Skip to content
2000
Volume 20, Issue 10
  • ISSN: 1573-4072
  • E-ISSN:

Abstract

Antibiotic resistance has become a major public threat across the globe associated with human health. Some bacterial and fungal infections produce resistance, such as methicillin-resistant (MRSA), vancomycin-resistant (VRE) and multidrug-resistant (MDR) species . Tetrahydrocarbazoles (THCz) are a sub-class of indole alkaloids profoundly present in natural products and biologically active compounds and have displayed potential biological activities in literature. THCz exhibit potential antibacterial activities through major bacterial pathways like cell wall synthesis inhibition and DNA gyrase enzyme inhibition with DNA sliding clamp inhibitors and MreB inhibitors. These THC also showed significant antibacterial activities against bacterial-resistant species, such as MRSA, VRE and (MDR) in literature. MTDL (Multi Target Direct ligand) approach has been significantly used for the design of THC motif-based antibacterial agents. In this review article, we collected literature on THCz as a potential antibacterial agent from 2014 to date. The review study of THC core-based derivatives found excellent antibacterial profiles and revealed that they can play a significant role in drug discovery and the development of new antibiotics against various infectious diseases.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072275884240125100455
2024-12-01
2024-11-26
Loading full text...

Full text loading...

References

  1. MustafaY.F. Synthesis, characterization, and biomedical assessment of novel bisimidazole–coumarin conjugates.Appl. Nanosci.20231331907191810.1007/s13204‑021‑01872‑x
    [Google Scholar]
  2. MustafaY.F. Modern developments in the application and function of metal/metal oxide nanocomposite–based antibacterial agents.Bionanoscience202313284085210.1007/s12668‑023‑01100‑6
    [Google Scholar]
  3. MustafaYF Emerging trends and future opportunities for coumarin-heterocycle conjugates as antibacterial agents.Results Chem.202310115110.1016/j.rechem.2023.101151
    [Google Scholar]
  4. MustafaY.F. KasimS.M. Al-DabbaghB.M. Al-ShakarchiW. Synthesis, characterization and biological evaluation of new azo-coumarinic derivatives.Appl. Nanosci.202118
    [Google Scholar]
  5. SinghH. SindhuJ. KhuranaJ.M. SharmaC. AnejaK.R. Ultrasound promoted one pot synthesis of novel fluorescent triazolyl spirocyclic oxindoles using DBU based task specific ionic liquids and their antimicrobial activity.Eur. J. Med. Chem.20147714515410.1016/j.ejmech.2014.03.016 24631842
    [Google Scholar]
  6. ChakrabortyB. ChakrabortyS. BhattacharyyaI. SahaC. In vitro activity of synthesized 6-Chloro-2-methyl-1H-carbazole- 1, 4(9H)-dione against methicillin-resistant staphylococcus aureus.IOSR J. Appl. Chem.2014711616610.9790/5736‑071116166
    [Google Scholar]
  7. LlorC. BjerrumL. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem.Ther. Adv. Drug Saf.20145622924110.1177/2042098614554919 25436105
    [Google Scholar]
  8. World health organizationGlobal priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics.GenevaWHO Press201717
    [Google Scholar]
  9. KumarN. SharmaS. NirmalP. A review of in vitro antimicrobial activities of carbazole and its derivative from 2014 to 2022.Antiinfect. Agents2023214e07062321776810.2174/2211352521666230607154145
    [Google Scholar]
  10. Antibiotic resistance.,Available from: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance
