Skip to content
2000
image of Revolutionizing Quinolone Development for DNA Gyrase Targeting; Discovering the Promising Approach to Fighting Microbial Infections

Abstract

DNA gyrase is a type II topoisomerase enzyme that can cause negative supercoiling in DNA by using the energy produced by ATP hydrolysis. There are two main types of topoisomerases: type I and type II. Type I enzymes cut a single strand of DNA and are further classified as type IA if they connect to a 5′ phosphate of DNA, or type IB if they link to a 3′ phosphate. Type II topoisomerases break both strands, creating a staggered double-strand break.

Antimicrobial resistance is a major concern for the global healthcare system. Resistance is the ability of microorganisms to neutralize and withstand antimicrobial drugs previously used to treat microbial infections. Some known classes of DNA gyrase inhibitors are coumarins, cyclothialidines, and quinolones. Antimicrobial medicines such as quinolones have been widely used to treat microbiological diseases. However, the increased use of quinolones has led to the emergence of quinolone-resistant bacteria, which poses a serious risk to public health. Microorganisms can cause resistance due to changes in the target enzymes, DNA gyrase, and topoisomerase IV, which are responsible for transcription and DNA replication. Additionally, differences in drug entry and efflux may also play a role in resistance. Plasmids that produce the Qnr protein can mediate resistance to quinolones by protecting the quinolone targets from inhibition. This review aims to revolutionize the discovery of quinolone-based antibiotics, specifically targeting DNA gyrase, a critical enzyme in bacterial DNA replication, to enhance the efficacy and specificity of anti-microbail agents against microbial infections.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525318200240902062055
2024-10-16
2025-01-31
Loading full text...

Full text loading...

References

  1. Collin F. Karkare S. Maxwell A. Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl. Microbiol. Biotechnol. 2011 92 3 479 497 10.1007/s00253‑011‑3557‑z 21904817
    [Google Scholar]
  2. Khan T. Sankhe K. Suvarna V. Sherje A. Patel K. Dravyakar B. DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents. Biomed. Pharmacother. 2018 103 923 938 10.1016/j.biopha.2018.04.021 29710509
    [Google Scholar]
  3. Durcik M. Tomašič T. Zidar N. Zega A. Kikelj D. Mašič L.P. Ilaš J. ATP-competitive DNA gyrase and topoisomerase IV inhibitors as antibacterial agents. Expert Opin. Ther. Pat. 2019 29 3 171 180 10.1080/13543776.2019.1575362 30686070
    [Google Scholar]
  4. Champoux J.J. DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 2001 70 1 369 413 10.1146/annurev.biochem.70.1.369 11395412
    [Google Scholar]
  5. Salman M. Sharma P. Kumar M. Ethayathulla A.S. Kaur P. Targeting novel sites in DNA gyrase for development of anti-microbials. Brief. Funct. Genomics 2023 22 2 180 194 10.1093/bfgp/elac029 36064602
    [Google Scholar]
  6. Bates A.D. Maxwell A. Energy coupling in type II topoisomerases: why do they hydrolyze ATP? Biochemistry 2007 46 27 7929 7941 10.1021/bi700789g 17580973
    [Google Scholar]
  7. Mdluli K. Ma Z. Mycobacterium tuberculosis DNA gyrase as a target for drug discovery. Infect. Disord. Drug Targets 2007 7 2 159 168 10.2174/187152607781001763 17970226
    [Google Scholar]
  8. Anas M. Kumar A. Singh K. Hasan S.M. Kushwaha S.P. Maurya S.K. Yadav P. Nishad S. Benzimidazole as promising antimicrobial agents: A systematic review. Ann. Phytomed. 2022 11 2 10.54085/ap.2022.11.2.11
