Skip to content
2000
image of Emerging Challenges and Innovations in the Management of Carbapenem-resistant Enterobacteriaceae Infections in Hospital Settings”

Abstract

Carbapenem-resistant Enterobacteriaceae represent a crucial global public health issue. The challenges associated with carbapenem-resistant Enterobacteriaceae are multifaceted. This review article aims to explore and comprehend the emerging challenges and the latest developments in the management of carbapenem-resistant Enterobacteriaceae infections. A comprehensive literature search was conducted using databases such as PubMed, Cochrane Library, and Embase. Studies published from database inception until May 2024 were included. Articles were selected based on relevance, study design, and quality. Data from clinical trials, observational studies, and reviews were synthesized to provide a detailed overview of the current state of knowledge on carbapenem-resistant Enterobacteriaceae. The review identifies key epidemiological trends, including geographic variations and risk factors associated with carbapenem-resistant Enterobacteriaceae. Mechanisms of resistance are elucidated, focusing on carbapenemase production and other related factors. Current treatment options are assessed, with an emphasis on newer antibiotic combinations such as ceftazidime/avibactam, meropenem/vaborbactam, ceftolozane/tazobactam, and cefepime/enmetazobactam. The review also highlights emerging therapeutic approaches, including novel antibiotics and non-traditional approaches like phage therapy, fecal microbiota transplantation, probiotics, antimicrobial peptides, vaccines, and herbal drugs. Additionally, the review also reflects on effective infection prevention and control strategies. While research efforts to explore newer combinations and alternate approaches to treat carbapenem-resistant Enterobacteriaceae infections are crucial, the importance of stringent infection prevention and control strategies cannot be overstated. This dual focus is essential to address both the immediate and long-term challenges posed by carbapenem-resistant Enterobacteriaceae

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525347025241015053800
2024-11-12
2025-01-19
Loading full text...

Full text loading...

References

  1. Antimicrobial Resistance Collaborators Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2019 399 10325 629 655
    [Google Scholar]
  2. WHO publishes list of bacteria for which new antibiotics are urgently needed. 2017 Available from: https://www.ecdc.europa.eu/en/news-events/who-publishes-list-bacteria-which-new-antibiotics-are-urgently-needed#:~:text=%E2%80%8BThe%20World%20Health%20Organization,with%20existing%20public%20health%20needs.
  3. WHO Global research agenda for antimicrobial resistance in human health. 2023 Available from: https://www.who.int/citations/m/item/global-research-agenda-for-antimicrobial-resistance-in-human-health
  4. CDC CDC. Enterobacterales (carbapenem-resistant). 2024 Available from: https://www.cdc.gov/cre/about/index.html#:~:text=Enterobacterales%20are%20a%20group%20of,or%20several%20antibiotics%20called%20carbapenems.
  5. Tompkins K. van Duin D. Treatment for carbapenem-resistant Enterobacterales infections: Recent advances and future directions. Eur. J. Clin. Microbiol. Infect. Dis. 2021 40 10 2053 2068 10.1007/s10096‑021‑04296‑1 34169446
    [Google Scholar]
  6. Papp-Wallace K.M. Endimiani A. Taracila M.A. Bonomo R.A. Carbapenems: Past, present, and future. Antimicrob. Agents Chemother. 2011 55 11 4943 4960 10.1128/AAC.00296‑11 21859938
    [Google Scholar]
  7. Perez F. El Chakhtoura N.G. Papp-Wallace K.M. Wilson B.M. Bonomo R.A. Treatment options for infections caused by carbapenem-resistant Enterobacteriaceae : Can we apply “precision medicine” to antimicrobial chemotherapy? Expert Opin. Pharmacother. 2016 17 6 761 781 10.1517/14656566.2016.1145658 26799840
    [Google Scholar]
  8. Zilberberg M.D. Nathanson B.H. Sulham K. Fan W. Shorr A.F. Carbapenem resistance, inappropriate empiric treatment and outcomes among patients hospitalized with Enterobacteriaceae urinary tract infection, pneumonia and sepsis. BMC Infect. Dis. 2017 17 1 279 10.1186/s12879‑017‑2383‑z 28415969
    [Google Scholar]
  9. Bonomo R.A. Burd E.M. Conly J. Limbago B.M. Poirel L. Segre J.A. Westblade L.F. Carbapenemase-producing organisms: A global scourge. Clin. Infect. Dis. 2018 66 8 1290 1297 10.1093/cid/cix893 29165604
    [Google Scholar]
  10. Yoo E.H. Hong H.L. Kim E.J. Epidemiology and mortality analysis related to carbapenem-resistant enterobacterales in patients after admission to intensive care units: An observational study. Infect. Drug Resist. 2023 16 189 200 10.2147/IDR.S391409 36644658
    [Google Scholar]
  11. Salomão M.C. Freire M.P. Boszczowski I. Raymundo S.F. Guedes A.R. Levin A.S. Increased risk for Carbapenem-resistant Enterobacteriaceae colonization in intensive care units after hospitalization in emergency department. Emerg. Infect. Dis. 2020 26 6 1156 1163 10.3201/eid2606.190965 32267827
    [Google Scholar]
  12. Zong Z. Feng Y. McNally A. Carbapenem and Colistin resistance in Enterobacter: Determinants and clones. Trends Microbiol. 2021 29 6 473 476 10.1016/j.tim.2020.12.009 33431326
    [Google Scholar]
  13. Tolou-Ghamari Z. Preliminary study of antibiotics susceptibility testing and pathogens associated with nosocomial infections in a tertiary hospital. Antiinfect. Agents 2024 22 2 e271023222865 10.2174/0122113525259607231020063637
    [Google Scholar]
  14. WHO Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2021 Available from : https://www.who.int/citations/i/item/9789240027336
  15. Sader H.S. Carvalhaes C.G. Arends S.J.R. Castanheira M. Mendes R.E. Aztreonam/avibactam activity against clinical isolates of Enterobacterales collected in Europe, Asia and Latin America. J. Antimicrob. Chemother. 2021 76 3 659 666 10.1093/jac/dkaa504 33276387
    [Google Scholar]
  16. Fupin H.U. Yan G.U.O. Demei Z.H.U. Fu W.A.N.G. Xiaofei J.I.A.N.G. Yingchun X.U. Xiaojiang Z.H.A.N.G. Zhaoxia Z.H.A.N.G. Ping J.I. CHINET surveillance of bacterial resistance:Results of 2020. Chinese Journal of Infection and Chemotherapy 2021 21 4 377 387
