Skip to content
2000
Volume 23, Issue 2
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Background and Purpose

Considering the emergence of antibiotic resistance in enterococci and the possibility of transmission of resistant strains to humans, their spread in natural reservoirs is of particular importance. The food chain is known as a source of enterococci that is resistant to antimicrobial agents, and these bacteria are present in foods of animal origin, such as meat and milk. Hence, the purpose of this study was to investigate the frequency of aminoglycoside- and vancomycin-resistant genes in spp isolates isolated from chicken meat in Qom City, Iran.

Methods

After collecting and culturing 200 chicken meat samples from September 2021 to August 2022, enterococci were isolated and identified using biochemical and microbial standard tests. Antibiotic sensitivity and resistance of the isolates, aph(2”)1c ، aph(2”)1b ، aph(2”)1d ، ant(3') ، aph(3')IIIa ، ant(4')1a، ant(6') و aac(6'), vanA and vanB genes were determined.

Results

From 200 chicken meat samples, 40(40%) isolates of and 60 (60%) isolates of were isolated. Resistance to gentamicin, tobramycin, amikacin, neomycin, tetracycline, chloramphenicol, vancomycin, and ampicillin were 33, 30, 33, 20, 69, 38, 28, and 45, respectively. Frequency of aph(2”)1c, aph(2”)1b, aph(2”)1d, ant(3'), aph(3')IIIa, ant(4')1a, ant(6') and aac (6'), vanA and vanB were reported to be 13%, 2%, 3%, 45%, 20%, 7%, 19%, 21%, 7%, and 6%, respectively.

Conclusion

To reduce the infection with this organism and to prevent and control its spread and mortality, investigating the epidemiology and determining the frequency of resistance to aminoglycosides are important.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525314697240711070000
2024-08-07
2025-01-16
Loading full text...

Full text loading...