    [Google Scholar]
  9. Brvar M. Perdih A. Renko M. Anderluh G. Turk D. Solmajer T. Structure-based discovery of substituted 4,5′-bithiazoles as novel DNA gyrase inhibitors. J. Med. Chem. 2012 55 14 6413 6426 10.1021/jm300395d 22731783
    [Google Scholar]
  10. Chitra S.R. Ramalakshmi N. Arunkumar S. Manimegalai P. A comprehensive review on dna gyrase inhibitors. Infect. Disord. Drug Targets 2021 20 6 765 777 10.2174/1871526520666200102110235 33109068
    [Google Scholar]
  11. Algammal A. Hetta H.F. Mabrok M. Behzadi P. Emerging multidrug-resistant bacterial pathogens “superbugs”: A rising public health threat. Front. Microbiol. 2023 14 1135614 10.3389/fmicb.2023.1135614 36819057
    [Google Scholar]
  12. Ahmadi Z. Noormohammadi Z. Behzadi P. Ranjbar R. Molecular detection of gyrA mutation in clinical strains of Klebsiella pneumoniae. Iran. J. Public Health 2022 51 10 2334 2339 10.18502/ijph.v51i10.10992 36415795
    [Google Scholar]
  13. Klein E.Y. Van Boeckel T.P. Martinez E.M. Pant S. Gandra S. Levin S.A. Goossens H. Laxminarayan R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018 115 15 E3463 E3470 10.1073/pnas.1717295115 29581252
    [Google Scholar]
  14. D’Andrea M.M. Fraziano M. Thaller M.C. Rossolini G.M. The urgent need for novel antimicrobial agents and strategies to fight antibiotic resistance. Antibiotics 2019 8 4 254 10.3390/antibiotics8040254 31817707
    [Google Scholar]
  15. Mattar C. Edwards S. Baraldi E. Hood J. An overview of the global antimicrobial resistance research and development hub and the current landscape. Curr. Opin. Microbiol. 2020 57 56 61 10.1016/j.mib.2020.06.009 32777653
    [Google Scholar]
  16. Suvaiv Singh K. Kumar P. Hasan S.M. Kushwaha S.P. Kumar A. Ismail K.S. Mujeeb S. Maurya S.K. Hasan Zaidi S.M. Antibacterial potentiality of isatin-containing hybrid derivatives. Asian J. Chem. 2023 35 4 815 827 10.14233/ajchem.2023.27632
    [Google Scholar]
  17. Design, molecular docking, synthesis, and antibacterial activity of 1h-benzimidazole-2- carboxylic acid (2-oxo-1, 2-dihydro-indol-3-ylidene)-hydrazide derivatives. Indian J. Heterocycl. Chem. 2023 33 2 249 10.59467/IJHC.2023.33.249
    [Google Scholar]
  18. Christaki E. Marcou M. Tofarides A. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J. Mol. Evol. 2020 88 1 26 40 10.1007/s00239‑019‑09914‑3 31659373
    [Google Scholar]
  19. Chin K.W. Michelle Tiong H.L. Luang-In V. Ma N.L. An overview of antibiotic and antibiotic resistance. Environ. Adv. 2023 11 100331 10.1016/j.envadv.2022.100331
    [Google Scholar]
  20. Klein E.Y. Milkowska-Shibata M. Tseng K.K. Sharland M. Gandra S. Pulcini C. Laxminarayan R. Assessment of WHO antibiotic consumption and access targets in 76 countries, 2000–15: an analysis of pharmaceutical sales data. Lancet Infect. Dis. 2021 21 1 107 115 10.1016/S1473‑3099(20)30332‑7 32717205
    [Google Scholar]
  21. Khouja T. Mitsantisuk K. Tadrous M. Suda K.J. Global consumption of antimicrobials: impact of the WHO Global Action Plan on Antimicrobial Resistance and 2019 coronavirus pandemic (COVID-19). J. Antimicrob. Chemother. 2022 77 5 1491 1499 10.1093/jac/dkac028 35178565
    [Google Scholar]
  22. Morrissey I. Hackel M. Badal R. Bouchillon S. Hawser S. Biedenbach D. A Review of ten years of the study for monitoring antimicrobial resistance trends (SMART) from 2002 to 2011. Pharmaceuticals 2013 6 11 1335 1346 10.3390/ph6111335 24287460
    [Google Scholar]
