Skip to content
2000
Volume 23, Issue 2
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Background and Aim

Mosquitoes significantly threaten public health, transmitting dangerous diseases to humans and animals. Conventional insecticide spraying, while common, has limitations in effectively controlling vector-borne diseases. Many chemical pesticides harm humans and animals, and some persist in the environment and cause toxic effects. Recently, there has been renewed interest in plant-based products due to concerns about insecticide resistance, cross-resistance, potential toxicity associated with synthetic options, and rising costs. Therefore, this study aimed to screen the and phytochemicals targeting the odorant binding proteins (OBPs) of and .

Methods

In this study, we conducted molecular docking analyses using specific plant-derived compounds from and .

Results

We focused on the interaction of these compounds with OBPs from dengue and chikungunya vectors ( and ). The selected phytochemical compounds exhibited strong binding with the OBP of both and . Tetrahydrofuran-2-carboxylic acid, Carvacryl acetate, and Brallobarbital showed high binding affinity and significant interaction with . Tetrahydrofuran-2-carboxylic acid and 3-Methyl-4-isopropylphenol also demonstrated substantial binding affinity and effective interaction with OBP.

Conclusion

These findings suggest that the identified compounds can potentially disrupt the attraction of mosquitoes to humans, thus reducing human-vector contact. They may offer a promising alternative for developing natural and efficient mosquito repellents, surpassing currently used synthetic options like N, N-diethyl-meta-toluamide, and other conventional repellents.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525306071240613043139
2024-07-08
2025-01-16
Loading full text...

Full text loading...

References

  1. EdwinE.S. Vasantha-SrinivasanP. Senthil-NathanS. ThanigaivelA. PonsankarA. PradeepaV. Selin-RaniS. KalaivaniK. HunterW.B. Abdel-MegeedA. DuraipandiyanV. Al-DhabiN.A. Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae).Acta Trop.201616316717810.1016/j.actatropica.2016.07.009 27443607
    [Google Scholar]
  2. PriyaS.S. Vasantha-SrinivasanP. AltemimiA.B. KeerthanaR. RadhakrishnanN. Senthil-NathanS. KalaivaniK. ChandrasekarN. KarthiS. GanesanR. AlkananZ.T. PalT. VermaO.P. ProćkówJ. Bioactive molecules derived from plants in managing dengue vector Aedes aegypti (Linn.).Molecules2023285238610.3390/molecules28052386 36903635
    [Google Scholar]
  3. ChandraG. BhattacharjeeI. ChatterjeeS.N. GhoshA. Mosquito control by larvivorous fish.Indian J. Med. Res.200812711327 18316849
    [Google Scholar]
  4. LwandeO.W. ObandaV. LindströmA. AhlmC. EvanderM. NäslundJ. BuchtG. Globe-Trotting Aedes aegypti and Aedes albopictus: Risk factors for arbovirus pandemics.Vector Borne Zoonotic Dis.2020202718110.1089/vbz.2019.2486 31556813
    [Google Scholar]
  5. MoussonL. DaugaC. GarriguesT. SchaffnerF. VazeilleM. FaillouxA.B. Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations.Genet. Res.200586111110.1017/S0016672305007627 16181519
    [Google Scholar]
  6. KraemerM.U.G. SinkaM.E. DudaK.A. MylneA.Q.N. ShearerF.M. BarkerC.M. MooreC.G. CarvalhoR.G. CoelhoG.E. Van BortelW. HendrickxG. SchaffnerF. ElyazarI.R.F. TengH.J. BradyO.J. MessinaJ.P. PigottD.M. ScottT.W. SmithD.L. WintG.R.W. GoldingN. HayS.I. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus.eLife20154e0834710.7554/eLife.08347 26126267
