antimicrob. Chemother.201772Suppl. 1i39i4710.1093/jac/dkx032 28355466
    [Google Scholar]
  10. RayensE. NorrisK.A. Prevalence and healthcare burden of fungal infections in the United States, 2018.Open Forum Infect. Dis.202291ofab59310.1093/ofid/ofab593 35036461
    [Google Scholar]
  11. BenedictK. MolinariN.A.M. JacksonB.R. Public awareness of invasive fungal diseases — United States, 2019.MMWR Morb. Mortal. Wkly. Rep.202069381343134610.15585/mmwr.mm6938a2 32970658
    [Google Scholar]
  12. BuabanK. PhutdhawongW. TaechowisanT. PhutdhawongW.S. Synthesis and investigation of tetrahydro-β-carboline derivatives as inhibitors of plant pathogenic fungi.Molecules202126120710.3390/molecules26010207 33401587
    [Google Scholar]
  13. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the last 25 years.J. Nat. Prod.200770346147710.1021/np068054v 17309302
    [Google Scholar]
  14. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J. Nat. Prod.202083377080310.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  15. WilsonD. Endophyte: The evolution of a term, and clarification of its use and definition.Oikos199573227410.2307/3545919
    [Google Scholar]
  16. TanR.X. ZouW.X. Endophytes: A rich source of functional metabolites (1987 to 2000).Nat. Prod. Rep.200118444845910.1039/b100918o 11548053
    [Google Scholar]
  17. YuH. ZhangL. LiL. ZhengC. GuoL. LiW. SunP. QinL. Recent developments and future prospects of antimicrobial metabolites produced by endophytes.Microbiol. Res.2010165643744910.1016/j.micres.2009.11.009 20116229
    [Google Scholar]
  18. GuptaS. ChaturvediP. KulkarniM.G. Van StadenJ. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi.Biotechnol. Adv.20203910746210.1016/j.biotechadv.2019.107462 31669137
    [Google Scholar]
  19. ChhillarA.K. KumariS. GuliaP. SharmaN. DahiyaS. ChoudharyP. Antimicrobial activity of bioactive compounds isolated from plant endophytes.Curr. Bioact. Compd.2023193e24052220517510.2174/1573407218666220524120648
    [Google Scholar]
  20. Macías-RubalcavaM.L. Sánchez-FernándezR.E. Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture.World J. Microbiol. Biotechnol.20173311510.1007/s11274‑016‑2174‑5 27896581
    [Google Scholar]
  21. PalG. KumarK. VermaA. VermaS.K. Seed inhabiting bacterial endophytes of maize promote seedling establishment and provide protection against fungal disease.Microbiol. Res.202225512692610.1016/j.micres.2021.126926 34856481
    [Google Scholar]
  22. HardoimP.R. van OverbeekL.S. ElsasJ.D. Properties of bacterial endophytes and their proposed role in plant growth.Trends Microbiol.2008161046347110.1016/j.tim.2008.07.008 18789693
    [Google Scholar]
  23. ZamS. AgustienA. SyamsuardiS. DjamaanA. MustafaI. The diversity of endophytic bacteria from the traditional medicinal plants leaves that have anti-phytopathogens activity.J. Trop. Life Sci.201991536310.11594/jtls.09.01.08
    [Google Scholar]
  24. MusaZ. MaJ. EgamberdievaD. Abdelshafy MohamadO.A. AbaydullaG. LiuY. LiW.J. LiL. Diversity and antimicrobial potential of cultivable endophytic actinobacteria associated with the medicinal plant Thymus roseus.Front. Microbiol.20201119110.3389/fmicb.2020.00191 32226412
    [Google Scholar]
  25. HongC.E. JoS.H. JoI.H. ParkJ.M. Diversity and antifungal activity of endophytic bacteria associated with Panax ginseng seedlings.Plant Biotechnol. Rep.201812640941810.1007/s11816‑018‑0504‑9
    [Google Scholar]
  26. RongS. XuH. LiL. ChenR. GaoX. XuZ. Antifungal activity of endophytic Bacillus safensis B21 and its potential application as a biopesticide to control rice blast.Pestic. Biochem. Physiol.2020162697710.1016/j.pestbp.2019.09.003 31836057
    [Google Scholar]
  27. NgoV.A. WangS-L. NguyenV.B. DoanC.T. TranT.N. TranD.M. TranT.D. NguyenA.D. Phytophthora antagonism of endophytic bacteria isolated from roots of black pepper (Piper nigrum L.).Agronomy202010228610.3390/agronomy10020286