  23. Karampatakis T. Tsergouli K. Behzadi P. Pan-genome plasticity and virulence factors: a natural treasure trove for Acinetobacter baumannii. Antibiotics 2024 13 3 257 10.3390/antibiotics13030257 38534692
    [Google Scholar]
  24. Kushwaha R.K. Singh K. Kushwaha S.P. Chandra D. Kumar A. Kumar P. Design and synthesis of chroman isatin hybrid derivatives as antitubercular agents. Ann. Phytomed. 2022 11 2 10.54085/ap.2022.11.2.46
    [Google Scholar]
  25. Fraile-Ribot P.A. Cabot G. Mulet X. Periañez L. Martín-Pena M.L. Juan C. Pérez J.L. Oliver A. Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2018 73 3 658 663 10.1093/jac/dkx424 29149337
    [Google Scholar]
  26. Högberg L.D. Heddini A. Cars O. The global need for effective antibiotics: challenges and recent advances. Trends Pharmacol. Sci. 2010 31 11 509 515 10.1016/j.tips.2010.08.002 20843562
    [Google Scholar]
  27. Singer A.C. Kirchhelle C. Roberts A.P. (Inter)nationalising the antibiotic research and development pipeline. Lancet Infect. Dis. 2020 20 2 e54 e62 10.1016/S1473‑3099(19)30552‑3 31753765
    [Google Scholar]
  28. Watkins R.R. Bonomo R.A. Overview. Infect. Dis. Clin. North Am. 2020 34 4 649 658 10.1016/j.idc.2020.04.002 33011053
    [Google Scholar]
  29. Domínguez D.C. Meza-Rodriguez S.M. Development of antimicrobial resistance: future challenges. Pharmaceuticals and personal care products: waste management and treatment technology. Elsevier 2019 383 408 10.1016/B978‑0‑12‑816189‑0.00016‑0
    [Google Scholar]
  30. Kok M. Maton L. van der Peet M. Hankemeier T. van Hasselt J.G. Unraveling antimicrobial resistance using metabolomics. Drug Discov. Today 2022 27 6 1774 1783 10.1016/j.drudis.2022.03.015 35341988
    [Google Scholar]
  31. Hamad B. The antibiotics market. Nat. Rev. Drug Discov. 2010 9 9 675 676 10.1038/nrd3267 20811374
    [Google Scholar]
  32. Davies S.C. Fowler T. Watson J. Livermore D.M. Walker D. Annual report of the chief medical officer: Infection and the rise of antimicrobial resistance. Lancet 2013 381 9878 1606 1609 10.1016/S0140‑6736(13)60604‑2 23489756
    [Google Scholar]
  33. DiMasi J.A. Hansen R.W. Grabowski H.G. The price of innovation: new estimates of drug development costs. J. Health Econ. 2003 22 2 151 185 10.1016/S0167‑6296(02)00126‑1 12606142
    [Google Scholar]
  34. Fujimoto D.F. Pinilla C. Segall A.M. New peptide inhibitors of type IB topoisomerases: similarities and differences vis-a-vis inhibitors of tyrosine recombinases. J. Mol. Biol. 2006 363 5 891 907 10.1016/j.jmb.2006.08.052 16996084
    [Google Scholar]
  35. Adachi T. Mizuuchi M. Robinson E.A. Appella E. O’Dea M.H. Gellert M. Mizuuchi K. DNA sequence of the E. coli gyr B gene: application of a new sequencing strategy. Nucleic Acids Res. 1987 15 2 771 784 10.1093/nar/15.2.771 3029692
    [Google Scholar]
  36. Reece R.J. Maxwell A. DNA gyrase: structure and function. Crit. Rev. Biochem. Mol. Biol. 1991 26 3-4 335 375 10.3109/10409239109114072 1657531
    [Google Scholar]
  37. Bush N. G. Evans-Roberts K. Maxwell A. DNA Topoisomerases. EcoSal Plus 2015 6 2 0010 2014 10.1128/ecosalplus.esp‑0010‑2014
    [Google Scholar]
  38. Mizuuchi K. Fisher L.M. O’Dea M.H. Gellert M. DNA gyrase action involves the introduction of transient double-strand breaks into DNA. Proc. Natl. Acad. Sci. USA 1980 77 4 1847 1851 10.1073/pnas.77.4.1847 6246508
    [Google Scholar]
  39. Blondeau J.M. Fluoroquinolones: Mechanism of action, classification, and development of resistance. Surv. Ophthalmol. 2004 49 2 S73 S78 10.1016/j.survophthal.2004.01.005 15028482
    [Google Scholar]