    [Google Scholar]
  17. Malchione M.D. Torres L.M. Hartley D.M. Koch M. Goodman J.L. Carbapenem and colistin resistance in Enterobacteriaceae in Southeast Asia: Review and mapping of emerging and overlapping challenges. Int. J. Antimicrob. Agents 2019 54 4 381 399 10.1016/j.ijantimicag.2019.07.019 31369812
    [Google Scholar]
  18. Joshi D.N. Shenoy B. Mv B. Adhikary R. Shamarao S. Mahalingam A. Prevalence of Carbapenem-resistant Enterobacteriaceae and the genes responsible for Carbapenemase production in a Tertiary Care Hospital in South India. Eur. Med. J. 2023 10.33590/emj/10300425
    [Google Scholar]
  19. Sharma M. Chetia P. Puzari M. Neog N. Phukan U. Borah A. Carbapenem resistance among common Enterobacteriaceae clinical isolates in part of North-East India. Antiinfect. Agents 2021 19 4 e130621190844 10.2174/2211352519999210128174853
    [Google Scholar]
  20. ICMR Annual Report Antimicrobial Resistance Research and Surveillance Network. 2022 https://main.icmr.nic.in/sites/default/files/upload_documents/AMRSN_Annual_Report_2022.pdf
    [Google Scholar]
  21. Panda S. Dash A. Chhotray P. Nayak B. Mouli T.C. Mishra S.B. Risk factors and clinical outcomes of carbapenem-resistant Klebsiella pneumonia infection in intensive care unit. Int. J. Crit. Illn. Inj. Sci. 2022 12 4 217 221 10.4103/ijciis.ijciis_34_22 36779211
    [Google Scholar]
  22. Zhang Y. Wang Q. Yin Y. Chen H. Jin L. Gu B. Xie L. Yang C. Ma X. Li H. Li W. Zhang X. Liao K. Man S. Wang S. Wen H. Li B. Guo Z. Tian J. Pei F. Liu L. Zhang L. Zou C. Hu T. Cai J. Yang H. Huang J. Jia X. Huang W. Cao B. Wang H. Epidemiology of Carbapenem-resistant Enterobacteriaceae infections: Report from the China CRE Network. Antimicrob. Agents Chemother. 2018 62 2 e01882-17 10.1128/AAC.01882‑17 29203488
    [Google Scholar]
  23. Kang J.S. Yi J. Ko M.K. Lee S.O. Lee J.E. Kim K.H. Prevalence and risk factors of Carbapenem-resistant Enterobacteriaceae Acquisition in an emergency intensive care unit in a Tertiary Hospital in Korea: A case-control study. J. Korean Med. Sci. 2019 34 18 e140 10.3346/jkms.2019.34.e140 31074254
    [Google Scholar]
  24. Tamma P.D. Kazmi A. Bergman Y. Goodman K.E. Ekunseitan E. Amoah J. Simner P.J. The likelihood of developing a Carbapenem-Resistant Enterobacteriaceae Infection during a hospital stay. Antimicrob. Agents Chemother. 2019 63 8 e00757-19 10.1128/AAC.00757‑19 31138574
    [Google Scholar]
  25. Wilson J.E. Sanderson W. Westgate P.M. Winter K. Forster D. Risk factors of carbapenemase-producing Enterobacterales acquisition among adult intensive care unit patients at a Kentucky academic medical center. Infect. Prev. Pract. 2023 5 4 100310 10.1016/j.infpip.2023.100310 37767313
    [Google Scholar]
  26. Ling M.L. Tee Y.M. Tan S.G. Amin I.M. How K.B. Tan K.Y. Lee L.C. Risk factors for acquisition of carbapenem resistant Enterobacteriaceae in an acute tertiary care hospital in Singapore. Antimicrob. Resist. Infect. Control 2015 4 1 26 10.1186/s13756‑015‑0066‑3 26106476
    [Google Scholar]
  27. Doumith M. Ellington M.J. Livermore D.M. Woodford N. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J. Antimicrob. Chemother. 2009 63 4 659 667 10.1093/jac/dkp029 19233898
    [Google Scholar]
  28. Tran Q.T. Williams S. Farid R. Erdemli G. Pearlstein R. The translocation kinetics of antibiotics through porin OmpC: Insights from structure‐based solvation mapping using WaterMap. Proteins 2013 81 2 291 299 10.1002/prot.24185 23011778
    [Google Scholar]
  29. Ghai I. Ghai S. Understanding antibiotic resistance via outer membrane permeability. Infect. Drug Resist. 2018 11 523 530 10.2147/IDR.S156995 29695921
    [Google Scholar]
  30. Tängdén T. Adler M. Cars O. Sandegren L. Löwdin E. Frequent emergence of porin-deficient subpopulations with reduced carbapenem susceptibility in ESBL-producing Escherichia coli during exposure to ertapenem in an in vitro pharmacokinetic model. J. Antimicrob. Chemother. 2013 68 6 1319 1326 10.1093/jac/dkt044 23478794
    [Google Scholar]
  31. Huang J. Hu X. Zhao Y. Shi Y. Ding H. Xv J. Ren J. Wu R. Zhao Z. Genetic factors associated with enhanced bla KPC expression in Tn 3 /Tn 4401 Chimeras. Antimicrob. Agents Chemother. 2020 64 3 e01836-19 10.1128/AAC.01836‑19 31844015
    [Google Scholar]
  32. Lomovskaya O. Zgurskaya H.I. Totrov M. Watkins W.J. Waltzing transporters and ‘the dance macabre’ between humans and bacteria. Nat. Rev. Drug Discov. 2007 6 1 56 65 10.1038/nrd2200 17159924
    [Google Scholar]
  33. Forsberg KJ Reyes A Wang B Selleck EM Sommer MOA Dantas G The shared antibiotic resistome of soil bacteria and human pathogens Science 2012 337 6098 1107 l111 10.1126/science.1220761
    [Google Scholar]
  34. Mmatli M. Mbelle N.M. Maningi N.E. Osei Sekyere J. Emerging transcriptional and genomic mechanisms mediating Carbapenem and Polymyxin resistance in Enterobacteriaceae : A systematic review of current reports. mSystems 2020 5 6 e00783-20 10.1128/mSystems.00783‑20 33323413
    [Google Scholar]
  35. Meletis G. Exindari M. Vavatsi N. Sofianou D. Diza E. Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa. Hippokratia 2012 16 4 303 307 23935307
    [Google Scholar]
  36. Partridge S.R. Kwong S.M. Firth N. Jensen S.O. Mobile genetic nlms associated with antimicrobial resistance. Clin. Microbiol. Rev. 2018 31 4 e00088-17 10.1128/CMR.00088‑17 30068738
    [Google Scholar]
  37. Abdi S.N. Ghotaslou R. Ganbarov K. Mobed A. Tanomand A. Yousefi M. Asgharzadeh M. Kafil H.S. Acinetobacter baumannii Efflux Pumps and Antibiotic Resistance. Infect. Drug Resist. 2020 13 423 434 10.2147/IDR.S228089 32104014
    [Google Scholar]
  38. Pérez-Varela M. Corral J. Aranda J. Barbé J. Roles of efflux pumps from different superfamilies in the surface-associated motility and virulence of Acinetobacter baumannii ATCC 17978. Antimicrob. Agents Chemother. 2019 63 3 e02190-18 10.1128/AAC.02190‑18 30642939
    [Google Scholar]
  39. Aurilio C. Sansone P. Barbarisi M. Pota V. Giaccari L.G. Coppolino F. Barbarisi A. Passavanti M.B. Pace M.C. Mechanisms of action of Carbapenem resistance. Antibiotics 2022 11 3 421 10.3390/antibiotics11030421 35326884
