Skip to content
2000
Volume 23, Issue 2
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Aims

To perform screening of the natural phytoconstituents against COVID-19 main protease.

Background

COVID-19 is an atypical virus that is universal around the globe. WHO (World Health Organization) has also affirmed the emergency public health concerns regarding COVID-19. As COVID-19 spreads globally within a shorter duration, there is a great demand for effective therapy with minimal side effects.

Objective

To perform SP and XP docking of the naturally obtained ligand Quercetin (flavonoid) based on HTVS.

To identify the effectiveness of natural phytoconstituents for COVID-19 main protease virus.

Methods

In the present study, natural ligands were used for performing the virtual screening, which was obtained from Prestwick Phytochemical Library by applying hierarchal screening. Several docking protocols, such as SP and XP, are used to screen the best natural hit compounds. The three best-hit compounds and hydroxychloroquine were further studied for SAR analysis. Moreover, the ADME study by QikProp and the identification of biological sources were carried out by Duke's Phytochemical and Ethnobotanical Databases.

Results

The results suggest that Quercetin showed good binding affinity towards 6LU7 (-56.689 kcal/mol), which could be an effective natural phytoconstituent for COVID-19.

Conclusion

Based on HTVS, SP, and XP docking, the naturally obtained ligand Quercetin (a flavonoid) can be used in place of Hydroxychloroquine against COVID-19's main protease virus. This scientific exploration will help to identify the effective natural compound for the COVID-19 main protease virus.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525310221240713022605
2024-08-16
2025-01-16
Loading full text...

Full text loading...