  40. Goto T. Wang J.C. Yeast DNA topoisomerase II. An ATP-dependent type II topoisomerase that catalyzes the catenation, decatenation, unknotting, and relaxation of double-stranded DNA rings. J. Biol. Chem. 1982 257 10 5866 5872 10.1016/S0021‑9258(19)83859‑0 6279616
    [Google Scholar]
  41. Gellert M. Fisher L.M. O’Dea M.H. DNA gyrase: purification and catalytic properties of a fragment of gyrase B protein. Proc. Natl. Acad. Sci. USA 1979 76 12 6289 6293 10.1073/pnas.76.12.6289 230505
    [Google Scholar]
  42. Tretter E.M. Berger J.M. Mechanisms for defining supercoiling set point of DNA gyrase orthologs: I. A nonconserved acidic C-terminal tail modulates Escherichia coli gyrase activity. J. Biol. Chem. 2012 287 22 18636 18644 10.1074/jbc.M112.345678 22457353
    [Google Scholar]
  43. Hirsch J. Klostermeier D. What makes a type IIA topoisomerase a gyrase or a Topo IV? Nucleic Acids Res. 2021 49 11 6027 6042 10.1093/nar/gkab270 33905522
    [Google Scholar]
  44. Chowdhury S.R. Majumder H.K. DNA topoisomerases in unicellular pathogens: structure, function, and druggability. Trends Biochem. Sci. 2019 44 5 415 432 10.1016/j.tibs.2018.12.001 30609953
    [Google Scholar]
  45. Behzadi P. Gajdács M. Worldwide Protein Data Bank (wwPDB): A virtual treasure for research in biotechnology. Eur. J. Microbiol. Immunol. 2022 11 4 77 86 10.1556/1886.2021.00020 34908533
    [Google Scholar]
  46. Spencer A.C. Panda S.S. DNA gyrase as a target for quinolones. Biomedicines 2023 11 2 371 10.3390/biomedicines11020371 36830908
    [Google Scholar]
  47. Kampranis S.C. Maxwell A. Conversion of DNA gyrase into a conventional type II topoisomerase. Proc. Natl. Acad. Sci. 1996 93 25 14416 14421 10.1073/pnas.93.25.14416 8962066
    [Google Scholar]
  48. Pommier Y. Leo E. Zhang H. Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 2010 17 5 421 433 10.1016/j.chembiol.2010.04.012 20534341
    [Google Scholar]
  49. Nöllmann M. Crisona N.J. Arimondo P.B. Thirty years of Escherichia coli DNA gyrase: From in vivo function to single-molecule mechanism. Biochimie 2007 89 4 490 499 10.1016/j.biochi.2007.02.012 17397985
    [Google Scholar]
  50. Vanden Broeck A. Lotz C. Ortiz J. Lamour V. Cryo-EM structure of the complete E. coli DNA gyrase nucleoprotein complex. Nat. Commun. 2019 10 1 4935 10.1038/s41467‑019‑12914‑y 31666516
    [Google Scholar]
  51. Soczek K.M. Grant T. Rosenthal P.B. Mondragón A. Cryo E.M. CryoEM structures of open dimers of gyrase A in complex with DNA illuminate mechanism of strand passage. eLife 2018 7 e41215 10.7554/eLife.41215 30457554
    [Google Scholar]
  52. Anderson V. Osheroff N. Type I.I. Type II topoisomerases as targets for quinolone antibacterials: turning Dr. Jekyll into Mr. Hyde. Curr. Pharm. Des. 2001 7 5 337 353 10.2174/1381612013398013 11254893
    [Google Scholar]
  53. Drlica K. Hiasa H. Kerns R. Malik M. Mustaev A. Zhao X. Quinolones: action and resistance updated. Curr. Top. Med. Chem. 2009 9 11 981 998 10.2174/156802609789630947 19747119
    [Google Scholar]
  54. Piperazine: a promising scaffold with antimicrobial activity. Int. J. Biol. Pharm. Allied Sci. 2023 12 11 10.31032/IJBPAS/2023/12.11.7523
    [Google Scholar]
  55. Kohanski M.A. Dwyer D.J. Hayete B. Lawrence C.A. Collins J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 2007 130 5 797 810 10.1016/j.cell.2007.06.049 17803904
    [Google Scholar]
  56. Bisacchi G.S. Origins of the quinolone class of antibacterials: an expanded “discovery story”. J. Med. Chem. 2015 58 12 4874 4882 10.1021/jm501881c 25738967
    [Google Scholar]