    [Google Scholar]
  7. ThammasittirongA. ThammasittirongS.N.R. Aromatic Residues on the Side Surface of Cry4Ba-Domain II of Bacillus thuringiensis subsp. israelensis Function in Binding to Their Counterpart Residues on the Aedes aegypti Alkaline Phosphatase Receptor.Toxins (Basel)202315211410.3390/toxins15020114 36828427
    [Google Scholar]
  8. KamgangB. VazeilleM. YougangA.P. TedjouA.N. Wilson-BahunT.A. MoussonL. WondjiC.S. FaillouxA.B. Potential of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) to transmit yellow fever virus in urban areas in Central Africa.Emerg. Microbes Infect.2019811636164110.1080/22221751.2019.1688097 31711378
    [Google Scholar]
  9. SivanA. ShriramA.N. SunishI.P. VidhyaP.T. Host-feeding pattern of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in heterogeneous landscapes of South Andaman, Andaman and Nicobar Islands, India.Parasitol. Res.201511493539354610.1007/s00436‑015‑4634‑5 26220560
    [Google Scholar]
  10. PialouxG. GaüzèreB.A. JauréguiberryS. StrobelM. Chikungunya, an epidemic arbovirosis.Lancet Infect. Dis.20077531932710.1016/S1473‑3099(07)70107‑X 17448935
    [Google Scholar]
  11. RaoB.B. HarikumarP.S. JayakrishnanT. GeorgeB. Characteristics of Aedes (Stegomyia) albopictus Skuse (Diptera:Culicidae) breeding sites.Southeast Asian J. Trop. Med. Public Health201142510771082 22299432
    [Google Scholar]
  12. DelatteH. PaupyC. DehecqJ.S. ThiriaJ. FaillouxA.B. FontenilleD. Aedes albopictus, vector of chikungunya and dengue viruses in Reunion Island: Biology and control.Parasite200815131310.1051/parasite/2008151003 18416242
    [Google Scholar]
  13. FradinM.S. DayJ.F. Comparative efficacy of insect repellents against mosquito bites.N. Engl. J. Med.20023471131810.1056/NEJMoa011699 12097535
    [Google Scholar]
  14. CoulibalyZ.I. GoweloS. TraoreI. MbeweR.B. NgulubeW. OlangaE.A. DePinaA.J. SanouA. ColemanS. TangenaJ.A.A. Strengthening adult mosquito surveillance in Africa for disease control: Learning from the present.Curr. Opin. Insect Sci.20236010111010.1016/j.cois.2023.101110 37660835
    [Google Scholar]
  15. SchmidtC.W. Outsmarting olfaction: The next generation of mosquito repellents.Environ. Health Perspect.20051137A468A47110.1289/ehp.113‑a468 16002364
    [Google Scholar]
  16. FischerP.R. BialekR. Prevention of malaria in children.Clin. Infect. Dis.200234449349810.1086/338257 11797176
    [Google Scholar]
  17. IsmanM.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world.Annu. Rev. Entomol.2006511456610.1146/annurev.ento.51.110104.151146 16332203
    [Google Scholar]
  18. D’OnofrioG. SancarloD. RuanQ. YuZ. PanzaF. DanieleA. GrecoA. SeripaD. Phytochemicals in the treatment of alzheimer’s disease: A systematic review.Curr. Drug Targets2017181314871498 27809746
    [Google Scholar]
  19. RanjanA. RamachandranS. GuptaN. KaushikI. WrightS. SrivastavaS. DasH. SrivastavaS. PrasadS. SrivastavaS.K. Role of phytochemicals in cancer prevention.Int. J. Mol. Sci.20192020498110.3390/ijms20204981 31600949
    [Google Scholar]
  20. HowesM.J.R. PerryE. The role of phytochemicals in the treatment and prevention of dementia.Drugs Aging201128643946810.2165/11591310‑000000000‑00000 21639405
    [Google Scholar]
  21. GaikwadS.B. Krishna MohanG. RaniM.S. Phytochemicals for diabetes management.Pharm. Crop.20145112810.2174/2210290601405010011
    [Google Scholar]
