Skip to content
2000
Volume 23, Issue 1
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Background

For more than six decades, the use of metronidazole has been limited to anaerobic microorganisms. However, there are accounts of metronidazole derivatives exhibiting strong effectiveness against facultative anaerobic bacteria, suggesting that there may be another mechanism of action for metronidazole. Recent studies have shown that the enzyme FabH (β-ketoacyl-acyl carrier protein synthase III), responsible for the first step of fatty acid biosynthesis (FAB), is a promising target for nitroimidazole derivatives that can be used as an effective anti-infective agent.

Objective

This study aimed to synthesize 1-(2-ethyl acetate)-2-styryl nitroimidazole derivatives and evaluate their and antibacterial activity.

Methods

We synthesized 2-styryl 5-nitroimidazole derivatives by first condensing metronidazole with benzaldehydes and then carrying out an acetylation reaction. We evaluated the antimicrobial activity of the synthesized compounds against three Gram-positive bacterial strains (, and and three Gram-negative bacterial strains (, and ) using a two-fold serial dilution MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.

Results

Compounds and exhibited the highest level of antibacterial effectiveness, with minimum inhibitory concentrations (MIC) of 1.56 μg/mL against and 3.13 μg/mL against . Compounds and also exhibited potent activity against , with an MIC value of 6.25 μg/mL and 12.5 μg/mL, respectively. Molecular docking studies revealed that both compounds have favorable hydrophobic and electrostatic interactions with conserved residues in the binding site of the β-Ketoacyl-acyl carrier protein synthase III (FabH) complex.

Conclusion

Acetylation of 2-styryl-5-nitroimidazoles improved both their biological activity and binding interaction with the target protein.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525297723240513114228
2024-06-05
2025-01-28
Loading full text...

Full text loading...