    [Google Scholar]
  28. PeiD.F. WuQ.Q. LuoH. PaulN.C. DengJ.X. ZhouY. Diversity and antifungal activity of endophytes associated with Spiranthes Sinensis (Orchidaceae, Magnoliophyta) in China.Int. J. Appl. Microbiol. Biotechnol. Res.20197717
    [Google Scholar]
  29. IbrahimE. ZhangM. ZhangY. HossainA. QiuW. ChenY. WangY. WuW. SunG. LiB. Green-synthesization of silver nanoparticles using endophytic bacteria isolated from garlic and its antifungal activity against wheat Fusarium head blight pathogen Fusarium graminearum.Nanomaterials202010221910.3390/nano10020219 32012732
    [Google Scholar]
  30. PhotoloM.M. MavumengwanaV. SitoleL. TlouM.G. Antimicrobial and antioxidant properties of a bacterial endophyte, Methylobacterium radiotolerans MAMP 4754, isolated from Combretum erythrophyllum seeds.Int. J. Microbiol.2020202011110.1155/2020/9483670 32184829
    [Google Scholar]
  31. TaechowisanT. LuC. ShenY. LumyongS. Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity.Microbiology200515151691169510.1099/mic.0.27758‑0 15870476
    [Google Scholar]
  32. Barra-BucareiL. France IglesiasA. Gerding GonzálezM. Silva AguayoG. Carrasco-FernándezJ. CastroJ.F. Ortiz CamposJ. Antifungal activity of Beauveria bassiana Endophyte against Botrytis cinerea in two Solanaceae crops.Microorganisms2019816510.3390/microorganisms8010065 31906060
    [Google Scholar]
  33. GrigolettoD.F. CorreiaA.M.L. AbrahamW.R. RodriguesA. AssisM.A. FerreiraA.G. MassaroliM. LiraS.P. Secondary metabolites produced by endophytic fungi: Novel antifungal activity of fumiquinone B.Acta Sci. Biol. Sci.201941e4878510.4025/actascibiolsci.v41i1.48785
    [Google Scholar]
  34. IbrahimS.R.M. ElkhayatE.S. MohamedG.A. KhedrA.I.M. FouadM.A. KotbM.H.R. RossS.A. Aspernolides F and G, new butyrolactones from the endophytic fungus Aspergillus terreus.Phytochem. Lett.201514849010.1016/j.phytol.2015.09.006
    [Google Scholar]
  35. RatnaweeraP.B. de SilvaE.D. WilliamsD.E. AndersenR.J. Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp.BMC Complement. Altern. Med.201515122010.1186/s12906‑015‑0722‑4 26160390
    [Google Scholar]
  36. JohannS. RosaL.H. RosaC.A. PerezP. CisalpinoP.S. ZaniC.L. CotaB.B. Antifungal activity of altenusin isolated from the endophytic fungus Alternaria sp. against the pathogenic fungus Paracoccidioides brasiliensis.Rev. Iberoam. Micol.201229420520910.1016/j.riam.2012.02.002 22366718
    [Google Scholar]
  37. SunZ.L. ZhangM. ZhangJ.F. FengJ. Antifungal and cytotoxic activities of the secondary metabolites from endophytic fungus Massrison sp.Phytomedicine2011181085986210.1016/j.phymed.2011.01.019 21377856
    [Google Scholar]
  38. DengB.W. LiuK.H. ChenW.Q. DingX.W. XieX.C. Fusarium solani, Tax-3, a new endophytic taxol-producing fungus from Taxus chinensis.World J. Microbiol. Biotechnol.200925113914310.1007/s11274‑008‑9876‑2
    [Google Scholar]
  39. CheplickG.P. ClayK. MarksS. Interactions between infection by endophytic fungi and nutrient limitation in the grasses Lolium perenne and Festuca arundinacea.New Phytol.19891111899710.1111/j.1469‑8137.1989.tb04222.x
    [Google Scholar]
  40. ZhangH.W. SongY.C. TanR.X. Biology and chemistry of endophytes.Nat. Prod. Rep.200623575377110.1039/b609472b 17003908
    [Google Scholar]
  41. AbdallaM.A. MatasyohJ.C. Endophytes as producers of peptides: An overview about the recently discovered peptides from endophytic microbes.Nat. Prod. Bioprospect.20144525727010.1007/s13659‑014‑0038‑y 25205333
    [Google Scholar]
  42. GolinskaP. WypijM. AgarkarG. RathodD. DahmH. RaiM. Endophytic actinobacteria of medicinal plants: Diversity and bioactivity.Antonie van Leeuwenhoek2015108226728910.1007/s10482‑015‑0502‑7 26093915
    [Google Scholar]
