Skip to content
2000
image of Antimicrobial, Antifungal, and Insecticidal Activities of Scolymus Grandiflorus Essential Oil Rich in Davanoid Compounds

Abstract

Background

This study explores the antimicrobial, antifungal, and insecticidal properties of Scolymus grandiflorus essential oil, examining its potential uses in the fields of pharmacology and agriculture.

Materials and Methods

The essential oil obtained by hydrodistillation was studied by GC and GC/MS. The antibacterial capacity of the essential oil was determined against two Gram-positive and three Gram-negative bacterial species. The antifungal activity of the essential oil was investigated against two fungi responsible for many fruit and vegetable diseases. The insecticidal activity of essential oil was evaluated against larvae, pupae, and adult flies of Ceratitis capitata.

Results

The GC and GC-MS analysis of the essential oil of the roots of S. grandiflorus revealed the predominant presence of davanoids, representing more than 80% of its chemical composition. The results of the disc diffusion test showed significant antimicrobial activity. The essential oil inhibited the growth of Salmonella typhi (25 mm), Staphylocoque aureus (18 mm), and Escherichia coli (17 mm), with inhibition diameters comparable to those of gentamicin. The essential oil significantly inhibited mycelial growth, with up to 98% inhibition for Fusarium solani and 73% for Alternaria alternata at 8 µL/mL. Insecticidal activity was most pronounced on adult flies, followed by pupae and finally larvae.

Conclusion

Tests on the essential oils of S. grandiflorus revealed promising characteristics as insecticidal, antifungal, and antimicrobial agents. These results could be used in the development of new solutions to control pathogens responsible for plant diseases and mycotoxin-producing organisms.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525339409241003080558
2024-11-08
2025-05-03
Loading full text...

Full text loading...