  22. PopR.M. PopoloA. TrifaA.P. StanciuL.A. Phytochemicals in cardiovascular and respiratory diseases: Evidence in oxidative stress and inflammation.Oxid. Med. Cell. Longev.201820181310.1155/2018/1603872 30159110
    [Google Scholar]
  23. SivamaruthiB.S. KesikaP. ChaiyasutC. The influence of supplementation of anthocyanins on obesity-associated comorbidities: A concise review.Foods20209668710.3390/foods9060687 32466434
    [Google Scholar]
  24. ChaiyasutC. SivamaruthiB.S. WongwanJ. ThiwanK. RungseevijitprapaW. KlunklinA. KunaviktikulW. Effects of Litsea cubeba (Lour.) persoon essential oil aromatherapy on mood states and salivary cortisol levels in healthy volunteers.Evid. Based Complement. Alternat. Med.202020201810.1155/2020/4389239 32774414
    [Google Scholar]
  25. Al-KhayriJ.M. DubeyS. ThirumoorthyG. NagellaP. RezkA.A.S. ShehataW.F. In silico identification of 1-DTP inhibitors of Corynebacterium diphtheriae using phytochemicals from Andrographis paniculata.Molecules202328290910.3390/molecules28020909 36677967
    [Google Scholar]
  26. SivamaruthiB.S. AlagarsamyK. ThangaleelaS. BharathiM. KesikaP. ChaiyasutC. Composition, microbiota, mechanisms, and anti-obesity properties of rice bran.Foods2023126130010.3390/foods12061300 36981226
    [Google Scholar]
  27. KesikaP. SivamaruthiB.S. ThangaleelaS. BharathiM. ChaiyasutC. Role and mechanisms of phytochemicals in hair growth and health.Pharmaceuticals (Basel)202316220610.3390/ph16020206 37259355
    [Google Scholar]
  28. SwamyM. SinniahU. A comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth.: An aromatic medicinal plant of industrial importance.Molecules20152058521854710.3390/molecules20058521 25985355
    [Google Scholar]
  29. DaiY. ChenS.R. ChaiL. ZhaoJ. WangY. WangY. Overview of pharmacological activities of and its major compound andrographolide.Crit Rev Food Sci Nutr201959sup 1S17S29
    [Google Scholar]
  30. ShahidA. KhanK.R. RaoH. AatiH.Y. SherifA.E. KhanD.A. BasitA. UmairM. MueedA. EsatbeyogluT. KormaS.A. Phytochemical Profiling of the ethanolic extract of Zaleya pentandra L. jaffery and its biological activities by in-vitro assays and in-silico molecular docking.Appl. Sci. (Basel)202213158410.3390/app13010584
    [Google Scholar]
  31. AdelusiT.I. OyedeleA.K. BoyenleI.D. OgunlanaA.T. AdeyemiR.O. UkachiC.D. IdrisM.O. OlaobaO.T. AdedotunI.O. KolawoleO.E. XiaoxingY. Abdul-HammedM. Molecular modeling in drug discovery.Int. J. Med. Inform.202229100880
    [Google Scholar]
  32. AguP.C. AfiukwaC.A. OrjiO.U. EzehE.M. OfokeI.H. OgbuC.O. UgwujaE.I. AjaP.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management.Sci. Rep.20231311339810.1038/s41598‑023‑40160‑2 37592012
    [Google Scholar]
  33. WangM. LiW. YuX. LuoY. HanK. WangC. JinQ. AffinityVAE: A multi-objective model for protein-ligand affinity prediction and drug design.Comput. Biol. Chem.202310710797110.1016/j.compbiolchem.2023.107971 37852036
    [Google Scholar]
  34. Moine-FranelA. MareuilF. NilgesM. CiamburC.B. SperandioO. A comprehensive dataset of protein-protein interactions and ligand binding pockets for advancing drug discovery.Sci. Data202411140210.1038/s41597‑024‑03233‑z 38643260
    [Google Scholar]
  35. DouB. ZhuZ. MerkurjevE. KeL. ChenL. JiangJ. ZhuY. LiuJ. ZhangB. WeiG.W. Machine learning methods for small data challenges in molecular science.Chem. Rev.2023123138736878010.1021/acs.chemrev.3c00189 37384816
    [Google Scholar]
  36. KolbP. FerreiraR.S. IrwinJ.J. ShoichetB.K. Docking and chemoinformatic screens for new ligands and targets.Curr. Opin. Biotechnol.200920442943610.1016/j.copbio.2009.08.003 19733475