  57. Gellert M. Mizuuchi K. O’Dea M.H. Nash H.A. DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc. Natl. Acad. Sci. USA 1976 73 11 3872 3876 10.1073/pnas.73.11.3872 186775
    [Google Scholar]
  58. Bush N.G. Diez-Santos I. Abbott L.R. Maxwell A. Quinolones: Mechanism, lethality and their contributions to antibiotic resistance. Molecules 2020 25 23 5662 10.3390/molecules25235662 33271787
    [Google Scholar]
  59. Dighe S.N. Collet T.A. Recent advances in DNA gyrase-targeted antimicrobial agents. Eur. J. Med. Chem. 2020 199 112326 10.1016/j.ejmech.2020.112326 32460040
    [Google Scholar]
  60. Lesher G.Y. Froelich E.J. Gruett M.D. Bailey J.H. Brundage R.P. 1,8-Naphthyridine Derivatives. A New class of chemotherapeutic agents. J. Med. Pharm. Chem. 1962 5 5 1063 1065 10.1021/jm01240a021 14056431
    [Google Scholar]
  61. Guan X. Xue X. Liu Y. Wang J. Wang Y. Wang J. Wang K. Jiang H. Zhang L. Yang B. Wang N. Pan L. Plasmid-mediated quinolone resistance – current knowledge and future perspectives. J. Int. Med. Res. 2013 41 1 20 30 10.1177/0300060513475965 23569126
    [Google Scholar]
  62. Emmerson A.M. Jones A.M. The quinolones: decades of development and use. J. Antimicrob. Chemother. 2003 51 90001 Suppl. 1 13 20 10.1093/jac/dkg208 12702699
    [Google Scholar]
  63. Mitscher L.A. Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents. Chem. Rev. 2005 105 2 559 592 10.1021/cr030101q 15700957
    [Google Scholar]
  64. Linder J.A. Huang E.S. Steinman M.A. Gonzales R. Stafford R.S. Fluoroquinolone prescribing in the United States: 1995 to 2002. Am. J. Med. 2005 118 3 259 268 10.1016/j.amjmed.2004.09.015 15745724
    [Google Scholar]
  65. Correia S. Poeta P. Hébraud M. Capelo J.L. Igrejas G. Mechanisms of quinolone action and resistance: where do we stand? J. Med. Microbiol. 2017 66 5 551 559 10.1099/jmm.0.000475 28504927
    [Google Scholar]
  66. Aldred K.J. Kerns R.J. Osheroff N. Mechanism of quinolone action and resistance. Biochemistry 2014 53 10 1565 1574 10.1021/bi5000564 24576155
    [Google Scholar]
  67. Khodursky A.B. Zechiedrich E.L. Cozzarelli N.R. Topoisomerase I.V. Topoisomerase IV is a target of quinolones in Escherichia coli. Proc. Natl. Acad. Sci. USA 1995 92 25 11801 11805 10.1073/pnas.92.25.11801 8524852
    [Google Scholar]
  68. Andersson M.I. MacGowan A.P. Development of the quinolones. J. Antimicrob. Chemother. 2003 51 90001 Suppl. 1 1 11 10.1093/jac/dkg212 12702698
    [Google Scholar]
  69. Drlica K. Malik M. Kerns R.J. Zhao X. Quinolone-mediated bacterial death. Antimicrob. Agents Chemother. 2008 52 2 385 392 10.1128/AAC.01617‑06 17724149
    [Google Scholar]
  70. Feng L.S. Liu M.L. Wang S. Chai Y. Lv K. Shan G.Z. Cao J. Li S.J. Guo H.Y. Synthesis of naphthyridone derivatives containing 8-alkoxyimino-1,6-dizaspiro[3.4]octane scaffolds. Tetrahedron 2011 67 43 8264 8270 10.1016/j.tet.2011.08.089
    [Google Scholar]
  71. Mugnaini C. Pasquini S. Corelli F. The 4-quinolone-3-carboxylic acid motif as a multivalent scaffold in medicinal chemistry. Curr. Med. Chem. 2009 16 14 1746 1767 10.2174/092986709788186156 19442143
    [Google Scholar]
  72. Baumann M. Baxendale I.R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem. 2013 9 2265 2319 10.3762/bjoc.9.265 24204439
    [Google Scholar]
  73. Li Y. Bionda N. Fleeman R. Wang H. Ozawa A. Houghten R.A. Shaw L. Identification of 5,6-dihydroimidazo[2,1- b ]thiazoles as a new class of antimicrobial agents. Bioorg. Med. Chem. 2016 24 21 5633 5638 10.1016/j.bmc.2016.09.027 27663549
    [Google Scholar]
  74. Hooper D.C. Jacoby G.A. Topoisomerase inhibitors: Fluoroquinolone mechanisms of action and resistance. Cold Spring Harb. Perspect. Med. 2016 6 9 a025320 10.1101/cshperspect.a025320 27449972