  43. LarranS. SimónM.R. MorenoM.V. SiuranaM.P.S. PerellóA. Endophytes from wheat as biocontrol agents against tan spot disease.Biol. Control201692172310.1016/j.biocontrol.2015.09.002
    [Google Scholar]
  44. GuptaS. ChoudharyM. SinghB. SinghR. DharM.K. KaulS. Diversity and biological activity of fungal endophytes of Zingiber officinale Rosc. with emphasis on Aspergillus terreus as a biocontrol agent of its leaf spot.Biocatal. Agric. Biotechnol.20223910223410.1016/j.bcab.2021.102234
    [Google Scholar]
  45. SinghP. XieJ. QiY. QinQ. JinC. WangB. FangW. A thermotolerant marine Bacillus amyloliquefaciens S185 producing Iturin A5 for antifungal activity against Fusarium oxysporum f. sp. cubense.Mar. Drugs202119951610.3390/md19090516 34564178
    [Google Scholar]
  46. LuuT.A. PhiQ.T. NguyenT.T.H. DinhM.V. PhamB.N. DoQ.T. Antagonistic activity of endophytic bacteria isolated from weed plant against stem end rot pathogen of pitaya in Vietnam.Egypt. J. Biol. Pest Control20213111410.1186/s41938‑021‑00362‑0
    [Google Scholar]
  47. HamayunM. KhanN. Nauman KhanM. QadirM. HussainA. IqbalA. Afzal KhanS. Ur RehmanK. LeeI.J. Antimicrobial and plant growth-promoting activities of bacterial endophytes isolated from Calotropis procera (Ait.).W.T. Aiton. Biocell202145236336910.32604/biocell.2021.013907
    [Google Scholar]
  48. DasG. ParkS. ChoiJ. BaekK.H. Anticandidal potential of endophytic bacteria isolated from Dryopteris Uniformis (Makino).Jundishapur J. Microbiol.2018In PressIn Press11010.5812/jjm.69878
    [Google Scholar]
  49. RahmanL. ShinwariZ.K. IqrarI. RahmanL. TanveerF. An assessment on the role of endophytic microbes in the therapeutic potential of Fagonia indica.Ann. Clin. Microbiol. Antimicrob.20171615310.1186/s12941‑017‑0228‑7 28764775
    [Google Scholar]
  50. JalgaonwalaR. MahajanR. A review on microbial endophytes from plants: A treasure search for biologically active metabolites.Glob. J. Res. Med. Plants Indig. Med.20143263
    [Google Scholar]
  51. PhotitaW. LumyongS. LumyongP. HydeK.D. Endophytic fungi of wild banana (Musa acuminata) at Doi Suthep Pui National Park, Thailand.Mycol. Res.2001105121508151310.1017/S0953756201004968
    [Google Scholar]
  52. StrobelG.A. Microbial gifts from rain forests.Can. J. Plant Pathol.2002241142010.1080/07060660109506965
    [Google Scholar]
  53. PatelA. KumarA. SheoranN. KumarM. SahuK.P. GaneshanP. AshajyothiM. GopalakrishnanS. GogoiR. Antifungal and defense elicitor activities of pyrazines identified in endophytic Pseudomonas putida BP25 against fungal blast incited by Magnaporthe oryzae in rice.J. Plant Dis. Prot.2021128126127210.1007/s41348‑020‑00373‑3
    [Google Scholar]
  54. EzraD. CastilloU.F. StrobelG.A. HessW.M. PorterH. JensenJ.B. CondronM.A.M. TeplowD.B. SearsJ. MarantaM. HunterM. WeberB. YaverD. Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp.Microbiology2004150478579310.1099/mic.0.26645‑0 15073289
    [Google Scholar]
  55. Ek-RamosM.J. Gomez-FloresR. Orozco-FloresA.A. Rodríguez-PadillaC. González-OchoaG. Tamez-GuerraP. Bioactive products from plant-endophytic gram-positive bacteria.Front. Microbiol.20191046310.3389/fmicb.2019.00463 30984118
    [Google Scholar]
  56. IgarashiY. Screening of novel bioactive compounds from plant-associated actinomycetes.Actinomycetologica2004182636610.3209/saj.18_63
    [Google Scholar]
  57. LuC. ShenY. A new macrolide antibiotic with antitumor activity produced by Streptomyces sp. CS, a commensal microbe of Maytenus hookeri.J. Antibiot.200356441541810.7164/antibiotics.56.415 12817815
    [Google Scholar]
  58. LuC. ShenY. A novel ansamycin, naphthomycin K from Streptomyces sp.J. Antibiot.2007601064965310.1038/ja.2007.84 17965482
    [Google Scholar]
  59. ZhaoZ. WangQ. WangK. BrianK. LiuC. GuY. Study of the antifungal activity of Bacillus vallismortis ZZ185 in vitro and identification of its antifungal components.Bioresour. Technol.2010101129229710.1016/j.biortech.2009.07.071 19717300