References

  1. Bittner Fialová S. Rendeková K. Mučaji P. Nagy M. Slobodníková L. Antibacterial activity of medicinal plants and their constituents in the context of skin and wound infections, considering european legislation and folk medicine—a review. Int. J. Mol. Sci. 2021 22 19 10746 10.3390/ijms221910746 34639087
    [Google Scholar]
  2. De Oliveira D.M.P. Forde B.M. Kidd T.J. Harris P.N.A. Schembri M.A. Beatson S.A. Paterson D.L. Walker M.J. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 2020 33 3 e00181-19 10.1128/CMR.00181‑19 32404435
    [Google Scholar]
  3. Atanasov A.G. Waltenberger B. Pferschy-Wenzig E.M. Linder T. Wawrosch C. Uhrin P. Temml V. Wang L. Schwaiger S. Heiss E.H. Rollinger J.M. Schuster D. Breuss J.M. Bochkov V. Mihovilovic M.D. Kopp B. Bauer R. Dirsch V.M. Stuppner H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015 33 8 1582 1614 10.1016/j.biotechadv.2015.08.001 26281720
    [Google Scholar]
  4. Ainseba N. Soulimane A. Mami I.R. Dib M.E.A. Muselli A. Evaluation of the antioxidant and anti-inflammatory activity of the Anacyclus Valentinus L. Essential oil and its oxygenated fraction. Comb. Chem. High Throughput Screen. 2024 27 5 765 772 10.2174/1386207326666230418093319 37073659
    [Google Scholar]
  5. Abd-Elgawad M.M.M. The mediterranean fruit fly (diptera: Tephritidae), a key pest of citrus in Egypt. J. Integr. Pest Manag. 2021 12 1 28 10.1093/jipm/pmab025
    [Google Scholar]
  6. Pawlak K. Kołodziejczak M. The role of agriculture in ensuring food security in developing countries: Considerations in the context of the problem of sustainable food production. Sustainability 2020 12 13 5488 10.3390/su12135488
    [Google Scholar]
  7. Benyoucef F. Dib M.E.A. Arrar Z. Costa J. Muselli A. Synergistic antioxidant activity and chemical composition of essential oils from thymus fontanesii, artemisia herba-alba and rosmarinus officinalis. J. Appl. Biotechnol. Rep. 2018 5 4 151 156 10.29252/JABR.05.04.03
    [Google Scholar]
  8. Meratate F. Lalaoui A. Rebbas K. Belhadad O.K. Hammadou N.I. Meratate H. Demirtas I. Akkal S. Laouer H. Chemical composition of the essential oil of Carduncellus Helenioides (Desf.)Hanelt from Algeria. Orient. J. Chem. 2016 32 3 1305 1312 10.13005/ojc/320304
    [Google Scholar]
  9. Vázquez F.M. The genus Scolymus Tourn. ex L. (Asteraceae): Taxonomy and distribution, Anales Jard. Bot. Mar. 2000 58 83 100
    [Google Scholar]
  10. Brereton R.G. Chemometrics: Data analysis for the laboratory and chemical plant. John Wiley & Sons 2003 10.1002/0470863242
    [Google Scholar]
  11. Cicchetti E. Merle P. Chaintreau A. Quantitation in gas chromatography: Usual practices and performances of a response factor database. Flavour Fragrance J. 2008 23 6 450 459 10.1002/ffj.1906
    [Google Scholar]
  12. Sanz M.J. Terencio M.C. Mañez S. Rios J.L. Soriano C. A new quercetin-acylglucuronide from Scolymus hispanicus. J. Nat. Prod. 1993 56 11 1995 1998 10.1021/np50101a022
    [Google Scholar]
  13. Semaoui M. Mesli F. Dib M.E.A. Tabti B. Achiri R. Costa J. Muselli A. Statistical analysis/theoretical investigations of novel vascular endothelial growth factor of Davanoide from Scolymus grandifloras Desf as potent anti-angiogenic drug properties. J. Biomol. Struct. Dyn. 2022 40 9 3850 3870 10.1080/07391102.2020.1851301 34043938
    [Google Scholar]
  14. Babushok V.I. Linstrom P.J. Reed J.J. Zenkevich I.G. Brown R.L. Mallard W.G. Stein S.E. Development of a database of gas chromatographic retention properties of organic compounds. J. Chromatogr. A 2007 1157 1-2 414 421 10.1016/j.chroma.2007.05.044 17543315
    [Google Scholar]
  15. Knorr A. Monge A. Stueber M. Stratmann A. Arndt D. Martin E. Pospisil P. Computer-assisted structure identification (CASI)--an automated platform for high-throughput identification of small molecules by two-dimensional gas chromatography coupled to mass spectrometry. Anal. Chem. 2013 85 23 11216 11224 10.1021/ac4011952 24160557
    [Google Scholar]
  16. McLafferty F. Stauffer D. Douglas B. The wiley/nbs registry of mass spectral data. J. Chem. Educ. 1989 66 10 A256
    [Google Scholar]
  17. NIST mass spectrometry data center standard reference libraries and software. J. Forensic Sci. 2023 68 5 1484 1493 10.1111/1556‑4029.15284 37203286
    [Google Scholar]