References

  1. WangC. HorbyP.W. HaydenF.G. GaoG.F. A novel coronavirus outbreak of global health concern.Lancet20203951022347047310.1016/S0140‑6736(20)30185‑9 31986257
    [Google Scholar]
  2. LiuY. GayleA.A. Wilder-SmithA. RocklövJ. The reproductive number of COVID-19 is higher compared to SARS coronavirus.J. Travel Med.20202721410.1093/jtm/taaa021 32052846
    [Google Scholar]
  3. RichmanD.D. WhitleyR.J. HaydenF.G.IV Eds.; Clinical Virology.WashingtonASM Press201610.1128/9781555819439
    [Google Scholar]
  4. SenathilakeK. SamarakoonS. TennekoonK. Virtual screening of inhibitors against spike glycoprotein of 2019 novel corona virus: A Drug Repurposing Approach.Virology202010.20944/preprints202003.0042.v1
    [Google Scholar]
  5. TalluriS. Virtual high throughput screening based prediction of potential drugs for COVID-19.Combi Chem High T Scr20202312510.20944/preprints202002.0418.v1
    [Google Scholar]
  6. RotheC. SchunkM. SothmannP. BretzelG. FroeschlG. WallrauchC. ZimmerT. ThielV. JankeC. GuggemosW. SeilmaierM. DrostenC. VollmarP. ZwirglmaierK. ZangeS. WölfelR. HoelscherM. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany.N. Engl. J. Med.20203821097097110.1056/NEJMc2001468 32003551
    [Google Scholar]
  7. ZouL. RuanF. HuangM. LiangL. HuangH. HongZ. YuJ. KangM. SongY. XiaJ. GuoQ. SongT. HeJ. YenH.L. PeirisM. WuJ. SARS-CoV-2 viral load in upper respiratory specimens of infected patients.N. Engl. J. Med.2020382121177117910.1056/NEJMc2001737 32074444
    [Google Scholar]
  8. World Health Organization.Situation reports.https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
    [Google Scholar]
  9. KampfG. TodtD. PfaenderS. SteinmannE. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents.J. Hosp. Infect.2020104324625110.1016/j.jhin.2020.01.022 32035997
    [Google Scholar]
  10. ChenH. GuoJ. WangC. LuoF. YuX. ZhangW. LiJ. ZhaoD. XuD. GongQ. LiaoJ. YangH. HouW. ZhangY. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records.Lancet20203951022680981510.1016/S0140‑6736(20)30360‑3 32151335
    [Google Scholar]
  11. ChengZ.J. ShanJ. 2019 Novel coronavirus: where we are and what we know.Infection202048215516310.1007/s15010‑020‑01401‑y 32072569
    [Google Scholar]
  12. Coronavirus Outbreak.https://www.worldometers.info/coronavirus/
  13. ChenN. ZhouM. DongX. QuJ. GongF. HanY. QiuY. WangJ. LiuY. WeiY. XiaJ. YuT. ZhangX. ZhangL. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study.Lancet20203951022350751310.1016/S0140‑6736(20)30211‑7 32007143
    [Google Scholar]
  14. ChenF. LiuZ.S. ZhangF.R. XiongR.H. ChenY. ChengX.F. WangW.Y. RenJ. First case of severe childhood novel coronavirus pneumonia in China.Zhonghua Er Ke Za Zhi2020580E00510.3760/cma.j.issn.0578‑1310.2020.0005 32045966
    [Google Scholar]
  15. ZengL.K. TaoX.W. YuanW.H. WangJ. LiuX. LiuZ.S. First case of neonate infected with novel coronavirus pneumonia in China.Zhonghua Er Ke Za Zhi2020580E00910.3760/cma.j.issn.0578‑1310.2020.0009 32065520
    [Google Scholar]
  16. ZhangJ. WangS. XueY. Fecal specimen diagnosis 2019 novel coronavirus–infected pneumonia.J. Med. Virol.202092668068210.1002/jmv.25742 32124995
    [Google Scholar]
  17. RenJ. LiD. WangC. WuJ. WangY. SunY. ZhangQ. WangY. ChangX. Positive RT-PCR in urine from an asymptomatic patient with novel coronavirus 2019 infection: a case report.Infect. Dis. (Lond.)202052857157410.1080/23744235.2020.1766105 32420777
    [Google Scholar]