    [Google Scholar]
  37. ArumugamG. SwamyM. SinniahU. Plectranthus amboinicus (Lour.) Spreng: Botanical, phytochemical, pharmacological and nutritional significance.Molecules201621436910.3390/molecules21040369 27043511
    [Google Scholar]
  38. GrayerR.J. EckertM.R. LeverA. VeitchN.C. KiteG.C. PatonA.J. Distribution of exudate flavonoids in the genus Plectranthus.Biochem. Syst. Ecol.201038333534110.1016/j.bse.2010.01.014
    [Google Scholar]
  39. AlasbahiR. MelzigM. Plectranthus barbatus: A review of phytochemistry, ethnobotanical uses and pharmacology - Part 1.Planta Med.201076765366110.1055/s‑0029‑1240898 20178070
    [Google Scholar]
  40. LukhobaC.W. SimmondsM.S.J. PatonA.J. Plectranthus: A review of ethnobotanical uses.J. Ethnopharmacol.2006103112410.1016/j.jep.2005.09.011 16289602
    [Google Scholar]
  41. KhareR.S. BanerjeeS. KunduK.K. Coleus aromaticus Benth. A nutritive medicinal plant of potential therapeutic value.Int. J. Pharma Bio Sci.20112488500
    [Google Scholar]
  42. RoshanP. NaveenM. ManjulP.S. GulzarA. AnitaS. SudarshanS. Plectranthus amboinicus (Lour) Spreng: An overview.Pharm. Res.20104115
    [Google Scholar]
  43. Can BaserK. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils.Curr. Pharm. Des.200814293106311910.2174/138161208786404227 19075694
    [Google Scholar]
  44. PandeyD.K. TripathiN. TripathiR.D. DixitS.N. Fungitoxic and phytotoxic properties of essential oils of Hyptis suaveolens.J. Plant Dis. Prot.1982896344349
    [Google Scholar]
  45. SinghG. UpadhyayR.N. RaoG.P. Fungitoxic activity of volatile oil of Hyptis suaveolens.Fitoterpia199263462465
    [Google Scholar]
  46. AsekunO.T. EkundayoO. Essential oil constituents of Hyptis suaveolens (L.) Poit., (bush tea) leaves from Nigeria.J. Essent. Oil Res.200012222723010.1080/10412905.2000.9699504
    [Google Scholar]
  47. BayalaB. NadembegaC. GuennéS. BuñayJ. Mahoukèdè ZohonconT. Wendkuuni DjigmaF. YonliA. BaronS. FigueredoG. A LobaccaroJ.M. Simpore, J. Chemical composition, antioxidant and cytotoxic activities of Hyptis suaveolens (L.) Poit. essential oil on prostate and cervical cancers cells.Pak. J. Biol. Sci.20202391184119210.3923/pjbs.2020.1184.1192 32981249
    [Google Scholar]
  48. MachadoF.D.F. FormigaR.O. LimaG.R.M. de JesusN.Z.T. Alves JúniorE.B. MarinhoA.F. TavaresJ.F. SantosF.A. VianaA.F.S.C. AraújoA.A. de Araújo JúniorR.F. PellizzonC.H. BatistaL.M. Hyptis suaveolens (L.) Poit protects colon from TNBS-induced inflammation via immunomodulatory, antioxidant and anti-proliferative mechanisms.J. Ethnopharmacol.202126511315310.1016/j.jep.2020.113153 32702379
    [Google Scholar]
  49. MohantaO. RayA. JenaS. SahooA. PandaS.S. DasP.K. NayakS. PandaP.C. Mesosphaerum suaveolens essential oil attenuates inflammatory response and oxidative stress in LPS-Stimulated RAW 264.7 macrophages by regulating NF-κB signaling pathway.Molecules20232815581710.3390/molecules28155817 37570786
    [Google Scholar]
  50. MoreiraA.C.P. LimaE.O. WanderleyP.A. CarmoE.S. SouzaE.L. Chemical composition and antifungal activity of Hyptis suaveolens (L.) poit leaves essential oil against Aspergillus species.Braz. J. Microbiol.2010411283310.1590/S1517‑83822010000100006 24031459
    [Google Scholar]