References

  1. Jabbari ShiadehS.M. PormohammadA. HashemiA. LakP. Global prevalence of antibiotic resistance in blood-isolated Enterococcus faecalis and Enterococcus faecium: a systematic review and meta-analysis.Infect. Drug Resist.2019122713272510.2147/IDR.S206084 31564921
    [Google Scholar]
  2. GaoW. HowdenB.P. StinearT.P. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen.Curr. Opin. Microbiol.201841768210.1016/j.mib.2017.11.030 29227922
    [Google Scholar]
  3. BhardwajS. DhawaleK.B.J. PatilM. DivaseS. Enterococcus faecium and Enterococcus faecalis, the nosocomial pathogens with special reference to multi-drug resistance and phenotypic characterization.Int. J. Pharm. Pharm. Sci.201321110
    [Google Scholar]
  4. TripathiA. ShuklaS.K. SinghA. PrasadK.N. Prevalence, outcome and risk factor associated with vancomycin-resistant Enterococcus faecalis and Enterococcus faecium at a Tertiary Care Hospital in Northern India.Indian J. Med. Microbiol.2016341384510.4103/0255‑0857.174099 26776117
    [Google Scholar]
  5. GökŞ.M. Türk DağıH. KaraF. ArslanU. FındıkD. Investigation of antibiotic resistance and virulence factors of Enterococcus faecium and Enterococcus faecalis strains isolated from clinical samples.Mikrobiyol. Bul.20205412639 32050876
    [Google Scholar]
  6. KimM.H. MoonD.C. KimS.J. MechessoA.F. SongH.J. KangH.Y. ChoiJ.H. YoonS.S. LimS.K. Nationwide surveillance on antimicrobial resistance profiles of Enterococcus faecium and Enterococcus faecalis isolated from healthy food animals in South Korea, 2010 to 2019.Microorganisms20219592510.3390/microorganisms9050925 33925822
    [Google Scholar]
  7. DoiY. ArakawaY. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides.Clin. Infect. Dis.2007451889410.1086/518605 17554708
    [Google Scholar]
  8. KrauseK.M. SerioA.W. KaneT.R. ConnollyL.E. Aminoglycosides: An Overview.Cold Spring Harb. Perspect. Med.201666a02702910.1101/cshperspect.a027029 27252397
    [Google Scholar]
  9. ManoharanH. LalithaA.K.V. MariappanS. SekarU. VenkataramanaG.P. Molecular Characterization of High-Level Aminoglycoside Resistance among Enterococcus Species.J. Lab. Physicians202214329029410.1055/s‑0042‑1742423 36119421
    [Google Scholar]
  10. CattoirV. GiardJ.C. Antibiotic resistance in Enterococcus faecium clinical isolates.Expert Rev. Anti Infect. Ther.201412223924810.1586/14787210.2014.870886 24392717
    [Google Scholar]
  11. JaimeeG. HalamiP.M. Conjugal transfer of aac(6′)Ie-aph(2″)Ia gene from native species and mechanism of regulation and cross resistance in Enterococcus faecalis MCC3063 by real time-PCR.Microb. Pathog.201711054655310.1016/j.micpath.2017.07.049 28774859
    [Google Scholar]
  12. KanchugalP.S. SelmerM. Structural recognition of spectinomycin by resistance enzyme ANT (9) from Enterococcus faecalis.Antimicrob. Agents Chemother.2020646e003712010.1128/AAC.00371‑20 32253216
    [Google Scholar]
  13. RaminB. AsadpourL. Forouhesh TehraniH. AmirmozafariN. Detection and distribution of various HLAR gene in Enterococcus faecalis and Enterococcus faecium by multiplex-PCR.Modern Medical Laboratory Journal201812687610.30699/mmlj17.1.2.68
    [Google Scholar]
  14. KolarM. UrbanekK. VagnerovaI. KoukalovaD. The influence of antibiotic use on the occurrence of vancomycin-resistant enterococci.J. Clin. Pharm. Ther.2006311677210.1111/j.1365‑2710.2006.00701.x 16476122
    [Google Scholar]
  15. ShenH. LiuY. QuJ. CaoB. Comparison of vanA gene mRNA levels between vancomycin-resistant Enterococci presenting the VanA or VanB phenotype with identical Tn1546-like elements.J. Microbiol. Immunol. Infect.201649686687110.1016/j.jmii.2014.09.003 25556043
    [Google Scholar]
  16. ManeroA. BlanchA.R. Identification of Enterococcus spp. with a biochemical key.Appl. Environ. Microbiol.199965104425443010.1128/AEM.65.10.4425‑4430.1999 10508070
    [Google Scholar]
  17. Sorlózano, A.; Panesso, D.; Navarro-Marí, J.M.; Arias, C.A.; Gutiérrez-Fernández, J. Characterization of daptomycin non-susceptible Enterococcus faecium producing urinary tract infection in a renal transplant recipient.Rev. Esp. Quimioter.2015284207209 26200029
    [Google Scholar]
  18. KuzucuC. CizmeciZ. DurmazR. DurmazB. OzerolI.H. The prevalence of fecal colonization of enterococci, the resistance of the isolates to ampicillin, vancomycin, and high-level aminoglycosides, and the clonal relationship among isolates.Microb. Drug Resist.200511215916410.1089/mdr.2005.11.159 15910231
    [Google Scholar]
  19. GacaA.O. LemosJ.A. Adaptation to adversity: the intermingling of stress tolerance and pathogenesis in enterococci.Microbiol. Mol. Biol. Rev.2019833e000081910.1128/MMBR.00008‑19 31315902
    [Google Scholar]