  18. RivettL. SridharS. SparkesD. RoutledgeM. JonesN.K. ForrestS. YoungJ. Pereira-DiasJ. HamiltonW.L. FerrisM. TorokM.E. MeredithL. GuptaR. LyonsP.A. ToshnerM. WarneB. Bartholdson ScottJ. CormieC. GillH. KeanI. MaesM. ReynoldsN. WantochM. CaddyS. CallerL. FeltwellT. HallG. HosmilloM. HouldcroftC. JahunA. KhokharF. YakovlevaA. ButcherH. CaputoD. Clapham-RileyD. DollingH. FurlongA. GravesB. GresleyE.L. KingstonN. PapadiaS. StarkH. StirrupsK.E. WebsterJ. CalderJ. HarrisJ. HewittS. KennetJ. MeadowsA. RastallR. BrienC.O. PriceJ. PublicoC. RowlandsJ. RuffoloV. TordesillasH. BrookesK. CannaL. CruzI. DempseyK. ElmerA. EscofferyN. JonesH. RibeiroC. SaundersC. WrightA. NyagumboR. RobertsA. BuckeA. HargreavesS. JohnsonD. NarcordaA. ReadD. SparkeC. WarboysL. LagaduK. MactavousL. GouldT. RaineT. MatherC. RamenatteN. VallierA-L. KasanickiM. EamesP-J. McNicholasC. ThakeL. BartholomewN. BrownN. ParmarS. ZhangH. BowringA. MartellG. QuinnellN. WrightJ. MurphyH. DunmoreB.J. LegchenkoE. GräfS. HuangC. HodgsonJ. HunterK. MartinJ. MesciaF. O’DonnellC. PointonL. ShihJ. SutcliffeR. TillyT. TongZ. TreacyC. WoodJ. BergamaschiL. BetancourtA. BowyerG. De SaA. EppingM. HinchA. HuhnO. JarvisI. LewisD. MarsdenJ. McCallumS. NiceF. CurranM.D. FullerS. ChaudhryA. ShawA. SamworthR.J. BradleyJ.R. DouganG. SmithK.G.C. LehnerP.J. MathesonN.J. WrightG. GoodfellowI.G. BakerS. WeekesM.P. Screening of healthcare workers for SARS-CoV-2 highlights the role of asymptomatic carriage in COVID-19 transmission.eLife20209e5872810.7554/eLife.58728 32392129
    [Google Scholar]
  19. SorbelloM. El-BoghdadlyK. Di GiacintoI. CataldoR. EspositoC. FalcettaS. MerliG. CorteseG. CorsoR.M. BressanF. PintaudiS. GreifR. DonatiA. PetriniF. The Italian coronavirus disease 2019 outbreak: recommendations from clinical practice.Anaesthesia202075672473210.1111/anae.15049 32221973
    [Google Scholar]
  20. LevaE. MorandiA. SartoriA. MacchiniF. BerrettiniA. ManzoniG. Correspondence from Northern Italy about our experience with COVID-19.J. Pediatr. Surg.202055598598610.1016/j.jpedsurg.2020.03.028 32278542
    [Google Scholar]
  21. LazzeriniM. BarbiE. ApicellaA. MarchettiF. CardinaleF. TrobiaG. Delayed access or provision of care in Italy resulting from fear of COVID-19.Lancet Child Adolesc. Health202045e10e1110.1016/S2352‑4642(20)30108‑5 32278365
    [Google Scholar]
  22. MahmoudiS. MehdizadehM. Shervin BadvR. NavaeianA. PourakbariB. RostamyanM. Sharifzadeh EkbataniM. EshaghiH. AbdolsalehiM.R. AlimadadiH. MovahediZ. MamishiS. The coronavirus disease 2019 (COVID‐19) in children: a study in an Iranian children’s referral hospital.Infect. Drug Resist.2020132649265510.2147/IDR.S259064 32801803
    [Google Scholar]
  23. YokooP. FonsecaE. FilhoM.O. Abdominal symptoms as an initial manifestation of COVID‐19 infection: report of two cases.Preprint Research Square202010.21203/rs.3.rs‑28198/v1
    [Google Scholar]
  24. KanneJ.P. Chest CT findings in 2019 novel coronavirus (2019‐nCoV) infections from Wuhan, China: key points for the radiologist.Radiology20202951161710.1148/radiol.2020200241 32017662
    [Google Scholar]
  25. EslerM. EslerD. Can angiotensin receptor-blocking drugs perhaps be harmful in the COVID-19 pandemic?J. Hypertens.202038578178210.1097/HJH.0000000000002450 32195824
    [Google Scholar]
  26. SaeedU. SellevollH.B. YoungV.S. SandbækG. GlomsakerT. MalaT. COVID-19 may present with acute abdominal pain.Br. J. Surg.20201077e186e18710.1002/bjs.11674 32343396
    [Google Scholar]
  27. HuangC. WangY. LiX. RenL. ZhaoJ. HuY. ZhangL. FanG. XuJ. GuX. ChengZ. YuT. XiaJ. WeiY. WuW. XieX. YinW. LiH. LiuM. XiaoY. GaoH. GuoL. XieJ. WangG. JiangR. GaoZ. JinQ. WangJ. CaoB. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑5 31986264
    [Google Scholar]
  28. WangD. HuB. HuC. ZhuF. LiuX. ZhangJ. WangB. XiangH. ChengZ. XiongY. ZhaoY. LiY. WangX. PengZ. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China.JAMA2020323111061106910.1001/jama.2020.1585 32031570
    [Google Scholar]
  29. ZhangJ. DongX. CaoY. YuanY. YangY. YanY. AkdisC.A. GaoY. Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China.Allergy20207571730174110.1111/all.14238 32077115
    [Google Scholar]