    [Google Scholar]
  60. LiuC.H. ChenX. LiuT.T. LianB. GuY. CaerV. XueY.R. WangB.T. Study of the antifungal activity of Acinetobacter baumannii LCH001 in vitro and identification of its antifungal components.Appl. Microbiol. Biotechnol.200776245946610.1007/s00253‑007‑1010‑0 17534613
    [Google Scholar]
  61. Pereira De MeloF.M. FioreF.L. Beraldo De MoraesA.M. Silva-StenicoE. Antifungal compound produced by Cassava Endophyte B. Pumilus MAIIIM4A.Sci. Agric.2009583592
    [Google Scholar]
  62. BérdyJ. Bioactive microbial metabolites.J. Antibiot.200558112610.1038/ja.2005.1 15813176
    [Google Scholar]
  63. SuryanarayananT.S. ThirunavukkarasuN. GovindarajuluM.B. SasseF. JansenR. MuraliT.S. Fungal endophytes and bioprospecting.Fungal Biol. Rev.2009231-291910.1016/j.fbr.2009.07.001
    [Google Scholar]
  64. PongcharoenW. RukachaisirikulV. PhongpaichitS. KühnT. PelzingM. SakayarojJ. TaylorW.C. Metabolites from the endophytic fungus Xylaria sp. PSU-D14.Phytochemistry20086991900190210.1016/j.phytochem.2008.04.003 18495187
    [Google Scholar]
  65. ParkJ.H. GyungJ.C. HyangB.L. KyoungM.K. HackS.J. SeonW.L. KyoungS.J. Griseofulvin from Xylaria Sp. Strain F0010, an endophytic fungus of Abies holiphylla and its antifungal activity against plant pathogenic fungi.J. Microbiol. Biotechnol.200515112117
    [Google Scholar]
  66. BoonphongS. KittakoopP. IsakaM. PittayakhajonwutD. TanticharoenM. ThebtaranonthY. Multiplolides A and B, new antifungal 10-membered lactones from Xylaria multiplex.J. Nat. Prod.200164796596710.1021/np000291p 11473437
    [Google Scholar]
  67. HuangZ. CaiX. ShaoC. SheZ. XiaX. ChenY. YangJ. ZhouS. LinY. Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76.Phytochemistry20086971604160810.1016/j.phytochem.2008.02.002 18343465
    [Google Scholar]
  68. LiE. JiangL. GuoL. ZhangH. CheY. Pestalachlorides A-C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta.Bioorg. Med. Chem.200816177894789910.1016/j.bmc.2008.07.075 18694644
    [Google Scholar]
  69. KusariS. LamshöftM. ZühlkeS. SpitellerM. An endophytic fungus from Hypericum perforatum that produces hypericin.J. Nat. Prod.200871215916210.1021/np070669k 18220354
    [Google Scholar]
  70. WangF.W. JiaoR.H. ChengA.B. TanS.H. SongY.C. Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp.World J. Microbiol. Biotechnol.2007231798310.1007/s11274‑006‑9195‑4
    [Google Scholar]
  71. SilvaG.H. TelesH.L. TrevisanH.C. BolzaniV.S. YoungM.C.M. PfenningL.H. EberlinM.N. HaddadR. Costa-NetoC.M. AraújoÂ.R. New bioactive metabolites produced by Phomopsis cassiae, an endophytic fungus in Cassia spectabilis.J. Braz. Chem. Soc.2005166b1463146610.1590/S0103‑50532005000800029
    [Google Scholar]
  72. JalgaonwalaR.E. MohiteB.V. MahajanR.T.A. Review: Natural products from plant associated endophytic fungi.J. Microbiol. Biotechnol. Res.201112132
    [Google Scholar]
  73. El-GendyM.M.A. EL-Bondkly, A.M.A. Production and genetic improvement of a novel antimycotic agent, Saadamycin, against Dermatophytes and other clinical fungi from Endophytic Streptomyces sp. Hedaya48.J. Ind. Microbiol. Biotechnol.201037883184110.1007/s10295‑010‑0729‑2 20458610
    [Google Scholar]
  74. CafêuM.C. SilvaG.H. TelesH.L. BolzaniV. AraújoA.R. YoungM.C.M. PfenningL.H. Antifungal compounds of Xylaria Sp., an endophytic fungus isolated from Palicourea Marcgravii (Rubiaceae).Quim. Nova200528991995
    [Google Scholar]
  75. GaiY. ZhaoL.L. HuC.Q. ZhangH.P. Fusarielin E, a new antifungal antibiotic from Fusarium sp.Chin. Chem. Lett.200718895495610.1016/j.cclet.2007.05.048
    [Google Scholar]
  76. LiuJ.Y. SongY.C. ZhangZ. WangL. GuoZ.J. ZouW.X. TanR.X. Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites.J. Biotechnol.2004114327928710.1016/j.jbiotec.2004.07.008 15522437
    [Google Scholar]
