Skip to content
2000
Volume 23, Issue 2
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Background

The increasing use of synthetic antimicrobials and antioxidants is a concern for human health.

Aims

The main objective of this study was to examine the chemical composition of the extracted from and its hydrosol extract while evaluating their antioxidant and antimicrobial effects .

Materials and Methods

The was obtained by hydrodistillation, while the hydrosol extract was obtained by the liquid-liquid extraction method. The volatile compounds of the and hydrosol extract were analysed by gas chromatography (GC/FID) and gas chromatography coupled with mass spectrometry (GC/MS). Antioxidant activities were evaluated using two methods: free radical scavenging activity (DPPH) and iron reduction antioxidant power (FRAP), with BHT used as a positive control. The antimicrobial activity of the and hydrosol extract was evaluated using the agar disc diffusion method.

Results

According to the GC/FID and GC/MS analysis, the of consisted mainly of germacrene D-4-ol (26.3%), epi-α-muurolol (19.2%), and epi-α-cadinol (10.2%). In contrast, the hydrosol extract consisted of oxygenated compounds, including (E)-phytol (23.5%), 14-hydroxy-δ-cadine (17.5%), caryophyllene oxide (11.5%), piperitone (13.5%), and piperitone oxide (11.5%). The and hydrosol extract showed positive antioxidant activity with both tests. It should be noted that the hydrosol extract showed the best performance, with an IC of 8.3 g/L with the DPPH and an IC of 12.3 g/L with the FRAP test compared to the BHT. The revealed antimicrobial activity with strong inhibition against , , , and compared to Gentamicin.

Conclusion

The results showed that and hydrosol extract have promising antimicrobial and antioxidant properties. These findings provide encouraging prospects for their potential use in the pharmaceutical or cosmetic sectors.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525303193240606062041
2024-07-03
2025-01-16
Loading full text...

Full text loading...