  18. Achiri R. Benhamidat L. Mami I.R. Dib M.E.A. Aissaoui N. Cherif C.Z. Cherif H.Z. Muselli A. Chemical composition and antioxidant, anti-inflammatory and antimicrobial activities of the essential oil and its major component (carlina oxide) of carlina hispanica roots from Western Algeria. J. Essent. Oil-Bear. Plants 2021 24 5 1113 1124 10.1080/0972060X.2021.2005692
    [Google Scholar]
  19. Hosseinzadeh L. Shokoohinia Y. Arab M. Allahyari E. Mojarrab M. Cytotoxic and apoptogenic sesquiterpenoids from the petroleum ether extract of Artemisia aucheri aerial parts. Iran. J. Pharm. Res. 2019 18 1 391 399 31089373
    [Google Scholar]
  20. Chouhan S. Sharma K. Guleria S. Antimicrobial activity of some essential oils present status and future perspectives. Medicines 2017 4 3 58 10.3390/medicines4030058 28930272
    [Google Scholar]
  21. Fedoul F.F. Meddah B. Larouci M. Touil A.T. Merazi Y. Bekhti N. Piras A. Falconieri D. Cakmak Y.S. Medicinal applications, chemical compositions, and biological effects of an algerian ocimum basilicum l.var genovese; With the conversion of experimental doses to humans. J. Appl. Biotechnol. Rep 2022 9 2 671 683
    [Google Scholar]
  22. Senouci H. Benyelles N.G. Dib M.E.A. Costa J. Muselli A. Essential oil of ammoides verticillata as biocides for the control of fungal infections and devastating pest (bactrocera oleae) of olive tree. Recent Pat. Food Nutr. Agric. 2019 10 182 188
    [Google Scholar]
  23. Tian J. Ban X. Zeng H. He J. Huang B. Wang Y. Chemical composition and antifungal activity of essential oil from Cicuta virosa L. var. latisecta Celak. Int. J. Food Microbiol. 2011 145 2-3 464 470 10.1016/j.ijfoodmicro.2011.01.023 21320730
    [Google Scholar]
  24. Singh P. Srivastava B. Kumar A. Kumar R. Dubey N.K. Gupta R. Assessment of Pelargonium graveolens oil as plant‐based antimicrobial and aflatoxin suppressor in food preservation. J. Sci. Food Agric. 2008 88 14 2421 2425 10.1002/jsfa.3342
    [Google Scholar]
  25. Tanaka N. Steiner L.F. Ohinata K. Okamoto R. Low-cost rearing medium for mass production of Oriental and Mediterranean fruit flies. J. Econ. Entomol. 1969 62 4 967 968 10.1093/jee/62.4.967
    [Google Scholar]
  26. Bouayad Alam S. Dib M.E.A. Djabou N. Tabti B. Gaouar Benyelles N. Costa J. Muselli A. Essential oils as biocides for the control of fungal infections and devastating pest ( tuta absoluta ) of tomato ( lycopersicon esculentum Mill. ). Chem. Biodivers. 2017 14 7 e1700065 10.1002/cbdv.201700065 28422413
    [Google Scholar]
  27. Sipma G. van der Wal B. The structure of davanone a new sesquiterpene from davana: ( Artemisia pallens, Wall.). Recl. Trav. Chim. Pays Bas 1968 87 6 715 720 10.1002/recl.19680870613
    [Google Scholar]
  28. Rustaiyan A. Masoudi S. Kazemi M. Volatile oils constituents from different parts of Artemisia ciniformis Krasch. Et M. Pop. ex Poljak and Artemisia incana (L.) Druce. from Iran. J. Essent. Oil Res. 2007 19 6 548 551 10.1080/10412905.2007.9699328
    [Google Scholar]
  29. Rustaiyan A. Tabatabaei-Anaraki M. Kazemi M. Masoudi S. Makipour P. Chemical composition of essential oil of three Artemisia species growing wild in Iran: Artemisia kermanensis Podl., A. kopetdaghensis Krasch., M.Pop et Lincz. ex Poljak., and A. haussknechtii Boiss. J. Essent. Oil Res. 2009 21 5 410 413 10.1080/10412905.2009.9700205
    [Google Scholar]
  30. Ramezani M. Behravan J. Yazdinezhad A. Chemical composition and antimicrobial activity of the volatile oil of Artemisia khorassanica. from Iran. Pharm. Biol. 2005 42 8 599 602 10.1080/13880200490902482
    [Google Scholar]
  31. Baroty G.S.E. Goda H.M. Khalifa E.A. Antimicrobial and antioxidant activities of leaves and flowers essential oils of Egyptian Lantana camara L. Pharma Chem. 2014 6 6 246 255
    [Google Scholar]
  32. Saikia A.K. Sahoo R.K. Chemical composition and antibacterial activity of essential oil of Lantana camara L. J. Sci. Res 2011 8 599 602
    [Google Scholar]
  33. Vajs V. Trifunovic S. Janackovic P. Sokovic M. Milosavljevic S. Tesevic V. Antifungal activity of davanone-type sesquiterpenes from Artemisia lobelli var. conescens. J. Serb. Chem. Soc. 2004 69 11 969 972 10.2298/JSC0411969V
    [Google Scholar]
  34. Schmidt E. Bail S. Friedl S.M. Jirovetz L. Buchbauer G. Wanner J. Denkova Z. Slavchev A. Stoyanova A. Geissler M. Antimicrobial activities of single aroma compounds. Nat. Prod. Commun. 2010 5 9 1934578X1000500 10.1177/1934578X1000500906 20922992
    [Google Scholar]
/content/journals/aia/10.2174/0122113525339409241003080558
Loading
/content/journals/aia/10.2174/0122113525339409241003080558
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test