    [Google Scholar]
  75. Bax B.D. Chan P.F. Eggleston D.S. Fosberry A. Gentry D.R. Gorrec F. Giordano I. Hann M.M. Hennessy A. Hibbs M. Huang J. Jones E. Jones J. Brown K.K. Lewis C.J. May E.W. Saunders M.R. Singh O. Spitzfaden C.E. Shen C. Shillings A. Theobald A.J. Wohlkonig A. Pearson N.D. Gwynn M.N. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 2010 466 7309 935 940 10.1038/nature09197 20686482
    [Google Scholar]
  76. Wohlkonig A. Chan P.F. Fosberry A.P. Homes P. Huang J. Kranz M. Leydon V.R. Miles T.J. Pearson N.D. Perera R.L. Shillings A.J. Gwynn M.N. Bax B.D. Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance. Nat. Struct. Mol. Biol. 2010 17 9 1152 1153 10.1038/nsmb.1892 20802486
    [Google Scholar]
  77. Laponogov I. Sohi M.K. Veselkov D.A. Pan X.S. Sawhney R. Thompson A.W. McAuley K.E. Fisher L.M. Sanderson M.R. Structural insight into the quinolone–DNA cleavage complex of type IIA topoisomerases. Nat. Struct. Mol. Biol. 2009 16 6 667 669 10.1038/nsmb.1604 19448616
    [Google Scholar]
  78. Onseedaeng S. Ratthawongjirakul P. Rapid detection of genomic mutations in gyra and parc genes of escherichia coli by multiplex allele specific polymerase chain reaction. J. Clin. Lab. Anal. 2016 30 6 947 955 10.1002/jcla.21961 27075845
    [Google Scholar]
  79. Aldred K.J. Schwanz H.A. Li G. Williamson B.H. McPherson S.A. Turnbough C.L. Kerns R.J. Osheroff N. Activity of quinolone CP-115,955 against bacterial and human type II topoisomerases is mediated by different interactions. Biochemistry 2015 54 5 1278 1286 10.1021/bi501073v 25586498
    [Google Scholar]
  80. Hooper D.C. Mode of action of fluoroquinolones. Drugs 1999 58 6 10 10.2165/00003495‑199958002‑00002 10553698
    [Google Scholar]
  81. Hooper D.C. Mechanisms of action of antimicrobials: focus on fluoroquinolones. Clin. Infect. Dis. 2001 32 S9 S15 10.1086/319370 11249823
    [Google Scholar]
  82. Fournier B. Zhao X. Lu T. Drlica K. Hooper D.C. Selective targeting of topoisomerase IV and DNA gyrase in Staphylococcus aureus: different patterns of quinolone-induced inhibition of DNA synthesis. Antimicrob. Agents Chemother. 2000 44 8 2160 2165 10.1128/AAC.44.8.2160‑2165.2000 10898691
    [Google Scholar]
  83. Price L.B. Vogler A. Pearson T. Busch J.D. Schupp J.M. Keim P. In vitro selection and characterization of Bacillus anthracis mutants with high-level resistance to ciprofloxacin. Antimicrob. Agents Chemother. 2003 47 7 2362 2365 10.1128/AAC.47.7.2362‑2365.2003 12821500
    [Google Scholar]
  84. Morgan-Linnell S.K. Becnel Boyd L. Steffen D. Zechiedrich L. Mechanisms accounting for fluoroquinolone resistance in Escherichia coli clinical isolates. Antimicrob. Agents Chemother. 2009 53 1 235 241 10.1128/AAC.00665‑08 18838592
    [Google Scholar]
  85. Drlica K. Zhao X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev. 1997 61 3 377 392 10.1128/mmbr.61.3.377‑392.1997 9293187
    [Google Scholar]
  86. Li Z. Deguchi T. Yasuda M. Kawamura T. Kanematsu E. Nishino Y. Ishihara S. Kawada Y. Alteration in the GyrA subunit of DNA gyrase and the ParC subunit of DNA topoisomerase IV in quinolone-resistant clinical isolates of Staphylococcus epidermidis. Antimicrob. Agents Chemother. 1998 42 12 3293 3295 10.1128/AAC.42.12.3293 9835531
    [Google Scholar]
  87. Aldred K.J. McPherson S.A. Turnbough C.L. Jr Kerns R.J. Osheroff N. Topoisomerase IV-quinolone interactions are mediated through a water-metal ion bridge: mechanistic basis of quinolone resistance. Nucleic Acids Res. 2013 41 8 4628 4639 10.1093/nar/gkt124 23460203