    [Google Scholar]
  40. Codjoe F. Donkor E. Carbapenem resistance: A review. Med. Sci. 2017 6 1 1 10.3390/medsci6010001 29267233
    [Google Scholar]
  41. Birnbaum J. Kahan F.M. Kropp H. Macdonald J.S. Carbapenems, a new class of beta-lactam antibiotics. Am. J. Med. 1985 78 6 3 21 10.1016/0002‑9343(85)90097‑X 3859213
    [Google Scholar]
  42. Ambler R.P. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1980 289 1036 321 331 10.1098/rstb.1980.0049 6109327
    [Google Scholar]
  43. Pitout J.D.D. Peirano G. Kock M.M. Strydom K.A. Matsumura Y. The global ascendency of OXA-48-Type Carbapenemases. Clin. Microbiol. Rev. 2019 33 1 e00102-19 10.1128/CMR.00102‑19 31722889
    [Google Scholar]
  44. Yigit H. Queenan A.M. Anderson G.J. Domenech-Sanchez A. Biddle J.W. Steward C.D. Alberti S. Bush K. Tenover F.C. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2001 45 4 1151 1161 10.1128/AAC.45.4.1151‑1161.2001 11257029
    [Google Scholar]
  45. Qi Y. Wei Z. Ji S. Du X. Shen P. Yu Y. ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China. J. Antimicrob. Chemother. 2011 66 2 307 312 10.1093/jac/dkq431 21131324
    [Google Scholar]
  46. Woodford N. Tierno P.M. Jr Young K. Tysall L. Palepou M.F.I. Ward E. Painter R.E. Suber D.F. Shungu D. Silver L.L. Inglima K. Kornblum J. Livermore D.M. Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A β-lactamase, KPC-3, in a New York Medical Center. Antimicrob. Agents Chemother. 2004 48 12 4793 4799 10.1128/AAC.48.12.4793‑4799.2004 15561858
    [Google Scholar]
  47. Woodford N. Zhang J. Warner M. Kaufmann M.E. Matos J. MacDonald A. Brudney D. Sompolinsky D. Navon-Venezia S. Livermore D.M. Arrival of Klebsiella pneumoniae producing KPC carbapenemase in the United Kingdom. J. Antimicrob. Chemother. 2008 62 6 1261 1264 10.1093/jac/dkn396 18812425
    [Google Scholar]
  48. Thyrum P.T. Yeh C. Birmingham B. Lasseter K. Pharmacokinetics of meropenem in patients with liver disease. Clin. Infect. Dis. 1997 24 Suppl. 2 S184 S190 10.1093/clinids/24.Supplement_2.S184 9126692
    [Google Scholar]
  49. Nordmann P. Naas T. Poirel L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 2011 17 10 1791 1798 10.3201/eid1710.110655 22000347
    [Google Scholar]
  50. Diene S.M. Rolain J.M. Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. Clin. Microbiol. Infect. 2014 20 9 831 838 10.1111/1469‑0691.12655 24766097
    [Google Scholar]
  51. Queenan A.M. Bush K. Carbapenemases: The Versatile β-Lactamases. Clin. Microbiol. Rev. 2007 20 3 440 458 10.1128/CMR.00001‑07 17630334
    [Google Scholar]
  52. Ali A. Gupta D. Srivastava G. sharma A. Khan A.U. Molecular and computational approaches to understand resistance of New Delhi metallo β-lactamase variants (NDM-1, NDM-4, NDM-5, NDM-6, NDM-7)-producing strains against carbapenems. J. Biomol. Struct. Dyn. 2019 37 8 2061 2071 10.1080/07391102.2018.1475261 29749296
    [Google Scholar]
  53. Yang L. Lin Y. Lu L. Xue M. Ma H. Guo X. Wang K. Li P. Du X. Qi K. Li P. Song H. Coexistence of two blaNDM–5 genes carried on IncX3 and IncFII plasmids in an Escherichia coli isolate revealed by Illumina and Nanopore sequencing. Front. Microbiol. 2020 11 195 10.3389/fmicb.2020.00195 32117184
    [Google Scholar]
  54. K S. S J. M A. B A. Coexistence of Metallo Beta Lactamase resistant gene variants among clinical isolates in Tertiary Care Hospital. Antiinfect. Agents 2021 18 4 429 436 10.2174/2211352518666200121144301
    [Google Scholar]
  55. Segawa T. Sekizuka T. Suzuki S. Shibayama K. Matsui M. Kuroda M. The plasmid-encoded transcription factor ArdK contributes to the repression of the IMP-6 metallo-β-lactamase gene blaIMP-6, leading to a carbapenem-susceptible phenotype in the blaIMP-6-positive Escherichia coli strain A56-1S. PLoS One 2018 13 12 e0208976 10.1371/journal.pone.0208976 30533034
    [Google Scholar]
  56. Lee Y.L. Ko W.C. Hsueh P.R. Geographic Patterns of Carbapenem-Resistant Pseudomonas aeruginosa in the Asia-pacific region: Results from the Antimicrobial Testing Leadership and Surveillance (ATLAS) Program, 2015–2019. Antimicrob. Agents Chemother. 2022 66 2 e02000-21 10.1128/AAC.02000‑21 34807753
    [Google Scholar]
  57. AbdelGhani S. Thomson G.K. Snyder J.W. Thomson K.S. Comparison of the Carba NP, modified Carba NP, and updated Rosco Neo-Rapid Carb Kit tests for Carbapenemase detection. J. Clin. Microbiol. 2015 53 11 3539 3542 10.1128/JCM.01631‑15 26311862
    [Google Scholar]
  58. Ma J. Song X. Li M. Yu Z. Cheng W. Yu Z. Zhang W. Zhang Y. Shen A. Sun H. Li L. Global spread of carbapenem-resistant Enterobacteriaceae: Epidemiological features, resistance mechanisms, detection and therapy. Microbiol. Res. 2023 266 127249 10.1016/j.micres.2022.127249 36356348
    [Google Scholar]
  59. Fang R. Liu H. Zhang X. Dong G. Li J. Tian X. Wu Z. Zhou J. Cao J. Zhou T. Difference in biofilm formation between carbapenem-resistant and carbapenem-sensitive Klebsiella pneumoniae based on analysis of mrkH distribution. Microb. Pathog. 2021 152 104743 10.1016/j.micpath.2021.104743 33484812
    [Google Scholar]
  60. Wang G. Zhao G. Chao X. Xie L. Wang H. The characteristic of virulence, biofilm and antibiotic resistance of Klebsiella pneumoniae. Int. J. Environ. Res. Public Health 2020 17 17 6278 10.3390/ijerph17176278 32872324
    [Google Scholar]
  61. Sharma D. Garg A. Kumar M. Rashid F. Khan A.U. Down-regulation of Flagellar, Fimbriae, and Pili proteins in Carbapenem-resistant Klebsiella pneumoniae (NDM-4) Clinical isolates: A novel linkage to drug resistance. Front. Microbiol. 2019 10 2865 10.3389/fmicb.2019.02865 31921045
    [Google Scholar]
  62. Ranjitkar S. Reck F. Ke X. Zhu Q. McEnroe G. Lopez S.L. Dean C.R. Identification of mutations in the mrdA gene encoding PBP2 that reduce Carbapenem and Diazabicyclooctane susceptibility of Escherichia coli clinical isolates with mutations in ftsI (PBP3) and which carry bla NDM-1. MSphere 2019 4 4 e00074-19 10.1128/mSphere.00074‑19 31270174
    [Google Scholar]
  63. Lange F. Pfennigwerth N. Höfken L.M. Gatermann S.G. Kaase M. Characterization of mutations in Escherichia coli PBP2 leading to increased carbapenem MICs. J. Antimicrob. Chemother. 2019 74 3 571 576 10.1093/jac/dky476 30496417