References

  1. ModzelewskaA. SurS. KumarS. KhanS. Sesquiterpenes: Natural products that decrease cancer growth.Curr. Med. Chem. Anticancer Agents20055547749910.2174/1568011054866973 16178774
    [Google Scholar]
  2. MaruyamaN. SekimotoY. IshibashiH. InouyeS. OshimaH. YamaguchiH. AbeS. Suppression of neutrophil accumulation in mice by cutaneous application of geranium Essential oil.J. Inflamm. 200521110.1186/1476‑9255‑2‑1 15813994
    [Google Scholar]
  3. Michael NathanM.D. ScholtenR. The complete german commission e monographs: Therapeutic guide to herbal medicines.Ann. Inter. Med199910.7326/0003‑4819‑130‑5‑199903020‑00024
    [Google Scholar]
  4. WillsR.B.H. BoneK. MorganM. Herbal products: Active constituents, modes of action and quality control.Nutr. Res. Rev.2000131477710.1079/095442200108729007 19087433
    [Google Scholar]
  5. WalkerJ.B. SytsmaK.J. TreutleinJ. WinkM. Salvia (Lamiaceae) is not monophyletic: Implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae.Am. J. Bot.20049171115112510.3732/ajb.91.7.1115 21653467
    [Google Scholar]
  6. Sharifi-RadM. OzcelikB. AltınG. Daşkaya-DikmenC. MartorellM. Ramírez-AlarcónK. Alarcón-ZapataP. Morais-BragaM.F.B. CarneiroJ.N.P. Alves Borges LealA.L. CoutinhoH.D.M. GyawaliR. TahergorabiR. IbrahimS.A. Sahrifi-RadR. SharopovF. SalehiB. del Mar ContrerasM. Segura-CarreteroA. SenS. AcharyaK. Sharifi-RadJ. Salvia spp. plants-from farm to food applications and phytopharmacotherapy.Trends Food Sci. Technol.20188024226310.1016/j.tifs.2018.08.008
    [Google Scholar]
  7. MichavilaA. De La TorreM.C. RodríguezB. 20-Nor-abietane and rearranged abietane diterpenoids from the root of Salvia argentea.Phytochemistry19862581935193710.1016/S0031‑9422(00)81178‑4
    [Google Scholar]
  8. CouladisM. TzakouO. StojanovicD. Mimica-DukicN. JancicR. The Essential oil composition of Salvia argentea L.Flavour Fragrance J.200116322722910.1002/ffj.989
    [Google Scholar]
  9. FarhatM.B. LandoulsiA. Chaouch-HamadaR. SotomayorJ.A. JordánM.J. Profiling of Essential oils and polyphenolics of Salvia argentea and evaluation of its by-products antioxidant activity.Ind. Crops Prod.20134710611210.1016/j.indcrop.2013.02.007
    [Google Scholar]
  10. Tiğli KaytanlioğluE.H. Özderi̇nS. Faki̇rH. ErbaşS. Determination of the Essential oil components of some sage (Salvia Sp.) species naturally distributed in the isparta province.Kastamonu Üniversitesi Orman Fakültesi Dergisi202323111010.17475/kastorman.1269473
    [Google Scholar]
  11. RiccobonoL. MaggioA. RosselliS. IlardiV. SenatoreF. BrunoM. Chemical composition of volatile and fixed oils from of Salvia argentea L. (Lamiaceae) growing wild in Sicily.Nat. Prod. Res.2016301253410.1080/14786419.2015.1030742 25880372
    [Google Scholar]
  12. BelabbesR. DibM.E.A. DjabouN. IliasF. TabtiB. CostaJ. MuselliA. Chemical variability, antioxidant and antifungal activities of Essential oils and hydrosol extract of Calendula arvensis L. from western algeria.Chem. Biodivers.2017145e160048210.1002/cbdv.201600482 28109063
    [Google Scholar]
  13. BenhamidatL. Amine DibM.E. BensaidO. ZatlaA.T. KenicheA. OuarI.E. NassimD. MuselliA. Chemical composition and antioxidant, anti-inflammatory and anticholinesterase properties of the aerial and root parts of Centaurea acaulis Essential oils: Study of the combinatorial activities of aplotaxene with reference standards.J. Essent. Oil-Bear. Plants202225112614610.1080/0972060X.2022.2046177
    [Google Scholar]
  14. BabushokV.I. LinstromP.J. ReedJ.J. ZenkevichI.G. BrownR.L. MallardW.G. SteinS.E. Development of a database of gas chromatographic retention properties of organic compounds.J. Chromatogr. A200711571-241442110.1016/j.chroma.2007.05.044 17543315
    [Google Scholar]
  15. KnorrA. MongeA. StueberM. StratmannA. ArndtD. MartinE. PospisilP. Computer-assisted structure identification (CASI) an automated platform for high-throughput identification of small molecules by two-dimensional gas chromatography coupled to mass spectrometry.Anal. Chem.20138523112161122410.1021/ac4011952 24160557
    [Google Scholar]
  16. JohnstonC. StaufferD. DouglasB. The Wiley/NBS registry of mass spectral data, Volumes 1-7 (McLafferty, Fred W.; Stauffer, Douglas B.).J. Chem. Educ.19896610A25610.1021/ed066pA256.3
    [Google Scholar]
  17. NIST Mass Spectrometry Data Center Standard Reference Libraries and Software.J. Forensic Sci.20236851484149310.1111/1556‑4029.15284 37203286
    [Google Scholar]
  18. OyaizuM. Studies on product of browning reaction prepared from glucose amine.Jap. J. Nutri198644630731510.5264/eiyogakuzashi.44.307
    [Google Scholar]
  19. AchiriR. BenhamidatL. MamiI.R. DibM.E.A. AissaouiN. CherifC.Z. CherifH.Z. MuselliA. Chemical composition and antioxidant, anti-inflammatory and antimicrobial activities of the Essential oil and its major component (Carlina oxide) of Carlina hispanica roots from western algeria.J. Essent. Oil-Bear. Plants20212451113112410.1080/0972060X.2021.2005692
    [Google Scholar]
  20. RotaC. CarramiñanaJ.J. BurilloJ. HerreraA. In vitro antimicrobial activity of Essential oils from aromatic plants against selected foodborne pathogens.J. Food Prot.20046761252125610.4315/0362‑028X‑67.6.1252 15222560
    [Google Scholar]
  21. LožienėK. VenskutonisP.R. Influence of environmental and genetic factors on the stability of Essential oil composition of Thymus pulegioides.Biochem. Syst. Ecol.200533551752510.1016/j.bse.2004.10.004
    [Google Scholar]
  22. MarriottP.J. ShellieR. CornwellC. Gas chromatographic technologies for the analysis of Essential oils.J. Chromatogr. A20019361-212210.1016/S0021‑9673(01)01314‑0 11760992
    [Google Scholar]
  23. NazlićM. AkrapK. KremerD. DunkićV. Hydrosols of Veronica Species—natural source of free volatile compounds with potential pharmacological interest.Pharmaceuticals20221511137810.3390/ph15111378 36355550
    [Google Scholar]
  24. WangS.Y. WuJ.H. ShyurL.F. KuoY.H. ChangS.T. Antioxidant activity of abietane-type diterpenes from heart wood of Taiwania cryptomerioides Hyata.Holzforschung200256548749210.1515/HF.2002.075
    [Google Scholar]
  25. ChengS.S. ChangS.T. Bioactivity and characterization of exudates from Cryptomeria japonica bark.Wood Sci. Technol.201448483184010.1007/s00226‑014‑0644‑1
    [Google Scholar]
  26. SaijoH. KofujitaH. TakahashiK. AshitaniT. Antioxidant activity and mechanism of the abietane-type diterpene ferruginol.Nat. Prod. Res.201529181739174310.1080/14786419.2014.997233 25588148
    [Google Scholar]
  27. HaouiI.E. DerricheR. MadaniL. OukaliZ. Extraction of Essential oil from Inula viscosa (L.) Leaves: Composition, antifungal activity and kinetic data.J. Essent. Oil-Bear. Plants201619110811810.1080/0972060X.2015.1010598
    [Google Scholar]
  28. LahlouM. Methods to study the phytochemistry and bioactivity of Essential oils.Phytother. Res.200418643544810.1002/ptr.1465 15287066
    [Google Scholar]
  29. KusumotoN. AshitaniT. MurayamaT. OgiyamaK. TakahashiK. Antifungal abietane-type diterpenes from the cones of Taxodium distichum Rich.J. Chem. Ecol.201036121381138610.1007/s10886‑010‑9875‑2 21072573
    [Google Scholar]
  30. KofujitaH. FujinoY. OtaM. TakahashiK. Antifungal diterpenes from the bark of Cryptomeria japonica D. Don.Holzforschung2006601202310.1515/HF.2006.004
    [Google Scholar]
/content/journals/aia/10.2174/0122113525303193240606062041
Loading
/content/journals/aia/10.2174/0122113525303193240606062041
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test