  11. BryanE.J. SagongH.Y. ParhiA.K. GrierM.C. RobergeJ.Y. LaVoieE.J. PilchD.S. TXH11106: A third-generation MreB inhibitor with enhanced activity against a broad range of Gramnegative bacterial pathogens.Antibiotics202211569310.3390/antibiotics11050693 35625337
    [Google Scholar]
  12. MedinaE. PieperDH Tackling threats and future problems of multidrug-resistant bacteria.Curr Top Microbiol Immunol.201639833310.1007/82_2016_492
    [Google Scholar]
  13. VentolaC.L. The antibiotic resistance crisis: part 1: causes and threats.P&T2015404277283 25859123
    [Google Scholar]
  14. Antibiotic resistance threats in the United States, 2019; US Department of Health and Human Services, Centres for Disease Control and Prevention,2019
  15. ZaibS. IbrarA. KhanI. RanaN. GomilaR.M. McAdamC.J. Al-AskarA.A. ElkaeedE.B. FronteraA. Insight into structural topology and supramolecular assembly of tetrahydrocarbazole-carbonitrile: On the importance of noncovalent interactions and urease inhibitory profile.J. Mol. Struct.2023128513552210.1016/j.molstruc.2023.135522
    [Google Scholar]
  16. KumarN. Kumar SinghK. Mehta LuthraP. A review on anticancer potential of some pyranocarbazole alkaloids and its derivatives.Int. J. Adv. Res. (Indore)20219687488310.21474/IJAR01/13091
    [Google Scholar]
  17. PadmavathiS. TajneM.R. Design, synthesis, molecular docking studies and anti-microbial activity of novel 1,2,3,4-tetrahydrocarbazole derivatives.Int. Curr. Pharm. J.201659737810.3329/icpj.v5i9.29231
    [Google Scholar]
  18. ZhangF.F. GanL.L. ZhouC.H. Synthesis, antibacterial and antifungal activities of some carbazole derivatives.Bioorg. Med. Chem. Lett.20102061881188410.1016/j.bmcl.2010.01.159 20176480
    [Google Scholar]
  19. GöçmentürkM. ErgünY. Mougang-SoumeB. Caylak DelibaşN. HökelekT. 2-N-[(2,3,4,9-Tetra-hydro-1H-carbazol-3-yl)meth-yl]methyl-sulfonamido-ethyl methane-sulfonate.Acta Crystallogr. Sect. E Struct. Rep. Online201370Pt 1o78o79 24527010
    [Google Scholar]
  20. KumarN. GuptaP. Anticancer tetrahydrocarbazoles: A wide journey from 2000 till date.Lett. Drug Des. Discov.202421342143910.2174/1570180820666221028163319
    [Google Scholar]
  21. HeraviM.M. AmiriZ. KafshdarzadehK. ZadsirjanV. Synthesis of indole derivatives as prevalent moieties present in selected alkaloids.RSC Advances20211153335403361210.1039/D1RA05972F 35497516
    [Google Scholar]
  22. ChakrobortyS. PandaP. A comprehensive overview of the synthesis of tetrahydrocarbazoles and its biological properties.Mini Rev. Org. Chem.202118670971810.2174/1570193X17999200820163532
    [Google Scholar]
  23. ChakrabortyB. ChakrabortyS. SahaC. Antibacterial activity of murrayaquinone A and 6-Methoxy-3,7-dimethyl-2,3-dihydro-1 H -carbazole-1,4(9 H)-dione.Int. J. Microbiol.201420141810.1155/2014/540208 24963299
    [Google Scholar]
  24. ChaudhariT.Y. TandonV. Recent approaches to the synthesis of tetrahydrocarbazoles.Org. Biomol. Chem.20211991926193910.1039/D0OB02274H 33570535
    [Google Scholar]
  25. GhaniA. SadiqZ. IqbalS. YasmeenA. ShujaatS. AliI. Screening of anti-inflammatory and antioxidant potential of functionalized tetrahydrocarbazole linked 1,2-diazoles and their docking studies.Arab. J. Chem.2022151110419510.1016/j.arabjc.2022.104195
    [Google Scholar]
  26. El-NassanH.B. Synthesis and antitumor activity of tetrahydrocarbazole hybridized with dithioate derivatives.J. Enzyme Inhib. Med. Chem.201530230831510.3109/14756366.2014.922554 24899376
    [Google Scholar]
  27. SinghM. SharmaP. AroraS. Development of 1,2,3,4‐tetrahydrocarbazole derivatives as dual binding cholinestarse inhibitors.Alzheimers Dement.202117S9e05102010.1002/alz.051020