  77. WuS.H. HuangR. MiaoC.P. ChenY.W. Two new steroids from an endophytic fungus Phomopsis sp.Chem. Biodivers.20131071276128310.1002/cbdv.201200415 23847072
    [Google Scholar]
  78. SilvaG.H. TelesH.L. ZanardiL.M. Marx YoungM.C. EberlinM.N. HadadR. PfenningL.H. Costa-NetoC.M. Castro-GamboaI. da Silva BolzaniV. AraújoÂ.R. Cadinane sesquiterpenoids of Phomopsis cassiae, an endophytic fungus associated with Cassia spectabilis (Leguminosae).Phytochemistry200667171964196910.1016/j.phytochem.2006.06.004 16857221
    [Google Scholar]
  79. ChomcheonP. WiyakruttaS. AreeT. SriubolmasN. NgamrojanavanichN. MahidolC. RuchirawatS. KittakoopP. Curvularides A-E: Antifungal hybrid peptide-polyketides from the endophytic fungus Curvularia geniculata.Chemistry20101636111781118510.1002/chem.201000652 20680940
    [Google Scholar]
  80. MousaW.K. RaizadaM.N. The diversity of anti-microbial secondary metabolites produced by fungal endophytes: An interdisciplinary perspective.Front. Microbiol.201346510.3389/fmicb.2013.00065 23543048
    [Google Scholar]
  81. SaleemM. HussainH. AhmedI. DraegerS. SchulzB. MeierK. SteinertM. PescitelliG. KurtánT. FlörkeU. KrohnK. Viburspiran, an antifungal member of the octadride class of maleic anhydride natural products.Eur. J. Org. Chem.20112011480881210.1002/ejoc.201001324
    [Google Scholar]
  82. RatnaweeraP.B. WilliamsD.E. PatrickB.O. de SilvaE.D. AndersenR.J. Solanioic Acid, an antibacterial degraded steroid produced in culture by the fungus Rhizoctonia solani isolated from tubers of the medicinal plant Cyperus rotundus.Org. Lett.20151792074207710.1021/acs.orglett.5b00596 25860081
    [Google Scholar]
  83. WicklowD.T. RothS. DeyrupS.T. GloerJ.B. A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides.Mycol. Res.2005109561061810.1017/S0953756205002820 16018316
    [Google Scholar]
  84. ChenL. ChenJ. ZhandX. ZhangJ. Identification and antifungal activity of the metabolite of endophytic fungi isolated from Llex Cornuta.Nongyaoxue Xuebao20079143148
    [Google Scholar]
  85. GuoZ.K. WangR. HuangW. LiX.N. JiangR. TanR.X. GeH.M. Aspergiloid I, an unprecedented spirolactone norditerpenoid from the plant-derived endophytic fungus Aspergillus sp. YXf3.Beilstein J. Org. Chem.2014102677268210.3762/bjoc.10.282 25550731
    [Google Scholar]
  86. LiH.Q. LiX.J. WangY.L. ZhangQ. ZhangA.L. GaoJ.M. ZhangX.C. Antifungal metabolites from Chaetomium globosum, an endophytic fungus in Ginkgo biloba.Biochem. Syst. Ecol.2011394-687687910.1016/j.bse.2011.06.019
    [Google Scholar]
  87. GuW. Bioactive metabolites from Alternaria brassicicola ML-P08, an endophytic fungus residing in Malus halliana.World J. Microbiol. Biotechnol.20092591677168310.1007/s11274‑009‑0062‑y
    [Google Scholar]
  88. RenY. StrobelG.A. GraffJ.C. JutilaM. ParkS.G. GoshS. TeplowD. CondronM. PangE. HessW.M. MooreE. Colutellin A, an immunosuppressive peptide from Colletotrichum dematium.Microbiology200815471973197910.1099/mic.0.2008/017954‑0 18599825
    [Google Scholar]
  89. NifakosK. TsalgatidouP.C. ThomloudiE.E. SkagiaA. KotopoulisD. BairaE. DelisC. PapadimitriouK. MarkellouE. VenierakiA. KatinakisP. Genomic analysis and secondary metabolites production of the endophytic Bacillus velezensis Bvel1: A biocontrol agent against Botrytis cinerea causing bunch rot in post-harvest table grapes.Plants2021108171610.3390/plants10081716 34451760
    [Google Scholar]
  90. ZhaoH. ShaoD. JiangC. ShiJ. LiQ. HuangQ. RajokaM.S.R. YangH. JinM. Biological activity of lipopeptides from Bacillus.Appl. Microbiol. Biotechnol.2017101155951596010.1007/s00253‑017‑8396‑0 28685194
    [Google Scholar]
  91. YangY.C. LiK. LiuC.X. ChengF. LiuC. QuanW.J. XueY. ZouK. LiuS.P. Sanxiapeptin, a linear pentapeptide from Penicillium oxalicum, inhibited the growth of citrus green mold.Food Chem.202236613054110.1016/j.foodchem.2021.130541 34273855