    [Google Scholar]
  64. O’Hara L.M. Nguyen M.H. Calfee D.P. Miller L.G. Pineles L. Magder L.S. Johnson J.K. Morgan D.J. Rasko D.A. Harris A.D. CDC Prevention Epicenters Program Risk factors for transmission of carbapenem-resistant Enterobacterales to healthcare personnel gloves and gowns in the USA. J. Hosp. Infect. 2021 109 58 64 10.1016/j.jhin.2020.12.012 33358930
    [Google Scholar]
  65. Hall K.K. Shoemaker-Hunt S. Hoffman L. Making healthcare safer III: A critical analysis of existing and emerging patient safety Practices. http://europepmc.org/books/NBK555526
    [Google Scholar]
  66. Palmore T.N. Henderson D.K. Managing transmission of carbapenem-resistant enterobacteriaceae in healthcare settings: a view from the trenches. Clin. Infect. Dis. 2013 57 11 1593 1599 10.1093/cid/cit531 23934166
    [Google Scholar]
  67. Martin A. Fahrbach K. Zhao Q. Lodise T. Association between Carbapenem resistance and mortality among adult, hospitalized patients with serious infections due to Enterobacteriaceae: Results of a systematic literature review and meta-analysis. Open Forum Infect. Dis. 2018 5 7 ofy150 10.1093/ofid/ofy150 30046639
    [Google Scholar]
  68. Chen X. Zhou M. Yan Q. Jian Z. Liu W. Li H. Risk factors for carbapenem‐resistant Enterobacterales infection among hospitalized patients with previous colonization. J. Clin. Lab. Anal. 2022 36 11 e24715 10.1002/jcla.24715 36181301
    [Google Scholar]
  69. So-ngern A. Osaithai N. Meesing A. Chumpangern W. Mortality rate and factors associated with mortality of carbapenem-resistant Enterobacteriaceae infection. Drug Target Insights 2023 17 120 125 10.33393/dti.2023.2622 38028024
    [Google Scholar]
  70. Jimenez A. Fennie K. Munoz-Price L.S. Ibrahimou B. Pekovic V. Abbo L.M. Martinez O. Rosello G. Sposato K. Doi Y. Trepka M.J. Duration of carbapenemase-producing Enterobacteriales carriage among ICU patients in Miami, FL: A retrospective cohort study. Am. J. Infect. Control 2021 49 10 1281 1286 10.1016/j.ajic.2021.06.006 34146625
    [Google Scholar]
  71. Vlad N.D. Cernat R.C. Carp S. Mitan R. Dumitru A. Nemet C. Voidăzan S. Rugină S. Dumitru I.M. Predictors of carbapenem-resistant Enterobacteriaceae (CRE) strains in patients with COVID-19 in the ICU ward: A retrospective case–control study. J. Int. Med. Res. 2022 50 10 10.1177/03000605221129154 36259133
    [Google Scholar]
  72. Lashari Y. Rochmanti M. Purba A.K.R. Notobroto H.B. Sarassari R. Kuntaman K. The economic impact of Carbapenem resistant-non lactose fermenter and Enterobacteriaceae infections on hospital costs in Dr. Soetomo General Academic Hospital Surabaya, Indonesia. Antibiotics (Basel) 2022 11 5 694 10.3390/antibiotics11050694 35625338
    [Google Scholar]
  73. Bartsch S.M. McKinnell J.A. Mueller L.E. Miller L.G. Gohil S.K. Huang S.S. Lee B.Y. Potential economic burden of carbapenem-resistant Enterobacteriaceae (CRE) in the United States. Clin. Microbiol. Infect. 2017 23 1 48.e9 48.e16 10.1016/j.cmi.2016.09.003 27642178
    [Google Scholar]
  74. Cai Y. Hoo G.S.R. Lee W. Tan B.H. Yoong J. Teo Y.Y. Graves N. Lye D. Kwa A.L. Estimating the economic cost of carbapenem resistant Enterobacterales healthcare associated infections in Singapore acute-care hospitals. PLOS Global Public Health 2022 2 12 e0001311 10.1371/journal.pgph.0001311 36962882
    [Google Scholar]
  75. Huang W. Qiao F. Zhang Y. Huang J. Deng Y. Li J. Zong Z. In-hospital medical costs of infections caused by Carbapenem-resistant Klebsiella pneumoniae. Clin. Infect. Dis. 2018 67 Suppl. 2 S225 S230 10.1093/cid/ciy642 30423052
    [Google Scholar]
  76. Ambretti S. Bassetti M. Clerici P. Petrosillo N. Tumietto F. Viale P. Rossolini G.M. Screening for carriage of carbapenem-resistant Enterobacteriaceae in settings of high endemicity: A position paper from an Italian working group on CRE infections. Antimicrob. Resist. Infect. Control 2019 8 1 136 10.1186/s13756‑019‑0591‑6 31423299
    [Google Scholar]
  77. Evans S.R. Harris A.D. Methods and issues in studies of CRE. Virulence 2017 8 4 453 459 10.1080/21505594.2016.1213473 27470534
    [Google Scholar]
  78. Girlich D. Poirel L. Nordmann P. Value of the modified Hodge test for detection of emerging carbapenemases in Enterobacteriaceae J. Clin. Microbiol. 2012 50 2 477 479 10.1128/JCM.05247‑11 22116154
    [Google Scholar]
  79. Poirel L. Nordmann P. Rapidec carba np test for rapid detection of Carbapenemase producers. J. Clin. Microbiol. 2015 53 9 3003 3008 10.1128/JCM.00977‑15 26085619
    [Google Scholar]
  80. Sever E.A. Aybakan E. Beşli Y. Karatuna O. Kocagoz T. A novel rapid bioluminescence-based antimicrobial susceptibility testing method based on adenosine triphosphate consumption. Front. Microbiol. 2024 15 1357680 10.3389/fmicb.2024.1357680 38404596
    [Google Scholar]
  81. Singhal N. Kumar M. Kanaujia P.K. Virdi J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015 6 791 10.3389/fmicb.2015.00791 26300860
    [Google Scholar]
  82. Zhou M. Yang Q. Kudinha T. Sun L. Zhang R. Liu C. Yu S. Xiao M. Kong F. Zhao Y. Xu Y.C. An improved in-house MALDI-TOF MS protocol for direct cost-effective identification of pathogens from blood Cultures. Front. Microbiol. 2017 8 1824 10.3389/fmicb.2017.01824 29033904
    [Google Scholar]
  83. Falcone M. Daikos G.L. Tiseo G. Bassoulis D. Giordano C. Galfo V. Leonildi A. Tagliaferri E. Barnini S. Sani S. Farcomeni A. Ghiadoni L. Menichetti F. Efficacy of Ceftazidime-avibactam Plus Aztreonam in patients with bloodstream infections caused by Metallo-β-lactamase–producing Enterobacterales. Clin. Infect. Dis. 2021 72 11 1871 1878 10.1093/cid/ciaa586 32427286
    [Google Scholar]
  84. Monteiro J. Widen R.H. Pignatari A.C.C. Kubasek C. Silbert S. Rapid detection of carbapenemase genes by multiplex real-time PCR. J. Antimicrob. Chemother. 2012 67 4 906 909 10.1093/jac/dkr563 22232516
    [Google Scholar]
  85. Hatrongjit R. Chopjitt P. Boueroy P. Kerdsin A. Multiplex PCR detection of common Carbapenemase genes and identification of clinically relevant Escherichia coli and Klebsiella pneumoniae Complex. Antibiotics 2022 12 1 76 10.3390/antibiotics12010076 36671277