  51. PenicheT. DuarteJ.L. FerreiraR.M.A. SidônioI.A.P. SarquisR.S.F.R. SarquisÍ.R. OliveiraA.E.M.F.M. CruzR.A.S. FerreiraI.M. FlorentinoA.C. CarvalhoJ.C.T. SoutoR.N.P. FernandesC.P. Larvicidal effect of Hyptis suaveolens (L.) Poit. essential oil nanoemulsion on Culex quinquefasciatus (Diptera: Culicidae).Molecules20222723843310.3390/molecules27238433 36500534
    [Google Scholar]
  52. GurungA.B. AliM.A. LeeJ. FarahM.A. Al-AnaziK.M. Molecular docking and dynamics simulation study of bioactive compounds from Ficus carica L. with important anticancer drug targets.PLoS One2021167e025403510.1371/journal.pone.0254035 34260631
    [Google Scholar]
  53. PhosrithongN. UngwitayatornJ. Molecular docking study on anticancer activity of plant-derived natural products.Med. Chem. Res.201019881783510.1007/s00044‑009‑9233‑5
    [Google Scholar]
  54. AhmadF. SinghG. SoniH. TandonS. Identification of potential neuroprotective compound from Ganoderma lucidum extract targeting microtubule affinity regulation kinase 4 involved in Alzheimer’s disease through molecular dynamics simulation and MMGBSA.Aging Med. (Milton)20236214415410.1002/agm2.12232 37287673
    [Google Scholar]
  55. ProkopenkoY.S. PerekhodaL.O. GeorgiyantsV.A. Docking studies of biologically active substances from plant extracts with anticonvulsant activity. J Appl Pharm Sci201991066072
    [Google Scholar]
  56. SahilaM. BabithaP.P. BandaruS. NayarisseriA. DossV.A. Molecular docking based screening of GABA (A) receptor inhibitors from plant derivatives.Bioinformation201511628028910.6026/97320630011280 26229288
    [Google Scholar]
  57. Sampangi-RamaiahM.H. VishwakarmaR. Uma ShaankerR. Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease.Curr. Sci.202011871087109210.18520/cs/v118/i7/1087‑1092
    [Google Scholar]
  58. HariS. In silico molecular docking and ADME/T analysis of plant compounds against IL17A and IL18 targets in gouty arthritis.J. Appl. Pharm. Sci.201997018026
    [Google Scholar]
  59. BhowmikR. KantR. ManaithiyaA. SalujaD. VyasB. NathR. QureshiK.A. ParkkilaS. AspatwarA. Navigating bioactivity space in anti-tubercular drug discovery through the deployment of advanced machine learning models and cheminformatics tools: A molecular modeling based retrospective study.Front. Pharmacol.202314126557310.3389/fphar.2023.1265573 37705534
    [Google Scholar]
  60. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2019 update: Improved access to chemical data.Nucleic Acids Res.201947D1D1102D110910.1093/nar/gky1033 30371825
    [Google Scholar]
  61. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem in 2021: New data content and improved web interfaces.Nucleic Acids Res.202149D1D1388D139510.1093/nar/gkaa971 33151290
    [Google Scholar]
  62. TrudeauS.J. HwangH. MathurD. BegumK. PetreyD. MurrayD. HonigB. PREPCI: A structure‐ and chemical similarity‐informed database of predicted protein compound interactions.Protein Sci.2023324e459410.1002/pro.4594 36776141
    [Google Scholar]
  63. SainiA. KumarA. JangidK. KumarV. JaitakV. Identification of terpenoids as dihydropteroate synthase and dihydrofolate reductase inhibitors through structure-based virtual screening and molecular dynamic simulations.J. Biomol. Struct. Dyn.20244241966198410.1080/07391102.2023.2203249 37173829
    [Google Scholar]
  64. ZhuangX. WangQ. WangB. ZhongT. CaoY. LiK. YinJ. Prediction of the key binding site of odorant‐binding protein of] H olotrichia oblita Faldermann (C oleoptera: S carabaeida).Insect Mol. Biol.201423338139010.1111/imb.12088 24576058
    [Google Scholar]