    [Google Scholar]
  88. Pan X.S. Gould K.A. Fisher L.M. Probing the differential interactions of quinazolinedione PD 0305970 and quinolones with gyrase and topoisomerase IV. Antimicrob. Agents Chemother. 2009 53 9 3822 3831 10.1128/AAC.00113‑09 19564360
    [Google Scholar]
  89. Oppegard L.M. Streck K.R. Rosen J.D. Schwanz H.A. Drlica K. Kerns R.J. Hiasa H. Comparison of in vitro activities of fluoroquinolone-like 2,4- and 1,3-diones. Antimicrob. Agents Chemother. 2010 54 7 3011 3014 10.1128/AAC.00190‑10 20404126
    [Google Scholar]
  90. Anderson V.E. Zaniewski R.P. Kaczmarek F.S. Gootz T.D. Osheroff N. Action of quinolones against Staphylococcus aureus topoisomerase IV: basis for DNA cleavage enhancement. Biochemistry 2000 39 10 2726 2732 10.1021/bi992302n 10704224
    [Google Scholar]
  91. Willmott C.J. Maxwell A. A single point mutation in the DNA gyrase A protein greatly reduces binding of fluoroquinolones to the gyrase-DNA complex. Antimicrob. Agents Chemother. 1993 37 1 126 127 10.1128/AAC.37.1.126 8381633
    [Google Scholar]
  92. Barnard F.M. Maxwell A. Interaction between DNA gyrase and quinolones: effects of alanine mutations at GyrA subunit residues Ser(83) and Asp(87). Antimicrob. Agents Chemother. 2001 45 7 1994 2000 10.1128/AAC.45.7.1994‑2000.2001 11408214
    [Google Scholar]
  93. Hiasa H. The Glu-84 of the ParC subunit plays critical roles in both topoisomerase IV-quinolone and topoisomerase IV-DNA interactions. Biochemistry 2002 41 39 11779 11785 10.1021/bi026352v 12269820
    [Google Scholar]
  94. Hiramatsu K. Igarashi M. Morimoto Y. Baba T. Umekita M. Akamatsu Y. Curing bacteria of antibiotic resistance: reverse antibiotics, a novel class of antibiotics in nature. Int. J. Antimicrob. Agents 2012 39 6 478 485 10.1016/j.ijantimicag.2012.02.007 22534508
    [Google Scholar]
  95. Martínez-Martínez L. Pascual A. Jacoby G.A. Quinolone resistance from a transferable plasmid. Lancet 1998 351 9105 797 799 10.1016/S0140‑6736(97)07322‑4 9519952
    [Google Scholar]
  96. Carattoli A. Plasmids and the spread of resistance. Int. J. Med. Microbiol. 2013 303 6-7 298 304 10.1016/j.ijmm.2013.02.001 23499304
    [Google Scholar]
  97. Robicsek A. Jacoby G.A. Hooper D.C. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect. Dis. 2006 6 10 629 640 10.1016/S1473‑3099(06)70599‑0 17008172
    [Google Scholar]
  98. Strahilevitz J. Jacoby G.A. Hooper D.C. Robicsek A. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin. Microbiol. Rev. 2009 22 4 664 689 10.1128/CMR.00016‑09 19822894
    [Google Scholar]
  99. Jacoby G.A. Plasmid-Mediated Quinolone Resistance. Antimicrobial Drug Resistance. Mayers D.L. Humana Press Totowa, NJ 2009 207 210 10.1007/978‑1‑59745‑180‑2_17
    [Google Scholar]
  100. Tran J.H. Jacoby G.A. Mechanism of plasmid-mediated quinolone resistance. Proc. Natl. Acad. Sci. USA 2002 99 8 5638 5642 10.1073/pnas.082092899 11943863
    [Google Scholar]
  101. Xiong X. Bromley E.H. Oelschlaeger P. Woolfson D.N. Spencer J. Structural insights into quinolone antibiotic resistance mediated by pentapeptide repeat proteins: conserved surface loops direct the activity of a Qnr protein from a Gram-negative bacterium. Nucleic Acids Res. 2011 39 9 3917 3927 10.1093/nar/gkq1296 21227918
    [Google Scholar]
  102. Sun H.I. Jeong D.U. Lee J.H. Wu X. Park K.S. Lee J.J. Jeong B.C. Lee S.H. A novel family (QnrAS) of plasmid-mediated quinolone resistance determinant. Int. J. Antimicrob. Agents 2010 36 6 578 579 10.1016/j.ijantimicag.2010.08.009 20947314