    [Google Scholar]
  86. Poirier A.C. Kuang D. Siedler B.S. Borah K. Mehat J.W. Liu J. Tai C. Wang X. van Vliet A.H.M. Ma W. Jenkins D.R. Clark J. La Ragione R.M. Qu J. McFadden J. Development of loop-mediated isothermal amplification rapid diagnostic assays for the detection of Klebsiella pneumoniae and Carbapenemase genes in clinical samples. Front. Mol. Biosci. 2022 8 794961 10.3389/fmolb.2021.794961 35223985
    [Google Scholar]
  87. Song Y. Dou F. He S. Zhou Y. Liu Q. Laboratory and clinical evaluation of DNA microarray for the detection of Carbapenemase genes in gram-negative bacteria from hospitalized patients. BioMed Res. Int. 2019 2019 1 13 10.1155/2019/8219748 31214618
    [Google Scholar]
  88. Tamma P.D. Aitken S.L. Bonomo R.A. Mathers A.J. van Duin D. Clancy C.J. Infectious diseases society of America 2023 guidance on the treatment of antimicrobial resistant gram-negative infections. Clin. Infect. Dis. 2023 ciad428 10.1093/cid/ciad428 37463564
    [Google Scholar]
  89. Gomez-Simmonds A. Nelson B. Eiras D.P. Loo A. Jenkins S.G. Whittier S. Calfee D.P. Satlin M.J. Kubin C.J. Furuya E.Y. Combination regimens for treatment of carbapenem-resistant Klebsiella Pneumoniae bloodstream infections. Antimicrob. Agents Chemother. 2016 60 6 3601 3607 10.1128/AAC.03007‑15 27044555
    [Google Scholar]
  90. Lee G.C. Burgess D.S. Treatment of Klebsiella Pneumoniae Carbapenemase (KPC) infections: A review of published case series and case reports. Ann. Clin. Microbiol. Antimicrob. 2012 11 1 32 10.1186/1476‑0711‑11‑32 23234297
    [Google Scholar]
  91. Livermore D.M. Warner M. Mushtaq S. Doumith M. Zhang J. Woodford N. What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int. J. Antimicrob. Agents 2011 37 5 415 419 10.1016/j.ijantimicag.2011.01.012 21429716
    [Google Scholar]
  92. Falagas M.E. Kastoris A.C. Kapaskelis A.M. Karageorgopoulos D.E. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum β-lactamase producing, Enterobacteriaceae infections: A systematic review. Lancet Infect. Dis. 2010 10 1 43 50 10.1016/S1473‑3099(09)70325‑1 20129148
    [Google Scholar]
  93. Sheu C.C. Chang Y.T. Lin S.Y. Chen Y.H. Hsueh P.R. Infections Caused by Carbapenem-Resistant Enterobacteriaceae: An Update on Therapeutic Options. Front. Microbiol. 2019 10 80 10.3389/fmicb.2019.00080 30761114
    [Google Scholar]
  94. Durante-Mangoni E. Andini R. Zampino R. Management of carbapenem-resistant Enterobacteriaceae infections. Clin. Microbiol. Infect. 2019 25 8 943 950 10.1016/j.cmi.2019.04.013 31004767
    [Google Scholar]
  95. Doi Y. Treatment options for carbapenem-resistant gram-negative bacterial infections. Clin. Infect. Dis. 2019 69 Suppl. 7 S565 S575 10.1093/cid/ciz830 31724043
    [Google Scholar]
  96. Chatterjee S. Chakraborty D.S. Choudhury S. Lahiry S. Cefiderocol: A new antimicrobial for Complicated Urinary Tract Infection (CUTI) caused by carbapenem-resistant Enterobacteriaceae (CRE). Curr. Drug Res. Rev. 2022 14 1 20 23 10.2174/2589977513666211206100749 34872487
    [Google Scholar]
  97. Carmeli Y. Armstrong J. Laud P.J. Newell P. Stone G. Wardman A. Gasink L.B. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed, phase 3 study. Lancet Infect. Dis. 2016 16 6 661 673 10.1016/S1473‑3099(16)30004‑4 27107460
    [Google Scholar]
  98. Wagenlehner F.M. Sobel J.D. Newell P. Armstrong J. Huang X. Stone G.G. Yates K. Gasink L.B. Ceftazidime-avibactam versus doripenem for the treatment of complicated urinary tract infections, including acute pyelonephritis: Recapture, a phase 3 randomized trial program. Clin. Infect. Dis. 2016 63 6 754 762 10.1093/cid/ciw378 27313268
    [Google Scholar]
  99. Kaye K.S. Bhowmick T. Metallidis S. Bleasdale S.C. Sagan O.S. Stus V. Vazquez J. Zaitsev V. Bidair M. Chorvat E. Dragoescu P.O. Fedosiuk E. Horcajada J.P. Murta C. Sarychev Y. Stoev V. Morgan E. Fusaro K. Griffith D. Lomovskaya O. Alexander E.L. Loutit J. Dudley M.N. Giamarellos-Bourboulis E.J. Effect of Meropenem-Vaborbactam vs Piperacillin-Tazobactam on clinical cure or improvement and microbial eradication in complicated urinary tract infection. JAMA 2018 319 8 788 799 10.1001/jama.2018.0438 29486041
    [Google Scholar]
  100. Portsmouth S. van Veenhuyzen D. Echols R. Machida M. Ferreira J.C.A. Ariyasu M. Tenke P. Nagata T.D. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: A phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect. Dis. 2018 18 12 1319 1328 10.1016/S1473‑3099(18)30554‑1 30509675
    [Google Scholar]
  101. Sims M. Mariyanovski V. McLeroth P. Akers W. Lee Y.C. Brown M.L. Du J. Pedley A. Kartsonis N.A. Paschke A. Prospective, randomized, double-blind, Phase 2 dose-ranging study comparing efficacy and safety of imipenem/cilastatin plus relebactam with imipenem/cilastatin alone in patients with complicated urinary tract infections. J. Antimicrob. Chemother. 2017 72 9 2616 2626 10.1093/jac/dkx139 28575389
    [Google Scholar]
  102. Bassetti M. Echols R. Matsunaga Y. Ariyasu M. Doi Y. Ferrer R. Lodise T.P. Naas T. Niki Y. Paterson D.L. Portsmouth S. Torre-Cisneros J. Toyoizumi K. Wunderink R.G. Nagata T.D. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021 21 2 226 240 10.1016/S1473‑3099(20)30796‑9 33058795
    [Google Scholar]
  103. Mendes R.E. Castanheira M. Woosley L.N. Stone G.G. Bradford P.A. Flamm R.K. Molecular β-Lactamase characterization of aerobic gram-negative pathogens recovered from patients enrolled in the ceftazidime-avibactam phase 3 trials for complicated intra-abdominal infections, with efficacies analyzed against susceptible and resistant subsets. Antimicrob. Agents Chemother. 2017 61 6 e02447-16 10.1128/AAC.02447‑16 28348155
    [Google Scholar]
  104. Solomkin J. Hershberger E. Miller B. Popejoy M. Friedland I. Steenbergen J. Yoon M. Collins S. Yuan G. Barie P.S. Eckmann C. Ceftolozane/Tazobactam plus Metronidazole for complicated intra-abdominal infections in an era of multidrug resistance: Results from a randomized, double-blind, phase 3 trial (ASPECT-cIAI). Clin. Infect. Dis. 2015 60 10 1462 1471 10.1093/cid/civ097 25670823