  30. YangX. YuY. XuJ. ShuH. XiaJ. LiuH. WuY. ZhangL. YuZ. FangM. YuT. WangY. PanS. ZouX. YuanS. ShangY. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study.Lancet Respir. Med.20208547548110.1016/S2213‑2600(20)30079‑5 32105632
    [Google Scholar]
  31. JinM. TongQ. Rhabdomyolysis as potential late complication associated with COVID-19.Emerg. Infect. Dis.20202671618162010.3201/eid2607.200445 32197060
    [Google Scholar]
  32. ZaimS. ChongJ.H. SankaranarayananV. HarkyA. COVID-19 and multiorgan response.Curr. Probl. Cardiol.2020458100618 10.1016/j.cpcardiol.2020.100618 32439197
    [Google Scholar]
  33. XuX. YuC. QuJ. ZhangL. JiangS. HuangD. ChenB. ZhangZ. GuanW. LingZ. JiangR. HuT. DingY. LinL. GanQ. LuoL. TangX. LiuJ. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2.Eur. J. Nucl. Med. Mol. Imaging20204751275128010.1007/s00259‑020‑04735‑9 32107577
    [Google Scholar]
  34. StewartD.J. HartleyJ.C. JohnsonM. MarksS.D. du PréP. StojanovicJ. Renal dysfunction in hospitalised children with COVID-19.Lancet Child Adolesc. Health202048e28e2910.1016/S2352‑4642(20)30178‑4 32553126
    [Google Scholar]
  35. AlbarelloF. PianuraE. Di StefanoF. CristofaroM. PetroneA. MarchioniL. PalazzoloC. SchininàV. NicastriE. PetrosilloN. CampioniP. EskildP. ZumlaA. IppolitoG. AbbonizioM.A. AgratiC. AlbarelloF. AmadeiG. AmendolaA. AntoniniM. BarbaroR. BartoliniB. BenigniM. BevilacquaN. BordiL. BordoniV. BrancaM. CampioniP. CapobianchiM.R. CaporaleC. CaravellaI. CarlettiF. CastillettiC. ChiappiniR. CiaralliC. ColavitaF. CorpolongoA. CristofaroM. CurialeS. D’AbramoA. DantimiC. AngelisA.D. AngelisG.D. LorenzoR.D. StefanoF.D. FerraroF. FiorentiniL. FrustaciA. GallìP. GarottoG. GiancolaM.L. GiansanteF. GiombiniE. GreciM.C. IppolitoG. LalleE. LaniniS. LapaD. LeporeL. LuciaA. LufraniF. MacchioneM. MaraniA. MarchioniL. MarianoA. MariniM.C. MarittiM. MatusaliG. MeschiS. MontaldoF.M.C. MurachelliS. NicastriE. NotoR. PalazzoloC. PalliniE. PasseriV. PelliccioniF. PetrecchiaA. PetroneA. PetrosilloN. PianuraE. PisciottaM. PittalisS. ProiettiC. PuroV. RinonapoliG. RuecaM. SacchiA. SanasiF. SantagataC. ScarciaS. SchininàV. ScognamiglioP. ScorzoliniL. StaziG. VaiaF. VairoF. ValliM.B. 2019-novel Coronavirus severe adult respiratory distress syndrome in two cases in Italy: An uncommon radiological presentation.Int. J. Infect. Dis.20209319219710.1016/j.ijid.2020.02.043 32112966
    [Google Scholar]
  36. ValetteX. du CheyronD. GoursaudS. Mediastinal lymphadenopathy in patients with severe COVID-19.Lancet Infect. Dis.20202011123010.1016/S1473‑3099(20)30310‑8 32330440
    [Google Scholar]
  37. TaweesedtP.T. SuraniS. Mediastinal lymphadenopathy in COVID-19: A review of literature.World J. Clin. Cases20219122703271010.12998/wjcc.v9.i12.2703 33969053
    [Google Scholar]
  38. RothanH.A. ByrareddyS.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak.J. Autoimmun.202010910243310.1016/j.jaut.2020.102433 32113704
    [Google Scholar]
  39. LiuK. FangY.Y. DengY. LiuW. WangM.F. MaJ.P. XiaoW. WangY.N. ZhongM.H. LiC.H. LiG.C. LiuH.G. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province.Chin. Med. J. (Engl.)202013391025103110.1097/CM9.0000000000000744 32044814
    [Google Scholar]
  40. XiongS. LiuL. LinF. ShiJ. HanL. LiuH. HeL. JiangQ. WangZ. FuW. LiZ. LuQ. ChenZ. DingS. Clinical characteristics of 116 hospitalized patients with COVID-19 in Wuhan, China: a single-centered, retrospective, observational study.BMC Infect. Dis.202020178779810.1186/s12879‑020‑05452‑2 33092539
    [Google Scholar]
  41. WangY. WangY. ChenY. QinQ. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID‐19) implicate special control measures.J. Med. Virol.202092656857610.1002/jmv.25748 32134116
    [Google Scholar]
  42. FraterJ.L. ZiniG. d’OnofrioG. RogersH.J. COVID‐19 and the clinical hematology laboratory.Int. J. Lab. Hematol.202042S1Suppl. 1111810.1111/ijlh.13229 32311826