    [Google Scholar]
  103. Albornoz E. Tijet N. De Belder D. Gomez S. Martino F. Corso A. Melano R.G. Petroni A. qnrE1, a Member of a New Family of Plasmid-Located Quinolone Resistance Genes, Originated from the Chromosome of Enterobacter Species. Antimicrob. Agents Chemother. 2017 61 5 e02555-16 10.1128/AAC.02555‑16 28193666
    [Google Scholar]
  104. Tavío M.M. Jacoby G.A. Hooper D.C. QnrS1 structure-activity relationships. J. Antimicrob. Chemother. 2014 69 8 2102 2109 10.1093/jac/dku102 24729602
    [Google Scholar]
  105. Tran J.H. Jacoby G.A. Hooper D.C. Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase. Antimicrob. Agents Chemother. 2005 49 1 118 125 10.1128/AAC.49.1.118‑125.2005 15616284
    [Google Scholar]
  106. Tran J.H. Jacoby G.A. Hooper D.C. Interaction of the plasmid-encoded quinolone resistance protein QnrA with Escherichia coli topoisomerase IV. Antimicrob. Agents Chemother. 2005 49 7 3050 3052 10.1128/AAC.49.7.3050‑3052.2005 15980397
    [Google Scholar]
  107. Yamane K. Wachino J. Suzuki S. Kimura K. Shibata N. Kato H. Shibayama K. Konda T. Arakawa Y. New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob. Agents Chemother. 2007 51 9 3354 3360 10.1128/AAC.00339‑07 17548499
    [Google Scholar]
  108. Cattoir V. Poirel L. Nordmann P. Plasmid-mediated quinolone resistance pump QepA2 in an Escherichia coli isolate from France. Antimicrob. Agents Chemother. 2008 52 10 3801 3804 10.1128/AAC.00638‑08 18644958
    [Google Scholar]
  109. Hansen L.H. Sørensen S.J. Jørgensen H.S. Jensen L.B. The prevalence of the OqxAB multidrug efflux pump amongst olaquindox-resistant Escherichia coli in pigs. Microb. Drug Resist. 2005 11 4 378 382 10.1089/mdr.2005.11.378 16359198
    [Google Scholar]
  110. Kim H.B. Wang M. Park C.H. Kim E.C. Jacoby G.A. Hooper D.C. oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. Antimicrob. Agents Chemother. 2009 53 8 3582 3584 10.1128/AAC.01574‑08 19528276
    [Google Scholar]
  111. Martínez-Martínez L. Pascual A. García I. Tran J. Jacoby G.A. Interaction of plasmid and host quinolone resistance. J. Antimicrob. Chemother. 2003 51 4 1037 1039 10.1093/jac/dkg157 12654766
    [Google Scholar]
  112. Jacoby G.A. Mechanisms of resistance to quinolones. Clin. Infect. Dis. 2005 41 S120 S126 10.1086/428052 15942878
    [Google Scholar]
  113. Poole K. Efflux pumps as antimicrobial resistance mechanisms. Ann. Med. 2007 39 3 162 176 10.1080/07853890701195262 17457715
    [Google Scholar]
  114. Goldman J.D. White D.G. Levy S.B. Multiple antibiotic resistance (mar) locus protects Escherichia coli from rapid cell killing by fluoroquinolones. Antimicrob. Agents Chemother. 1996 40 5 1266 1269 10.1128/AAC.40.5.1266 8723480
    [Google Scholar]
  115. Singh R. Swick M.C. Ledesma K.R. Yang Z. Hu M. Zechiedrich L. Tam V.H. Temporal interplay between efflux pumps and target mutations in development of antibiotic resistance in Escherichia coli. Antimicrob. Agents Chemother. 2012 56 4 1680 1685 10.1128/AAC.05693‑11 22232279
    [Google Scholar]
  116. Issakhanian L. Behzadi P. Antimicrobial agents and urinary tract infections. Curr. Pharm. Des. 2019 25 12 1409 1423 10.2174/1381612825999190619130216 31218955
    [Google Scholar]
/content/journals/aia/10.2174/0122113525318200240902062055
Loading
/content/journals/aia/10.2174/0122113525318200240902062055
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: DNA gyrase ; ATPase ; DNA supercoiling ; efflux pump ; AMR ; topoisomerase ; quinolone
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test