    [Google Scholar]
  105. Lucasti C. Hershberger E. Miller B. Yankelev S. Steenbergen J. Friedland I. Solomkin J. Multicenter, double-blind, randomized, phase II trial to assess the safety and efficacy of ceftolozane-tazobactam plus metronidazole compared with meropenem in adult patients with complicated intra-abdominal infections. Antimicrob. Agents Chemother. 2014 58 9 5350 5357 10.1128/AAC.00049‑14 24982069
    [Google Scholar]
  106. Eckmann C. Montravers P. Bassetti M. Bodmann K.F. Heizmann W.R. Sánchez García M. Guirao X. Capparella M.R. Simoneau D. Dupont H. Efficacy of tigecycline for the treatment of complicated intra-abdominal infections in real-life clinical practice from five European observational studies. J. Antimicrob. Chemother. 2013 68 Suppl. 2 ii25 ii35 10.1093/jac/dkt142 23772043
    [Google Scholar]
  107. Huang D. Yu B. Diep J.K. Sharma R. Dudley M. Monteiro J. Kaye K.S. Pogue J.M. Abboud C.S. Rao G.G. In Vitro Assessment of combined Polymyxin B and Minocycline therapy against Klebsiella pneumoniae Carbapenemase (KPC)-producing K. pneumoniae. Antimicrob. Agents Chemother. 2017 61 7 e00073-17 10.1128/AAC.00073‑17 28438930
    [Google Scholar]
  108. Heil E.L. Bork J.T. Abbo L.M. Barlam T.F. Cosgrove S.E. Davis A. Ha D.R. Jenkins T.C. Kaye K.S. Lewis J.S. II Ortwine J.K. Pogue J.M. Spivak E.S. Stevens M.P. Vaezi L. Tamma P.D. Optimizing the management of uncomplicated gram-negative bloodstream infections: Consensus guidance using a modified delphi process. Open Forum Infect. Dis. 2021 8 10 ofab434 10.1093/ofid/ofab434 34738022
    [Google Scholar]
  109. Amer W.H. Elshweikh S.A.R. Hablas N.A. Montasser K.A. Khalil H.S. Comparison of the In vitro activities of Ceftazidime/Avibactam with other drugs used to treat carbapenem-resistant Enterobacteriaceae. Antiinfect. Agents 2021 19 5 12 20 10.2174/2211352518999201102194703
    [Google Scholar]
  110. Wilson G.M. Fitzpatrick M.A. Suda K.J. Smith B.M. Gonzalez B. Jones M. Schweizer M.L. Evans M. Evans C.T. Comparative effectiveness of antibiotic therapy for carbapenem-resistant Enterobacterales (CRE) bloodstream infections in hospitalized US veterans. JAC-Antimicrobial Resistance 2022 4 5 dlac106 10.1093/jacamr/dlac106 36320448
    [Google Scholar]
  111. Sader H.S. Flamm R.K. Carvalhaes C.G. Castanheira M. Comparison of ceftazidime-avibactam and ceftolozane-tazobactamin vitroactivities when tested against gram-negative bacteria isolated from patients hospitalized with pneumonia in United States medical centers (2017–2018). Diagn. Microbiol. Infect. Dis. 2020 96 3 114833 10.1016/j.diagmicrobio.2019.05.005 31924426
    [Google Scholar]
  112. Belati A. Bavaro D.F. Diella L. De Gennaro N. Di Gennaro F. Saracino A. Meropenem/Vaborbactam plus Aztreonam as a possible treatment strategy for bloodstream infections caused by Ceftazidime/Avibactam-resistant Klebsiella pneumoniae: A retrospective case series and literature review. Antibiotics 2022 11 3 373 10.3390/antibiotics11030373 35326836
    [Google Scholar]
  113. Lu Q. Luo R. Bodin L. Yang J. Zahr N. Aubry A. Golmard J.L. Rouby J.J. Efficacy of high-dose nebulized colistin in ventilator-associated pneumonia caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Anesthesiology 2012 117 6 1335 1347 10.1097/ALN.0b013e31827515de 23132092
    [Google Scholar]
  114. Paterson D.L. Bassetti M. Motyl M. Johnson M.G. Castanheira M. Jensen E.H. Huntington J.A. Yu B. Wolf D.J. Bruno C.J. Ceftolozane/tazobactam for hospital-acquired/ventilator-associated bacterial pneumonia due to ESBL-producing Enterobacterales: A subgroup analysis of the ASPECT-NP clinical trial. J. Antimicrob. Chemother. 2022 77 9 2522 2531 10.1093/jac/dkac184 35781341
    [Google Scholar]
  115. Ling Z. Farley A.J.M. Lankapalli A. Zhang Y. Premchand-Branker S. Cook K. Baran A. Gray-Hammerton C. Orbegozo Rubio C. Suna E. Mathias J. Brem J. Sands K. Nieto-Rosado M. Trush M.M. Rakhi N.N. Martins W. Zhou Y. Schofield C.J. Walsh T. The triple combination of meropenem, avibactam, and a metallo-β-lactamase inhibitor optimizes antibacterial coverage against different β-Lactamase producers. Engineering (Beijing) 2024 38 124 132 10.1016/j.eng.2024.02.010
    [Google Scholar]
  116. Macareño-Castro J. Solano-Salazar A. Dong L.T. Mohiuddin M. Espinoza J.L. Fecal microbiota transplantation for carbapenem-resistant Enterobacteriaceae: A systematic review. J. Infect. 2022 84 6 749 759 10.1016/j.jinf.2022.04.028 35461908
    [Google Scholar]
  117. Woodworth M.H. Hayden M.K. Young V.B. Kwon J.H. The role of fecal microbiota transplantation in reducing intestinal colonization with antibiotic-resistant organisms: The current landscape and future directions. Open Forum Infect. Dis. 2019 6 7 ofz288 10.1093/ofid/ofz288 31363779
    [Google Scholar]
  118. Bar-Yoseph H. Carasso S. Shklar S. Korytny A. Even Dar R. Daoud H. Nassar R. Maharshak N. Hussein K. Geffen Y. Chowers Y. Geva-Zatorsky N. Paul M. Oral capsulized fecal microbiota transplantation for eradication of carbapenemase-producing Enterobacteriaceae colonization with a metagenomic perspective. Clin. Infect. Dis. 2021 73 1 e166 e175 10.1093/cid/ciaa737 32511695
    [Google Scholar]
  119. Lee J.J. Yong D. Suk K.T. Kim D.J. Woo H.J. Lee S.S. Kim B.S. Alteration of gut microbiota in carbapenem-resistant Enterobacteriaceae carriers during fecal microbiota transplantation according to decolonization periods. Microorganisms 2021 9 2 352 10.3390/microorganisms9020352 33578974
    [Google Scholar]
  120. Kortright K.E. Chan B.K. Koff J.L. Turner P.E. Phage therapy: A renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 2019 25 2 219 232 10.1016/j.chom.2019.01.014 30763536
    [Google Scholar]
  121. Hesse S. Malachowa N. Porter A.R. Freedman B. Kobayashi S.D. Gardner D.J. Scott D.P. Adhya S. DeLeo F.R. Bacteriophage treatment rescues mice infected with multidrug-resistant Klebsiella pneumoniae ST258. MBio 2021 12 1 e00034-21 10.1128/mBio.00034‑21 33622728
    [Google Scholar]
  122. Cui Z. Guo X. Feng T. Li L. Exploring the whole standard operating procedure for phage therapy in clinical practice. J. Transl. Med. 2019 17 1 373 10.1186/s12967‑019‑2120‑z 31727099