    [Google Scholar]
  92. FalardeauJ. WiseC. NovitskyL. AvisT.J. Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens.J. Chem. Ecol.201339786987810.1007/s10886‑013‑0319‑7 23888387
    [Google Scholar]
  93. AlvarezF. CastroM. PríncipeA. BorioliG. FischerS. MoriG. JofréE. The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease.J. Appl. Microbiol.2012112115917410.1111/j.1365‑2672.2011.05182.x 22017648
    [Google Scholar]
  94. TangQ. BieX. LuZ. LvF. TaoY. QuX. Effects of fengycin from Bacillus subtilis FMBJ on apoptosis and necrosis in Rhizopus stolonifer.J. Microbiol.201452867568010.1007/s12275‑014‑3605‑3 25098563
    [Google Scholar]
  95. GoutamJ. SharmaG. TiwariV.K. MishraA. KharwarR.N. RamarajV. KochB. Isolation and characterization of “Terrein” an antimicrobial and antitumor compound from endophytic fungus Aspergillus terreus (JAS-2) associated from Achyranthus aspera Varanasi, India.Front. Microbiol.20178133410.3389/fmicb.2017.01334 28790982
    [Google Scholar]
  96. TranC. CockI.E. ChenX. FengY. Antimicrobial Bacillus: Metabolites and their mode of action.Antibiotics20221118810.3390/antibiotics11010088 35052965
    [Google Scholar]
  97. NaruseN. TenmyoO. KobaruS. KameiH. MiyakiT. KonishiM. OkiT. Pumilacidin, a complex of new antiviral antibiotics. Production, isolation, chemical properties, structure and biological activity.J. Antibiot.199043326728010.7164/antibiotics.43.267 2157695
    [Google Scholar]
  98. Fernández de UllivarriM. ArbuluS. Garcia-GutierrezE. CotterP.D. Antifungal peptides as therapeutic agents.Front. Cell. Infect. Microbiol.20201010510.3389/fcimb.2020.00105 32257965
    [Google Scholar]
  99. Al-WabliR.I. Al-GhamdiA.R. PrimsaI.P. GhabbourH.A. Al-AgamyM.H. JoeI.H. AttiaM.I. (2 E)-2-[1-(1,3-Benzodioxol-5-yl)-3-(1 H -imidazol-1-yl)propylidene]- N -(4-methoxyphenyl)hydrazinecarboxamide: Synthesis, crystal structure, vibrational analysis, DFT computations, molecular docking and antifungal activity.J. Mol. Struct.2018116612113010.1016/j.molstruc.2018.04.017
    [Google Scholar]
  100. ShengC. ZhangW. New lead structures in antifungal drug discovery.Curr. Med. Chem.201118573376610.2174/092986711794480113 21182484
    [Google Scholar]
  101. PengX.M. CaiG.X. ZhouC.H. Recent developments in azole compounds as antibacterial and antifungal agents.Curr. Top. Med. Chem.201313161963201010.2174/15680266113139990125 23895097
    [Google Scholar]
  102. RadićN. ŠtrukeljB. Endophytic fungi-the treasure chest of antibacterial substances.Phytomedicine201219141270128410.1016/j.phymed.2012.09.007 23079233
    [Google Scholar]
  103. MolinariG. Natural products in drug discovery: Present status and perspectives.Adv. Exp. Med. Biol.2009655132710.1007/978‑1‑4419‑1132‑2_2 20047031
    [Google Scholar]
  104. ChaouachiM. MarzoukT. JallouliS. ElkahouiS. GentzbittelL. BenC. DjébaliN. Activity assessment of tomato endophytic bacteria bioactive compounds for the postharvest biocontrol of Botrytis cinerea.Postharvest Biol. Technol.202117211138910.1016/j.postharvbio.2020.111389
    [Google Scholar]
  105. SharmaA. KaushikN. SharmaA. BajajA. RasaneM. Screening of tomato seed bacterial endophytes for antifungal activity reveals lipopeptide producing Bacillus siamensis strain NKIT9 as a potential bio-control agent.Front Microbiol.20211260948210.3389/fmicb.2021.609482
    [Google Scholar]
  106. AlijaniZ. AminiJ. AshengrophM. BahramnejadB. Antifungal activity of Serratia Rubidaea Mar61-01 purified prodigiosin against Colletotrichum Nymphaeae, the causal agent of strawberry Anthracnose.J. Plant Growth Regul.202110.1007/s00344‑021‑10323‑4
    [Google Scholar]
  107. MeliahS. SulistiyaniT.R. LisdiyantiP. KantiA. SudianaI.M. KobayashiM. Antifungal activity of endophytic bacteria associated with sweet Sorghum (Sorghum bicolor).J. Math. Fundam. Sci.2021531163010.5614/j.math.fund.sci.2021.53.1.2