    [Google Scholar]
  28. WangL.L. DuY. LiS.M. ChengF. ZhangN.N. ChenR. CuiX. YangS.G. FanL.L. WangJ.T. GuoB. WuH.S. ZhangJ.Q. TangL. Design, synthesis and evaluation of tetrahydrocarbazole derivatives as potential hypoglycemic agents.Bioorg. Chem.202111510517210.1016/j.bioorg.2021.105172 34303898
    [Google Scholar]
  29. SakinalaP. ChikhaleR. TajneM. Design, synthesis and pharmacological evaluation of some novel tetrahydrocarbazoles as potential COX-2 inhibitors.Lett. Drug Des. Discov.201815443744910.2174/1570180814666170602084037
    [Google Scholar]
  30. SellamuthuS. GuttiG. KumarD. Kumar SinghS. Carbazole: A potent scaffold for antitubercular drugs.Mini Rev. Org. Chem.201815649850710.2174/1570193X15666180220141342
    [Google Scholar]
  31. BonomoM.G. CarusoA. El-KashefH. SalzanoG. SinicropiM.S. SaturninoC. An update of carbazole treatment strategies for COVID-19 infection.Appl. Sci.2023133152210.3390/app13031522
    [Google Scholar]
  32. GuptaA. Kalantar-ZadehK. ReddyS.T. Ramatroban as a novel immunotherapy for COVID-19.J. Mol. Genet. Med.2020143 32952595
    [Google Scholar]
  33. ChakrabortyA. SahaC. PodderG. ChowdhuryB.K. BhattacharyyaP. Carbazole alkaloid with antimicrobial activity from clausena heptaphylla.Phytochemistry199538378778910.1016/0031‑9422(94)00666‑H 7766168
    [Google Scholar]
  34. SakanoK.I. IshimaruK. NakamuraS. New antibiotics, carbazomycins A and B. I. Fermentation, extraction, purification and physico-chemical and biological properties.J. Antibiot.198033768368910.7164/antibiotics.33.683 7410212
    [Google Scholar]
  35. TanF. ChengH.G. Catalytic asymmetric synthesis of tetrahydrocarbazoles.Chem. Commun.201955446151616410.1039/C9CC02486G 31093637
    [Google Scholar]
  36. CoatesA. HuY. BaxR. PageC. The future challenges facing the development of new antimicrobial drugs.Nat. Rev. Drug Discov.200211189591010.1038/nrd940 12415249
    [Google Scholar]
  37. BremnerJ. Multiple action-based design approaches to antibacterials.Springer Nature202110.1007/978‑981‑16‑0999‑2
    [Google Scholar]
  38. IvanenkovY.A. ZhavoronkovA. YamidanovR.S. OstermanI.A. SergievP.V. AladinskiyV.A. AladinskayaA.V. TerentievV.A. VeselovM.S. AygininA.A. KartsevV.G. SkvortsovD.A. ChemerisA.V. BaimievA.K. SofronovaA.A. MalyshevA.S. FilkovG.I. BezrukovD.S. ZagribelnyyB.A. PutinE.O. PuchininaM.M. DontsovaO.A. Identification of novel antibacterials using machine learning techniques.Front. Pharmacol.20191091310.3389/fphar.2019.00913 31507413
    [Google Scholar]
  39. HoT.T. TranQ.T.N. ChaiC.L.L. The polypharmacology of natural products.Future Med. Chem.201810111361136810.4155/fmc‑2017‑0294 29673257
    [Google Scholar]
  40. AyonN.J. High-throughput screening of natural product and synthetic molecule libraries for antibacterial drug discovery.Metabolites202313562510.3390/metabo13050625 37233666
    [Google Scholar]
  41. SuL. LiJ. ZhouZ. HuangD. ZhangY. PeiH. GuoW. WuH. WangX. LiuM. YangC.G. ChenY. Design, synthesis and evaluation of hybrid of tetrahydrocarbazole with 2,4-diaminopyrimidine scaffold as antibacterial agents.Eur. J. Med. Chem.201916220321110.1016/j.ejmech.2018.11.016 30447433
    [Google Scholar]
  42. MahdiM.H. DawoodA.H. ShaheedD.Q. Synthesis and study of antimicrobial activity of some tetrahydrocarbazole derivatives substituted with NSAID.Al Mustansiriyah J. Pharm. Sci.2022222445410.32947/ajps.v22i2.857
    [Google Scholar]
  43. GehrmannR. HertleinT. HopkeE. OhlsenK. LalkM. HilgerothA. Novel small-molecule hybrid-antibacterial agents against S. aureus and MRSA strains.Molecules20212716110.3390/molecules27010061 35011293