  20. IkeY. Pathogenicity of Enterococci.Jpn. J. Bacteriol.201772218921110.3412/jsb.72.189 28659548
    [Google Scholar]
  21. LandeteJ.M. Peirotén, Á.; Medina, M.; Arqués, J.L.; Rodríguez-Mínguez, E. Virulence and antibiotic resistance of enterococci isolated from healthy breastfed infants.Microb. Drug Resist.2018241636910.1089/mdr.2016.0320 28708453
    [Google Scholar]
  22. Giménez-PereiraM.L. Enterococci in milk products.Master Degree, Massey University Palmerston North2005
    [Google Scholar]
  23. McAuleyC.M. GobiusK.S. BritzM.L. CravenH.M. Heat resistance of thermoduric enterococci isolated from milk.Int. J. Food Microbiol.2012154316216810.1016/j.ijfoodmicro.2011.12.033 22260926
    [Google Scholar]
  24. HugasM. GarrigaM. AymerichM.T. Functionalty of enterococci in meat products.Int. J. Food Microbiol.2003882-322323310.1016/S0168‑1605(03)00184‑3 14596994
    [Google Scholar]
  25. AriasC.A. MurrayB.E. The rise of the Enterococcus: beyond vancomycin resistance.Nat. Rev. Microbiol.201210426627810.1038/nrmicro2761 22421879
    [Google Scholar]
  26. FeizabadiM.M. MaleknejadP. AsgharzadehA. AsadiS. ShokrzadehL. SayadiS. Prevalence of aminoglycoside-modifying enzymes genes among isolates of Enterococcus faecalis and Enterococcus faecium in Iran.Microb. Drug Resist.200612426526810.1089/mdr.2006.12.265 17227212
    [Google Scholar]
  27. AminiF. KrimpourH.A. GhaderiM. VaziriS. FerdowsiS. AziziM. AminiS. Prevalence of aminoglycoside resistance genes in Enterococcus strains in Kermanshah, Iran.Iran. J. Med. Sci.2018435487493 30214101
    [Google Scholar]
  28. NateghianA. ArjmandiK. VosoughP. KarimiA. BehzadA. NavidniaM. Detrmination of Vancomycin resistant enterococci (VRE) carriage, molecular epidemiology and the related risk factors in children with ALL in Ali-asghar children hospital and Mahak hospital, Tehran, Iran.Iran. J. Med. Microbiol.2010411725
    [Google Scholar]
  29. RiceL.B. Antimicrobial resistance in gram-positive bacteria.Am. J. Infect. Control2006345Suppl. 1S11S1910.1016/j.ajic.2006.05.220 16813977
    [Google Scholar]
  30. KraszewskaZ. SkowronK. Kwiecińska-PirógJ. Grudlewska-BudaK. PrzekwasJ. Wiktorczyk-KapischkeN. Wałecka-ZacharskaE. Gospodarek-KomkowskaE. Antibiotic resistance of Enterococcus spp. isolated from the urine of patients hospitalized in the University Hospital in North-Central Poland, 2016–2021.Antibiotics20221112174910.3390/antibiotics11121749 36551406
    [Google Scholar]
  31. LiW. WangA. Genomic islands mediate environmental adaptation and the spread of antibiotic resistance in multiresistant Enterococci - evidence from genomic sequences.BMC Microbiol.20212115510.1186/s12866‑021‑02114‑4 33386072
    [Google Scholar]
  32. Chajęcka-WierzchowskaW. ZarzeckaU. ZadernowskaA. Enterococci isolated from plant-derived food - Analysis of antibiotic resistance and the occurrence of resistance genes.Lebensm. Wiss. Technol.202113911054910.1016/j.lwt.2020.110549
    [Google Scholar]
  33. PadmasiniE. PadmarajR. RameshS.S. High level aminoglycoside resistance and distribution of aminoglycoside resistant genes among clinical isolates of Enterococcus species in Chennai, India.ScientificWorldJournal201420141510.1155/2014/329157 24672306
    [Google Scholar]
  34. FacklamR.R. CollinsM.D. Identification of Enterococcus species isolated from human infections by a conventional test scheme.J. Clin. Microbiol.198927473173410.1128/jcm.27.4.731‑734.1989 2656745
    [Google Scholar]
  35. RóżańskaH. Lewtak-PiłatA. OsekJ. Antimicrobial resistance of Enterococcus faecalis isolated from meat.J. Vet. Res.2015592229233
    [Google Scholar]
  36. KhanmohammadiS. NahaeiM.R. RezaeeM.A. SadeghiJ. Frequency of vancomycin resistance and vanA gene in enterococci isolated from Tabriz Children’s teaching and treatment center.Med J Tabriz Univ Med Sci20184041623
    [Google Scholar]
  37. NasajM. MousaviS.M. HosseiniS.M. ArabestaniM.R. Prevalence of virulence factors and vancomycin-resistant genes among Enterococcus faecalis and E. faecium isolated from clinical specimens.Iran. J. Public Health2016456806813 27648425
    [Google Scholar]
  38. GousiaP. EconomouV. BozidisP. PapadopoulouC. Vancomycin-resistance phenotypes, vancomycin-resistance genes, and resistance to antibiotics of enterococci isolated from food of animal origin.Foodborne Pathog. Dis.201512321422010.1089/fpd.2014.1832 25562594
    [Google Scholar]
/content/journals/aia/10.2174/0122113525314697240711070000
Loading
/content/journals/aia/10.2174/0122113525314697240711070000
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): aminoglycoside; antimicrobial resistance; cell wall; chicken meat; Enterococcus; vancomycin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test