    [Google Scholar]
  43. SahooR.N. PattanaikS. PattnaikG. MallickS. MohapatraR. Review on the use of molecular docking as the first line tool in drug discovery and development.Indian J. Pharm. Sci.20228451334133710.36468/pharmaceutical‑sciences.1031
    [Google Scholar]
  44. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: a powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/157340911795677602 21534921
    [Google Scholar]
  45. SmythM.S. MartinJ.H. x Ray crystallography.Mol. Pathol.200053181410.1136/mp.53.1.8 10884915
    [Google Scholar]
  46. SugikiT. KobayashiN. FujiwaraT. Modern technologies of solution nuclear magnetic resonance spectroscopy for three-dimensional structure determination of proteins open avenues for life scientists.Comput. Struct. Biotechnol. J.20171532833910.1016/j.csbj.2017.04.001 28487762
    [Google Scholar]
  47. NakaneT. KotechaA. SenteA. McMullanG. MasiulisS. BrownP.M.G.E. GrigorasI.T. MalinauskaiteL. MalinauskasT. MiehlingJ. UchańskiT. YuL. KariaD. PechnikovaE.V. de JongE. KeizerJ. BischoffM. McCormackJ. TiemeijerP. HardwickS.W. ChirgadzeD.Y. MurshudovG. AricescuA.R. ScheresS.H.W. Single-particle cryo-EM at atomic resolution.Nature2020587783215215610.1038/s41586‑020‑2829‑0 33087931
    [Google Scholar]
  48. JorgensenW.L. The many roles of computation in drug discovery.Science200430356651813181810.1126/science.1096361 15031495
    [Google Scholar]
  49. KitchenD.B. DecornezH. FurrJ.R. BajorathJ. Docking and scoring in virtual screening for drug discovery: methods and applications.Nat. Rev. Drug Discov.200431193594910.1038/nrd1549 15520816
    [Google Scholar]
  50. BajorathJ. Integration of virtual and high-throughput screening.Nat. Rev. Drug Discov.200211188289410.1038/nrd941 12415248
    [Google Scholar]
  51. LangerT. HoffmannR. Virtual screening: an effective tool for lead structure discovery?Curr. Pharm. Des.20017750952710.2174/1381612013397861 11375766
    [Google Scholar]
  52. BissantzC. FolkersG. RognanD. Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations.J. Med. Chem.200043254759476710.1021/jm001044l 11123984
    [Google Scholar]
  53. MohapatraR. MallickS. NandaA. SahooR.N. PramanikA. BoseA. DasD. PattnaikL. Analysis of steady state and non-steady state corneal permeation of diclofenac.RSC Advances2016638319763198710.1039/C6RA03604J
    [Google Scholar]
  54. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms20184331 31487867
    [Google Scholar]
  55. AjaP.M. AwokeJ.N. AguP.C. AdegboyegaA.E. EzehE.M. IgwenyiI.O. OrjiO.U. AniO.G. AleB.A. IbiamU.A. Hesperidin abrogates bisphenol A endocrine disruption through binding with fibroblast growth factor 21 (FGF-21), α-amylase and α-glucosidase: an in silico molecular study.J. Genet. Eng. Biotechnol.20222018410.1186/s43141‑022‑00370‑z 35648239
    [Google Scholar]
  56. BairagiG.R. PatelV.P. Nutraceutical a review on basic need, classification, recent trends in industry and delivery systems.J. Emerg. Technol. Innov. Res.202185c183c19910.1186/s43141‑022‑00370‑z
    [Google Scholar]
  57. HeylandD.K. In search of the magic nutraceutical: problems with current approaches.J. Nutr.20011319Suppl.2591S2595S10.1093/jn/131.9.2591S 11533319
    [Google Scholar]
  58. Eicher-MillerH. FulgoniV. KeastD. Processed Food Contributions to Energy and Nutrient Intake Differ among US Children by Race/Ethnicity.Nutrients2015712100761008810.3390/nu7125503 26633491
    [Google Scholar]
  59. MadleyW.R. Functional foods.New Prod.200366125
    [Google Scholar]
  60. JainA.N. Virtual screening in lead discovery and optimization.Curr. Opin. Drug Discov. Devel.200474396403 15338948
    [Google Scholar]