    [Google Scholar]
  44. AshokD. TharaG. KumarB.K. SrinivasG. RavinderD. VishnuT. SarasijaM. SushmithaB. Microwave-assisted synthesis, molecular docking studies of 1,2,3-triazole-based carbazole derivatives as antimicrobial, antioxidant and anticancer agents.RSC Advances2022131254010.1039/D2RA05960F 36545291
    [Google Scholar]
  45. MongreR.K. MishraC.B. PrakashA. JungS. LeeB.S. KumariS. HongJ.T. LeeM.S. Novel carbazole-piperazine hybrid small molecule induces apoptosis by targeting BCL-2 and inhibits tumor progression in lung adenocarcinoma in vitro and xenograft mice model.Cancers2019119124510.3390/cancers11091245 31450709
    [Google Scholar]
  46. NitinKumar VinodKumar YogitaChowdhary A review on synthesis methods of tricyclic 1,2,3,4-tetrahydrocarbazoles.World J. Adv. Res. Rev.202213116017110.30574/wjarr.2022.13.1.0754
    [Google Scholar]
  47. BerlinK.D. Synthesis of 1, 2, 3, 4-Tetrahydrocarbazoles with large group-aromatization to carbazoles.Proceedings of the Oklahoma Academy of Science1967215220
    [Google Scholar]
  48. SchmidtA.W. ReddyK.R. KnölkerH.J. Occurrence, biogenesis, and synthesis of biologically active carbazole alkaloids.Chem. Rev.201211263193332810.1021/cr200447s 22480243
    [Google Scholar]
  49. SeenS.B. GongY. AshtonM. The application of the Fischer indole synthesis in medicinal chemistry.Adv. Heterocycl. Chem.202313918510.1016/bs.aihch.2022.11.001
    [Google Scholar]
  50. MitraA.K. The journey of 1-Keto-1, 2, 3, 4-tetrahydrocarbazole based fluorophores: from inception to implementation.J. Fluoresc.20223262023205210.1007/s10895‑022‑03004‑2 35829843
    [Google Scholar]
  51. YinZ. WhittellL.R. WangY. JergicS. LiuM. HarryE.J. DixonN.E. BeckJ.L. KelsoM.J. OakleyA.J. Discovery of lead compounds targeting the bacterial sliding clamp using a fragment-based approach.J. Med. Chem.20145762799280610.1021/jm500122r 24592885
    [Google Scholar]
  52. AltieriA.S. KelmanZ. DNA sliding clamps as therapeutic targets.Front. Mol. Biosci.201858710.3389/fmolb.2018.00087 30406112
    [Google Scholar]
  53. KelmanZ. O’DonnellM. Structural and functional similarities of prokaryotic and eukaryotic DNA polymerase sliding clamps.Nucleic Acids Res.199523183613362010.1093/nar/23.18.3613 7478986
    [Google Scholar]
  54. KuriyanJ. O’DonnellM. Sliding clamps of DNA polymerases.J. Mol. Biol.1993234491592510.1006/jmbi.1993.1644 7903401
    [Google Scholar]
  55. MohamedN.A. El-SerwyW.S. Abd El-KarimS.S. AwadG.E.A. ElseginyS.A. Synthesis, antimicrobial evaluation, and molecular docking studies of new tetrahydrocarbazole derivatives.Res. Chem. Intermed.20164221363138610.1007/s11164‑015‑2090‑6
    [Google Scholar]
  56. IvanenkovY.A. OstermanI.A. KomarovaE.S. BogdanovA.A. SergievP.V. DontsovaO.A. SofronovaA.A. TerentievV.A. FilkovG.I. YamidanovR.S. MajougaA.G. BezrukovD.S. DeynekaE.V. SkvortsovD.A. Tetrahydrocarbazoles as novel class of DNA biosynthesis inhibitors in bacteria.Antiinfect. Agents202018212112710.2174/2211352517666181218155259
    [Google Scholar]
  57. CirzR.T. ChinJ.K. AndesD.R. de Crécy-LagardV. CraigW.A. RomesbergF.E. Inhibition of mutation and combating the evolution of antibiotic resistance.PLoS Biol.200536e17610.1371/journal.pbio.0030176 15869329
    [Google Scholar]
  58. PodlesekZ. BertokD.Ž. The Escherichia coli SOS response: Much more than DNA damage repair.Escherichia coli.IntechOpen2021
    [Google Scholar]
  59. SelvamG. MurugesanM.S. UthaikumarS. Investigation of Dibromo and N-bromoacetyl Derivatives of [b] carbazole-synthesis and antibacterial evaluation.Int J New Chem.2019626675