    [Google Scholar]
  123. Broncano-Lavado A. Santamaría-Corral G. Esteban J. García-Quintanilla M. Advances in bacteriophage therapy against relevant multidrug-resistant pathogens. Antibiotics 2021 10 6 672 10.3390/antibiotics10060672 34199889
    [Google Scholar]
  124. Örmälä A.M. Jalasvuori M. Phage therapy. Bacteriophage 2013 3 1 e24219 10.4161/bact.24219 23819105
    [Google Scholar]
  125. Kunishima H. Ishibashi N. Wada K. Oka K. Takahashi M. Yamasaki Y. Aoyagi T. Takemura H. Kitagawa M. Kaku M. The effect of gut microbiota and probiotic organisms on the properties of extended spectrum beta-lactamase producing and carbapenem resistant Enterobacteriaceae including growth, beta-lactamase activity and gene transmissibility. J. Infect. Chemother. 2019 25 11 894 900 10.1016/j.jiac.2019.04.021 31178280
    [Google Scholar]
  126. Tajdozian H. Seo H. Kim S. Rahim M.A. Lee S. Song H.Y. Efficacy of Lactobacillus fermentum isolated from the Vagina of a healthy woman against Carbapenem-resistant Klebsiella infections In Vivo J. Microbiol. Biotechnol. 2021 31 10 1383 1392 10.4014/jmb.2103.03014 34489374
    [Google Scholar]
  127. Hung Y.P. Lee C.C. Lee J.C. Tsai P.J. Hsueh P.R. Ko W.C. The potential of probiotics to eradicate gut carriage of pathogenic or antimicrobial-resistant Enterobacterales. Antibiotics 2021 10 9 1086 10.3390/antibiotics10091086 34572668
    [Google Scholar]
  128. Lee J.H. Shin J. Park S.H. Cha B. Hong J.T. Lee D.H. Kwon K.S. Role of probiotics in preventing carbapenem-resistant Enterobacteriaceae colonization in the intensive care unit: Risk factors and microbiome analysis study. Microorganisms 2023 11 12 2970 10.3390/microorganisms11122970 38138114
    [Google Scholar]
  129. Maria I Prevention and decolonization of multidrug-resistant bacteria with probiotics. Patent NCT03967301, 2019
  130. Kang H.K. Seo C.H. Luchian T. Park Y. Pse-T2, an antimicrobial peptide with high-level, broad-spectrum antimicrobial potency and skin biocompatibility against multidrug-resistant pseudomonas aeruginosa infection. Antimicrob. Agents Chemother. 2018 62 12 e01493-18 10.1128/AAC.01493‑18 30323036
    [Google Scholar]
  131. Xuan J. Feng W. Wang J. Wang R. Zhang B. Bo L. Chen Z.S. Yang H. Sun L. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist. Updat. 2023 68 100954 10.1016/j.drup.2023.100954 36905712
    [Google Scholar]
  132. Yang S. Wang H. Zhao D. Zhang S. Hu C. Polymyxins: Recent advances and challenges. Front. Pharmacol. 2024 15 1424765 10.3389/fphar.2024.1424765 38974043
    [Google Scholar]
  133. Tilahun M. kassa Y. Gedefie A. Belete M.A. Emerging carbapenem-resistant Enterobacteriaceae infection, its epidemiology and novel treatment options: A review. Infect. Drug Resist. 2021 14 4363 4374 10.2147/IDR.S337611 34707380
    [Google Scholar]
  134. Mehmood A. Naseer S. Ali A. Fatimah H. Rehman S. Kiani A.K. Identification of novel vaccine candidates against carbapenem resistant Klebsiella pneumoniae: A systematic reverse proteomic approach. Comput. Biol. Chem. 2020 89 107380 10.1016/j.compbiolchem.2020.107380 32992120
    [Google Scholar]
  135. Ismail S. Ahmad S. Azam S.S. Vaccinomics to design a novel single chimeric subunit vaccine for broad-spectrum immunological applications targeting nosocomial Enterobacteriaceae pathogens. Eur. J. Pharm. Sci. 2020 146 105258 10.1016/j.ejps.2020.105258 32035109
    [Google Scholar]
  136. Anand U. Nandy S. Mundhra A. Das N. Pandey D.K. Dey A. A review on antimicrobial botanicals, phytochemicals and natural resistance modifying agents from Apocynaceae family: Possible therapeutic approaches against multidrug resistance in pathogenic microorganisms. Drug Resist. Updat. 2020 51 100695 10.1016/j.drup.2020.100695 32442892
    [Google Scholar]
  137. Eldin A.B. Ezzat M. Afifi M. Sabry O. Caprioli G. Herbal medicine: The magic way crouching microbial resistance. Nat. Prod. Res. 2023 37 24 4280 4289 10.1080/14786419.2023.2172009 36719419
    [Google Scholar]
  138. Shriram V. Khare T. Bhagwat R. Shukla R. Kumar V. Inhibiting Bacterial Drug Efflux Pumps via Phyto-Therapeutics to Combat Threatening Antimicrobial Resistance. Front. Microbiol. 2018 9 2990 10.3389/fmicb.2018.02990 30619113
    [Google Scholar]
  139. Jadimurthy R. Jagadish S. Nayak S.C. Kumar S. Mohan C.D. Rangappa K.S. Phytochemicals as invaluable sources of potent antimicrobial agents to combat antibiotic resistance. Life 2023 13 4 948 10.3390/life13040948 37109477
    [Google Scholar]
  140. Dwivedi G.R. Upadhyay H.C. Yadav D.K. Singh V. Srivastava S.K. Khan F. Darmwal N.S. Darokar M.P. 4-Hydroxy-α-tetralone and its derivative as drug resistance reversal agents in multi drug resistant Escherichia coli Chem. Biol. Drug Des. 2014 83 4 482 492 10.1111/cbdd.12263 24267788
    [Google Scholar]
  141. Boberek J.M. Stach J. Good L. Genetic evidence for inhibition of bacterial division protein FtsZ by berberine. PLoS One 2010 5 10 e13745 10.1371/journal.pone.0013745 21060782
    [Google Scholar]
  142. Liu B. Zhou C. Zhang Z. Roland J.D. Lee B.P. Antimicrobial property of halogenated catechols. Chem. Eng. J. 2021 403 126340 10.1016/j.cej.2020.126340 32848507
    [Google Scholar]
  143. Bag A. Chattopadhyay R.R. Efflux-pump inhibitory activity of a gallotannin from Terminalia chebula fruit against multidrug-resistant uropathogenic Escherichia coli. Nat. Prod. Res. 2014 28 16 1280 1283 10.1080/14786419.2014.895729 24620744
    [Google Scholar]
  144. Maurya A. Dwivedi G.R. Darokar M.P. Srivastava S.K. Antibacterial and synergy of clavine alkaloid lysergol and its derivatives against nalidixic acid-resistant Escherichia coli Chem. Biol. Drug Des. 2013 81 4 484 490 10.1111/cbdd.12103 23290001
    [Google Scholar]
  145. Dwivedi G.R. Maurya A. Yadav D.K. Khan F. Darokar M.P. Srivastava S.K. Drug resistance reversal potential of ursolic acid derivatives against Nalidixic acid‐ and multidrug‐resistant Escherichia coli. Chem. Biol. Drug Des. 2015 86 3 272 283 10.1111/cbdd.12491 25476148
    [Google Scholar]
  146. Fu Y. Liu W. Liu M. Zhang J. Yang M. Wang T. Qian W. In vitro anti-biofilm efficacy of sanguinarine against carbapenem-resistant Serratia marcescens. Biofouling 2021 37 3 341 351 10.1080/08927014.2021.1919649 33947279