  61. DasD.R. KumarD. KumarP. Molecular docking and its application in search of antisickling agent from Carica papaya.J. Appl. Biol. Biotechnol.20208110511610.7324/JABB.2020.80117
    [Google Scholar]
  62. BrooijmansN. KuntzI.D. Molecular recognition and docking algorithms.Annu. Rev. Biophys. Biomol. Struct.200332133537310.1146/annurev.biophys.32.110601.142532 12574069
    [Google Scholar]
  63. JinZ. DuX. XuY. DengY. LiuM. ZhaoY. ZhangB. LiX. ZhangL. PengC. DuanY. YuJ. WangL. YangK. LiuF. JiangR. YangX. YouT. LiuX. YangX. BaiF. LiuH. LiuX. GuddatL.W. XuW. XiaoG. QinC. ShiZ. JiangH. RaoZ. YangH. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors.Nature2020582781128929310.1038/s41586‑020‑2223‑y 32272481
    [Google Scholar]
  64. DerwandR. ScholzM. Does zinc supplementation enhance the clinical efficacy of chloroquine/hydroxychloroquine to win today’s battle against COVID-19?Med. Hypotheses202014210981510.1016/j.mehy.2020.109815 32408070
    [Google Scholar]
  65. WangZ. ChenX. LuY. ChenF. ZhangW. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment.Biosci. Trends2020141646810.5582/bst.2020.01030 32037389
    [Google Scholar]
  66. Madhavi SastryG. AdzhigireyM. DayT. AnnabhimojuR. ShermanW. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments.J. Comput. Aided Mol. Des.201327322123410.1007/s10822‑013‑9644‑8 23579614
    [Google Scholar]
  67. JacobsonM.P. PincusD.L. RappC.S. DayT.J.F. HonigB. ShawD.E. FriesnerR.A. A hierarchical approach to all‐atom protein loop prediction.Proteins200455235136710.1002/prot.10613 15048827
    [Google Scholar]
  68. Prestwick phytochemical Library: a set of small natural molecules from natural origin.http://www.prestwickchemical.com/libraries-screening-lib-phyto.html
  69. HarderE. DammW. MapleJ. WuC. ReboulM. XiangJ.Y. WangL. LupyanD. DahlgrenM.K. KnightJ.L. KausJ.W. CeruttiD.S. KrilovG. JorgensenW.L. AbelR. FriesnerR.A. OPLS3: a force field providing broad coverage of drug-like small molecules and proteins.J. Chem. Theory Comput.201612128129610.1021/acs.jctc.5b00864 26584231
    [Google Scholar]
  70. SirinS. KumarR. MartinezC. KarmilowiczM.J. GhoshP. AbramovY.A. MartinV. ShermanW. A computational approach to enzyme design: predicting ω-aminotransferase catalytic activity using docking and MM-GBSA scoring.J. Chem. Inf. Model.20145482334234610.1021/ci5002185 25005922
    [Google Scholar]
  71. van de WaterbeemdH. GiffordE. ADMET in silico modelling: towards prediction paradise?Nat. Rev. Drug Discov.20032319220410.1038/nrd1032 12612645
    [Google Scholar]
  72. ColsonP. RolainJ.M. LagierJ.C. BrouquiP. RaoultD. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19.Int. J. Antimicrob. Agents202055410593210.1016/j.ijantimicag.2020.105932 32145363
    [Google Scholar]
  73. SatarkerS. Ahuja, T.; Banerjee, M.; e, V.B.; Dogra, S.; Agarwal, T.; Nampoothiri, M. Hydroxychloroquine in COVID-19: Potential mechanism of action against SARS-CoV-2.Curr. Pharmacol. Rep.20206520321110.1007/s40495‑020‑00231‑8 32864299
    [Google Scholar]
  74. Dr. Duke’s phytochemicsl and ethnobotanical databases.https://phytochem.nal.usda.gov/phytochem/search/list
  75. DukeJ.A. Handbook of phytochemical constituents of GRAS herbs and other economic plants.CRC Press LLC2000
    [Google Scholar]
  76. Ntie-KangF. LifongoL.L. MbahJ.A. Owono OwonoL.C. MegnassanE. MbazeL.M. JudsonP.N. SipplW. EfangeS.M.N. In silico drug metabolism and pharmacokinetic profiles of natural products from medicinal plants in the Congo basin.In silico Pharmacol.2013111210.1186/2193‑9616‑1‑12 25505657
    [Google Scholar]
/content/journals/aia/10.2174/0122113525310221240713022605
Loading
/content/journals/aia/10.2174/0122113525310221240713022605
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ADME properties; COVID-19; HTVS; hydroxychloroquine; Natural molecules; SAR studies
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test