    [Google Scholar]
  108. DeviR. NathT. BoruahR.R. DarphangB. NathP.K. DasP. SarmahB.K. Antimicrobial activity of bacterial endophytes from Chirata (Swertia chirata Wall.) and Datura (Datura stramonium L.).Egypt. J. Biol. Pest Control20213116910.1186/s41938‑021‑00410‑9
    [Google Scholar]
  109. RibeiroI.D.A. BachE. da Silva MoreiraF. MüllerA.R. RangelC.P. WilhelmC.M. BarthA.L. PassagliaL.M.P. Antifungal potential against Sclerotinia sclerotiorum (Lib.) de Bary and plant growth promoting abilities of Bacillus isolates from canola (Brassica napus L.) roots.Microbiol. Res.202124812675410.1016/j.micres.2021.126754 33848783
    [Google Scholar]
  110. TianD. SongX. LiC. ZhouW. QinL. WeiL. DiW. HuangS. LiB. HuangQ. LongS. HeZ. WeiS. Antifungal mechanism of Bacillus amyloliquefaciens strain GKT04 against Fusarium wilt revealed using genomic and transcriptomic analyses.MicrobiologyOpen2021103e119210.1002/mbo3.1192 34180606
    [Google Scholar]
  111. ShabanamolS. ThampiM. SajanaP. VargheseS. KarthikaS. GeorgeT.K. JishaM.S. Characterization of the major antifungal extrolite from rice endophyte Lysinibacillus sphaericus against Rhizoctonia solani.Arch. Microbiol.202120352605261310.1007/s00203‑021‑02229‑2 33704544
    [Google Scholar]
  112. CaoY. DingW. LiuC. Unraveling the metabolite signature of endophytic bacillus velezensis strain showing defense Response towards Fusarium oxysporum.Agronomy202111468310.3390/agronomy11040683
    [Google Scholar]
  113. ShuriginV. AlaylarB. DavranovK. WirthS. Diversity and biological activity of culturable endophytic bacteria associated with marigold (Calendula Officinalis L.).AIMS Microbiol.20217333635310.3934/microbiol.2021021
    [Google Scholar]
  114. Bolivar-AnilloH.J. González-RodríguezV.E. CantoralJ.M. García-SánchezD. ColladoI.G. GarridoC. Endophytic bacteria Bacillus subtilis, Isolated from Zea mays, as potential biocontrol agent against Botrytis cinerea.Biology202110649210.3390/biology10060492 34205845
    [Google Scholar]
  115. MartinsJ. AresA. CasaisV. CostaJ. CanhotoJ. Identification and characterization of Arbutus unedo L. endophytic bacteria isolated from wild and cultivated trees for the biological control of Phytophthora cinnamomi.Plants2021108156910.3390/plants10081569 34451613
    [Google Scholar]
  116. DuongB. NguyenH.X. PhanH.V. ColellaS. TrinhP.Q. HoangG.T. NguyenT.T. MarracciniP. LebrunM. DuponnoisR. Identification and characterization of Vietnamese coffee bacterial endophytes displaying in vitro antifungal and nematicidal activities.Microbiol. Res.202124212661310.1016/j.micres.2020.126613 33070050
    [Google Scholar]
  117. Al-NadabiH.H. Al-BuraikiN.S. Al-NabhaniA.A. MaharachchikumburaS.N. VelazhahanR. Al-SadiA.M. In vitro antifungal activity of endophytic bacteria isolated from date palm (Phoenix doctylifera L.) against fungal pathogens causing leaf spot of date palm.Egypt. J. Biol. Pest Control20213116510.1186/s41938‑021‑00413‑6
    [Google Scholar]
  118. PutriD.H. ViolitaV. Irdawati; Fifendy, M.; Nurhasnah, N. Production of antifungal compounds by andalas endophytic bacteria (Morus macroura Miq.) isolate ATB 10-6 at fermentation medium with optimum carbon and organic nitrogen source.J. Phys. Conf. Ser.20211940101207610.1088/1742‑6596/1940/1/012076
    [Google Scholar]
  119. IqrarI. NumanM. KhanT. ShinwariZ.K. AliG.S. LC–MS/MS-based profiling of bioactive metabolites of endophytic bacteria from Cannabis sativa and their anti-Phytophthora activity.Antonie van Leeuwenhoek202111481165117910.1007/s10482‑021‑01586‑8 33945066
    [Google Scholar]
  120. PengC. ZhuangX. GaoC. WangZ. ZhaoJ. HuangS.X. LiuC. XiangW. Streptomyces typhae sp. nov., a novel endophytic actinomycete with antifungal activity isolated the root of cattail (Typha angustifolia L.).Antonie van Leeuwenhoek2021114682383310.1007/s10482‑021‑01561‑3 33774760