    [Google Scholar]
  147. Stefani T. Garza-González E. Rivas-Galindo V.M. Rios M.Y. Alvarez L. Camacho-Corona M.R. Hechtia glomerata Zucc: Phytochemistry and activity of its extracts and major constituents against resistant bacteria. Molecules 2019 24 19 3434 10.3390/molecules24193434 31546651
    [Google Scholar]
  148. Ashraf M.V. Pant S. Khan M.A.H. Shah A.A. Siddiqui S. Jeridi M. Alhamdi H.W.S. Ahmad S. Phytochemicals as antimicrobials: Prospecting himalayan medicinal plants as source of alternate medicine to combat antimicrobial resistance. Pharmaceuticals 2023 16 6 881 10.3390/ph16060881 37375828
    [Google Scholar]
  149. Shriram V. Jahagirdar S. Latha C. Kumar V. Puranik V. Rojatkar S. Dhakephalkar P.K. Shitole M.G. A potential plasmid-curing agent, 8-epidiosbulbin E acetate, from Dioscorea bulbifera L. against multidrug-resistant bacteria. Int. J. Antimicrob. Agents 2008 32 5 405 410 10.1016/j.ijantimicag.2008.05.013 18718743
    [Google Scholar]
  150. Dwivedi G.R. Maurya A. Yadav D.K. Singh V. Khan F. Gupta M.K. Singh M. Darokar M.P. Srivastava S.K. Synergy of clavine alkaloid ‘chanoclavine’ with tetracycline against multi-drug-resistant E. coli. J. Biomol. Struct. Dyn. 2019 37 5 1307 1325 10.1080/07391102.2018.1458654 29595093
    [Google Scholar]
  151. Neetu N. Katiki M. Dev A. Gaur S. Tomar S. Kumar P. Structural and biochemical analyses reveal that chlorogenic acid inhibits the shikimate pathway. J. Bacteriol. 2020 202 18 e00248-20 10.1128/JB.00248‑20 32661075
    [Google Scholar]
  152. de Jesús Dzul-Beh A. Uc-Cachón A.H. González-Sánchez A.A. Dzib-Baak H.E. Ortiz-Andrade R. Barrios-García H.B. Jiménez-Delgadillo B. Molina-Salinas G.M. Antimicrobial potential of the Mayan medicine plant Matayba oppositifolia (A. Rich.) Britton against antibiotic-resistant priority pathogens. J. Ethnopharmacol. 2023 300 115738 10.1016/j.jep.2022.115738 36165961
    [Google Scholar]
  153. Gülen D. Şafak B. Erdal B. Günaydın B. Curcumin-meropenem synergy in carbapenem resistant Klebsiella pneumoniae curcumin-meropenem synergy. Iran. J. Microbiol. 2021 13 3 345 351 10.18502/ijm.v13i3.6397 34540173
    [Google Scholar]
  154. Dai C. Lin J. Li H. Shen Z. Wang Y. Velkov T. Shen J. The natural product curcumin as an antibacterial agent: Current achievements and problems. Antioxidants 2022 11 3 459 10.3390/antiox11030459 35326110
    [Google Scholar]
  155. Virzì N.F. Fallica A.N. Romeo G. Greish K. Alghamdi M.A. Patanè S. Mazzaglia A. Shahid M. Pittalà V. Curcumin I-SMA nanomicelles as promising therapeutic tool to tackle bacterial infections. RSC Advances 2023 13 44 31059 31066 10.1039/D3RA04885C 37881762
    [Google Scholar]
  156. Sundaramoorthy N.S. Sivasubramanian A. Nagarajan S. Simultaneous inhibition of MarR by salicylate and efflux pumps by curcumin sensitizes colistin resistant clinical isolates of Enterobacteriaceae. Microb. Pathog. 2020 148 104445 10.1016/j.micpath.2020.104445 32814143
    [Google Scholar]
  157. Etemadi S. Barhaghi M.H.S. Leylabadlo H.E. Memar M.Y. Mohammadi A.B. Ghotaslou R. The synergistic effect of turmeric aqueous extract and chitosan against multidrug-resistant bacteria. New Microbes New Infect. 2021 41 100861 10.1016/j.nmni.2021.100861 33898041
    [Google Scholar]
  158. Sadiku N. GID, OKS, & SBA. bioactivity of Khaya Senegalensis (Desr.) A. Juss. and Tamarindus indica L. extracts on selected pathogenic microbes. Arabian Journal of Medicinal and Aromatic Plants 2020 6 2 29 41
    [Google Scholar]
  159. Al-Mijalli S.H. Mrabti H.N. El Hachlafi N. El Kamili T. Elbouzidi A. Abdallah E.M. Flouchi R. Assaggaf H. Qasem A. Zengin G. Bouyahya A. Chahdi F.O. Integrated analysis of antimicrobial, antioxidant, and phytochemical properties of Cinnamomum verum: A comprehensive In vitro and In silico study. Biochem. Syst. Ecol. 2023 110 104700 10.1016/j.bse.2023.104700
    [Google Scholar]
  160. Raja Yahya M.F.Z. Anti-biofilm potential and mode of action of Malaysian plant species: A review. Science Letters 2020 14 2 34 10.24191/sl.v14i2.9541
    [Google Scholar]
  161. Qian W. Zhang J. Wang W. Wang T. Liu M. Yang M. Sun Z. Li X. Li Y. Antimicrobial and antibiofilm activities of paeoniflorin against carbapenem‐resistant Klebsiella pneumoniae. J. Appl. Microbiol. 2020 128 2 401 413 10.1111/jam.14480 31602708
    [Google Scholar]
  162. European Centre for Disease Prevention and Control European centre for disease prevention and control. carbapenem-resistant Enterobacterales (CRE). 2019 Available from :https://www.ecdc.europa.eu/en/citations-data/directory-guidance-prevention-and-control/prevention-and-control-infections-1
  163. Magiorakos A.P. Burns K. Rodríguez Baño J. Borg M. Daikos G. Dumpis U. Lucet J.C. Moro M.L. Tacconelli E. Simonsen G.S. Szilágyi E. Voss A. Weber J.T. Infection prevention and control measures and tools for the prevention of entry of carbapenem-resistant Enterobacteriaceae into healthcare settings: Guidance from the European centre for disease prevention and control. Antimicrob. Resist. Infect. Control 2017 6 1 113 10.1186/s13756‑017‑0259‑z 29163939
    [Google Scholar]
  164. Association for Professionals in Infection Control and Epidemiology Antimicrobial Stewardship. 2012 Available from: https://apic.org/professional-practice/practice-resources/antimicrobial-stewardship/#:~:text=Antimicrobial%20stewardship%20is%20a%20coordinated,caused%20by%20multidrug%2Dresistant%20organisms.
  165. CDC Core nlms of antibiotic stewardship. 2024 Available from: https://www.cdc.gov/antibiotic-use/hcp/core-nlms/index.html
  166. The Joint commission Antibiotic stewardship resources. 2023 Available from: https://www.jointcommission.org/resources/patient-safety-topics/infection-prevention-and-control/antibiotic-stewardship/
/content/journals/aia/10.2174/0122113525347025241015053800
Loading
/content/journals/aia/10.2174/0122113525347025241015053800
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: mortality ; Enterobacteriaceae ; carbapenem resistance ; risk factors ; CRE treatment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test