  65. LangeswaranK. JeyaramanJ. MariadasseR. SoorangkattanS. Insights from the molecular modeling, docking analysis of illicit drugs and bomb compounds with Honeybee Odorant Binding Proteins (OBPs).Bioinformation201814521923110.6026/97320630014219 30108419
    [Google Scholar]
  66. ZhengZ.C. LiD.Z. ZhouA. YiS.C. LiuH. WangM.Q. Predicted structure of a Minus-C OBP from Batocera horsfieldi (Hope) suggests an intermediate structure in evolution of OBPs.Sci. Rep.2016613398110.1038/srep33981 27659921
    [Google Scholar]
  67. SantanaI.B. LeiteF.H.A. Santos JuniorM.C. Identification of Lutzomyia longipalpis odorant binding protein modulators by comparative modeling, hierarchical virtual screening, and molecular dynamics.J. Chem.2018201811010.1155/2018/4173479
    [Google Scholar]
  68. WangJ. RenB. BakK.H. SoladoyeO.P. GagaouaM. Ruiz-CarrascalJ. HuangY. ZhaoZ. ZhaoY. FuY. WuW. Preservative effects of composite biopreservatives on goat meat during chilled storage: Insights into meat quality, high-throughput sequencing and molecular docking.Lebensm. Wiss. Technol.202318411503310.1016/j.lwt.2023.115033
    [Google Scholar]
  69. P D, K.J.; Kempraj, V.; Aurade, R.M.; Kumar Roy, T.; K S, S.; Verghese, A. Computational reverse chemical ecology: Virtual screening and predicting behaviorally active semiochemicals for Bactrocera dorsalis.BMC Genomics201415120910.1186/1471‑2164‑15‑209 24640964
    [Google Scholar]
  70. González-GonzálezA. Palma-MillanaoR. YáñezO. RojasM. MutisA. VenthurH. QuirozA. RamírezC.C. Virtual screening of plant volatile compounds reveals a high affinity of Hylamorpha elegans (Coleoptera: Scarabaeidae) Odorant-binding proteins for sesquiterpenes from its native host.J. Insect Sci.20161613010.1093/jisesa/iew008 27012867
    [Google Scholar]
  71. LiuJ. TianZ. ZhangY. Structure-based discovery of potentially active semiochemicals for Cydia pomonella (L.).Sci. Rep.2016613460010.1038/srep34600 27708370
    [Google Scholar]
  72. WangY. JinY. ChenQ. WenM. ZhaoH. DuanH. RenB. Selectivity and ligand-based molecular modeling of an odorant-binding protein from the leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) in relation to habitat-related volatiles.Sci. Rep.2017711537410.1038/s41598‑017‑15538‑8 29133810
    [Google Scholar]
  73. SunL. WangQ. YangS. WangQ. ZhangZ. KhashavehA. ZhangY.J. GuoY.Y. Functional analysis of female‐biased odorant binding protein 6 for volatile and nonvolatile host compounds in Adelphocoris lineolatus (Goeze).Insect Mol. Biol.201726560161510.1111/imb.12322 28632334
    [Google Scholar]
  74. HongB. ChangQ. ZhaiY. RenB. ZhangF. Functional characterization of odorant binding protein PyasOBP2 from the jujube bud weevil, Pachyrhinus yasumatsui (Coleoptera: Curculionidae).Front. Physiol.20221390075210.3389/fphys.2022.900752 35574498
    [Google Scholar]
  75. MoolaA.K. AyyaduraiT. BalasubramaniS. VigneshR. MohanP.K. SathishS. DianaR.K.B. Chemical composition and larvicidal activity against Aedes aegypti larvae from Hyptis suaveolens (L.) Poit essential oil.J. Nat. Pesticide Res2023310001810.1016/j.napere.2022.100018
    [Google Scholar]
  76. WangC.Y. TengH.J. LeeS.J. LinC. WuJ.W. WuH.S. Efficacy of various larvicides against Aedes aegypti immatures in the laboratory.Jpn. J. Infect. Dis.201366434134410.7883/yoken.66.341 23883850
    [Google Scholar]
/content/journals/aia/10.2174/0122113525306071240613043139
Loading
/content/journals/aia/10.2174/0122113525306071240613043139
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test