    [Google Scholar]
  60. SurendiranT. DeepaR. Syntheses and antimicrobial studies of novel N-((2, 4-Dihydro-3-substituted phenylthiazolo-thiatriazin-1-Yl))-1, 2, 3, 4-tetrahydrocarbazoles.Malaya J. Mat.2020215261530
    [Google Scholar]
  61. ReithuberE. WixeT. LudwigK.C. MüllerA. UvellH. GreinF. LindgrenA.E.G. MuschiolS. NannapaneniP. ErikssonA. SchneiderT. NormarkS. Henriques-NormarkB. AlmqvistF. MellrothP. THCz: Small molecules with antimicrobial activity that block cell wall lipid intermediates.Proc. Natl. Acad. Sci. USA202111847e210824411810.1073/pnas.2108244118 34785593
    [Google Scholar]
  62. Abd Al-MohsonZ.M. Al-MajidiS.M. MathkorT.H. Synthesis of novel pyrazole derivatives containing tetrahydrocarbazole, antimicrobail evaluation and molecular properties.Eurasian Chem. Commun.20213425434
    [Google Scholar]
  63. A AlamM. Antibacterial pyrazoles: Tackling resistant bacteria.Future Med. Chem.202214534336210.4155/fmc‑2021‑0275 35050719
    [Google Scholar]
  64. MurugesanM.S. SelvamG. Synthesis and antibacterial activities of novel 1-bromo-2-(6-bromo-1, 2, 3, 4-tetrahydro-9H-carbazol-1-yl) ethanone and 1-bromo-2-(5-bromo-1, 2, 3-trihydrocyclopenta [b] indole-1-yl) ethanone.Int J New Chem202182142148
    [Google Scholar]
  65. LepeshevaGI Waterman, MR Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms.Biochim Biophys Acta.177017703467477
    [Google Scholar]
  66. MahdiM.H. DawoodA.H. ShaheedD.Q. Substituted tetrahydrocarbazole based on indomethacin and diclofenac with heterocyclic compound, synthesis, spectral and antimicrobial studies.J. Med. Chem. Sci.20225693394210.26655/JMCHEMSCI.2022.6.7
    [Google Scholar]
  67. ChanE.W.L. YeeZ.Y. RajaI. YapJ.K.Y. Synergistic effect of non-steroidal anti-inflammatory drugs (NSAIDs) on antibacterial activity of cefuroxime and chloramphenicol against methicillin-resistant Staphylococcus aureus.J. Glob. Antimicrob. Resist.201710707410.1016/j.jgar.2017.03.012 28673701
    [Google Scholar]
  68. LeãoC. BorgesA. SimõesM. Nsaids as a drug repurposing strategy for biofilm control.Antibiotics20209959110.3390/antibiotics9090591 32927675
    [Google Scholar]
  69. FiggeR.M. DivakaruniA.V. GoberJ.W. MreB, the cell shape‐determining bacterial actin homologue, co‐ordinates cell wall morphogenesis in Caulobacter crescentus.Mol. Microbiol.20045151321133210.1111/j.1365‑2958.2003.03936.x 14982627
    [Google Scholar]
  70. van den EntF. AmosL.A. LöweJ. Prokaryotic origin of the actin cytoskeleton.Nature20014136851394410.1038/35092500 11544518
    [Google Scholar]
  71. IwaiN. NagaiK. WachiM. Novel S-benzylisothiourea compound that induces spherical cells in Escherichia coli probably by acting on a rod-shape-determining protein(s) other than penicillin-binding protein 2.Biosci. Biotechnol. Biochem.200266122658266210.1271/bbb.66.2658 12596863
    [Google Scholar]
  72. RobertsonG.T. DoyleT.B. DuQ. DuncanL. MdluliK.E. LynchA.S. A Novel indole compound that inhibits Pseudomonas aeruginosa growth by targeting MreB is a substrate for MexAB-OprM.J. Bacteriol.2007189196870688110.1128/JB.00805‑07 17644596
    [Google Scholar]
  73. SagongH.Y. Rosado-LugoJ.D. BryanE.J. Ferrer-GonzálezE. WangY. CaoY. ParhiA.K. PilchD.S. LaVoieE.J. Novel MreB inhibitors with antibacterial activity against Gram (-) bacteria.Med. Chem. Res.202231101679170410.1007/s00044‑022‑02967‑y 37077288
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072275884240125100455
Loading
/content/journals/cbc/10.2174/0115734072275884240125100455
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test