    [Google Scholar]
  121. Zelaya-MolinaL.X. Sanchez-LimaA.D. Arteaga-GaribayR.I. Bustamante-BritoR. Vásquez-MurrietaM.S. Martínez-RomeroE. Ramos-GarzaJ. Functional characterization of culturable fungi from microbiomes of the “conical cobs” Mexican maize (Zea mays L.) landrace.Arch. Microbiol.202220415710.1007/s00203‑021‑02680‑1 34939131
    [Google Scholar]
  122. HuangX. ZhouD. LiangY. LiuX. CaoF. QinY. MoT. XuZ. LiJ. YangR. Cytochalasins from endophytic Diaporthe sp. GDG-118.Nat. Prod. Res.202135203396340310.1080/14786419.2019.1700504 31833797
    [Google Scholar]
  123. KhanM.S. GaoJ. MunirI. ZhangM. LiuY. MoeT.S. XueJ. ZhangX. Characterization of endophytic fungi, Acremonium sp., from Lilium davidii and analysis of its antifungal and plant growth-promoting effects.BioMed Res. Int.2021202111410.1155/2021/9930210 34395628
    [Google Scholar]
  124. WangG.K. YangJ.S. HuangY.F. LiuJ.S. TsaiC.W. BauD.T. ChangW.S. Culture separation, identification and unique anti-pathogenic fungi capacity of endophytic fungi from Gucheng Salvia Miltiorrhiza.In vivo.202135132533210.21873/invivo.12263
    [Google Scholar]
  125. YangY. ChenY. CaiJ. LiuX. HuangG. Antifungal activity of volatile compounds generated by endophytic fungi Sarocladium brachiariae HND5 against Fusarium oxysporum f. sp. cubense.PLoS One20211612e026074710.1371/journal.pone.0260747 34855862
    [Google Scholar]
  126. LiuX.B. Sarocladium brachiariae sp. nov., an endophytic fungus isolated from Brachiaria brizantha.Mycosphere20178782783410.5943/mycosphere/8/7/2
    [Google Scholar]
  127. LiX. WuY. LiuZ. Antifungal activity of an endophytic Fungus Aspergillus versicolor DYSJ3 from Aphanamixis grandifolia Blume against Colletotrichum musae.Mycobiology202149549850610.1080/12298093.2021.1976967 36970635
    [Google Scholar]
  128. MunirE. YurnalizaY. LutfiaA. HartantoA. Antifungal activity and IAA production by endophytic fungi isolated from Elettaria sp.IOP Conf. Ser. Earth Environ. Sci.2021782404203710.1088/1755‑1315/782/4/042037
    [Google Scholar]
  129. FuegoB.N. RomanoK.G. PinlacC.D. LirioG.A.C. Evaluation of the antimicrobial activity of endophytic fungus isolated from Cocos nucifera (L.) Cotyledon against medically-important pathogens.J. Biosci. Med.202191869710.4236/jbm.2021.91007
    [Google Scholar]
  130. dos SantosI.R. Abdel-AzeemA.M. MohesienM.T. PiekutowskaM. SheirD.H. da SilvaL.L. da Silva CastroC. CarvalhoD.D.C. BezerraJ.D.P. SaadH.A. BorgesL.L. Xavier-SantosS. Insights into the bioprospecting of the endophytic fungi of the medicinal plant Palicourea rigida Kunth (Rubiaceae): Detailed biological activities.J. Fungi20217968910.3390/jof7090689 34575727
    [Google Scholar]
  131. SishubaA. LebokoJ. AtebaC.N. ManganyiM.C. First Report: Diversity of endophytic fungi possessing antifungal activity isolated from native Kougoed (Sceletium tortuosum L.).Mycobiology2021491899410.1080/12298093.2020.1857009 33536817
    [Google Scholar]
  132. dos SantosG.D. GomesR.R. GonçalvesR. FornariG. MaiaB.H.L.N.S. Schmidt-DannertC. GaaschtF. GlienkeC. SchneiderG.X. ColomboI.R. Degenhardt-GoldbachJ. PietschJ.L.M. Costa-RibeiroM.C.V. VicenteV.A. Molecular identification and antimicrobial activity of foliar endophytic fungi on the brazilian pepper tree (Schinus terebinthifolius) reveal new species of diaporthe.Curr. Microbiol.20217883218322910.1007/s00284‑021‑02582‑x 34213615
    [Google Scholar]
  133. KumarV. PrasherI.B. Phytochemical analysis and antimicrobial potential of Nigrospora Sphaerica (Berk. & Broome) petch, a fungal endophyte isolated from Dillenia Indica L.Adv. Tradit. Med.202110.1007/s13596‑021‑00619‑x
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072276049231207110314
Loading
/content/journals/cbc/10.2174/0115734072276049231207110314
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test