References

  1. WHOWHO publishes list of bacteria for which new antibiotics are urgently needed.2017Available from: https://www.who.int/news/item/27-02-
    [Google Scholar]
  2. JarradA.M. KaroliT. DebnathA. TayC.Y. HuangJ.X. KaeslinG. ElliottA.G. MiyamotoY. RamuS. KavanaghA.M. ZueggJ. EckmannL. BlaskovichM.A.T. CooperM.A. Metronidazole-triazole conjugates: Activity against Clostridium difficile and parasites.Eur. J. Med. Chem.20151019610210.1016/j.ejmech.2015.06.01926117821
    [Google Scholar]
  3. AndréA.C. DebandeL. MarteynB.S. The selective advantage of facultative anaerobes relies on their unique ability to cope with changing oxygen levels during infection.Cellular Microbiology.John Wiley and Sons Inc202110.1111/cmi.13338
    [Google Scholar]
  4. ChristensenC.E. KragelundB.B. von Wettstein-KnowlesP. HenriksenA. Structure of the human β‐ketoacyl [ACP] synthase from the mitochondrial type II fatty acid synthase.Protein Sci.200716226127210.1110/ps.06247370717242430
    [Google Scholar]
  5. ZhangJ.H. -L. Li, Z.; -L. Zhu, H. Advances in the Research of β-Ketoacyl-ACP Synthase III (FabH) Inhibitors.Curr. Med. Chem.20121981225123710.2174/09298671279932048422257054
    [Google Scholar]
  6. QiuX. JansonC.A. SmithW.W. HeadM. LonsdaleJ. KonstantinidisA.K. Refined structures of β-ketoacyl-acyl carrier protein synthase III.J. Mol. Biol.2001307134135610.1006/jmbi.2000.445711243824
    [Google Scholar]
  7. LiH.Q. ShiL. LiQ.S. LiuP.G. LuoY. ZhaoJ. ZhuH.L. Synthesis of C(7) modified chrysin derivatives designing to inhibit β-ketoacyl-acyl carrier protein synthase III (FabH) as antibiotics.Bioorg. Med. Chem.200917176264626910.1016/j.bmc.2009.07.04619664929
    [Google Scholar]
  8. NieZ. PerrettaC. LuJ. SuY. MargosiakS. GajiwalaK.S. CortezJ. NikulinV. YagerK.M. AppeltK. ChuS. Structure-based design, synthesis, and study of potent inhibitors of β-ketoacyl-acyl carrier protein synthase III as potential antimicrobial agents.J. Med. Chem.20054851596160910.1021/jm049141s15743201
    [Google Scholar]
  9. ZhangH.J. QinX. LiuK. ZhuD.D. WangX.M. ZhuH.L. Synthesis, antibacterial activities and molecular docking studies of Schiff bases derived from N-(2/4-benzaldehyde-amino) phenyl-N′-phenyl-thiourea.Bioorg. Med. Chem.201119185708571510.1016/j.bmc.2011.06.07721872479
    [Google Scholar]
  10. DuanY.T. WangZ.C. SangY.L. TaoX.X. TeraiyaS.B. WangP.F. WenQ. ZhouX.J. DingL. YangY.H. ZhuH.L. Design and synthesis of 2-styryl of 5-Nitroimidazole derivatives and antimicrobial activities as FabH inhibitors.Eur. J. Med. Chem.20147638739610.1016/j.ejmech.2014.02.00424594526
    [Google Scholar]
  11. AnbuN. NagarjunN. JacobM. VimalaJ.M. KalaiarasiK. DhakshinamoorthyA. Acetylation of alcohols, amines, phenols, thiols under catalyst and solvent-free conditions.Chemistry2019116979
    [Google Scholar]
  12. EloffJ. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria.Planta Med.199864871171310.1055/s‑2006‑9575639933989
    [Google Scholar]
  13. CLSIM07-A10: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard-tenth edition.2015Available from: www.clsi.org
  14. Schrödinger Release 2023-2.2023Available from: https://www.schrodinger.com/life-science/download/release-notes/release-2023-2/
  15. SchrödingerL. Schrödinger Release 2023-2: Protein Preparation Wizard.New York, NYEpik2023
    [Google Scholar]
  16. SchrödingerL. Schrödinger Release 2023-2: Induced Fit Docking Protocol.New York, NYGlide2023
    [Google Scholar]
  17. ElekofehintiO.O. IwaloyeO. JosiahS.S. LawalA.O. AkinjiyanM.O. AriyoE.O. Molecular docking studies, molecular dynamics and ADME/tox reveal therapeutic potentials of STOCK1N-69160 against papain-like protease of SARS-CoV-2.Mol. Divers.20212531761177310.1007/s11030‑020‑10151‑w33201386
    [Google Scholar]
  18. ShermanW. DayT. JacobsonM.P. FriesnerR.A. FaridR. Novel procedure for modeling ligand/receptor induced fit effects.J. Med. Chem.200649253455310.1021/jm050540c16420040
    [Google Scholar]
  19. NagaoP.E. Streptococcus agalactiae (Group B Streptococci).Molecular Medical Microbiology.Elsevier20151751176710.1016/B978‑0‑12‑397169‑2.00099‑8
    [Google Scholar]
  20. PercivalS.L. WilliamsD.W. Escherichia Coli.Microbiology of Waterborne Diseases.Elsevier20148911710.1016/B978‑0‑12‑415846‑7.00006‑8
    [Google Scholar]
  21. WHOAntimicrobial resistance.Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
  22. WuM. LiX. Klebsiella Pneumoniae and Pseudomonas aeruginosa.Molecular Medical Microbiology.Elsevier20151547156410.1016/B978‑0‑12‑397169‑2.00087‑1
    [Google Scholar]
  23. ChackoA. DelbazA. ChoudhuryI.N. EindorfT. ShahM. GodfreyC. SullivanM.J. St JohnJ.A. UlettG.C. EkbergJ.A.K. Streptococcus agalactiae infects glial cells and invades the central nervous system via the olfactory and trigeminal nerves.Front. Cell. Infect. Microbiol.20221279341610.3389/fcimb.2022.79341635281448
    [Google Scholar]
  24. MurrayC.J.L. IkutaK.S. ShararaF. SwetschinskiL. AguilarR.G. GrayA. HanC. BisignanoC. RaoP. WoolE. JohnsonS.C. BrowneA.J. ChipetaM.G. FellF. HackettS. WoodhouseH.G. HamadaniK.B.H. KumaranE.A.P. McManigalB. AchalapongS. AgarwalR. AkechS. AlbertsonS. AmuasiJ. AndrewsJ. AravkinA. AshleyE. BabinF-X. BaileyF. BakerS. BasnyatB. BekkerA. BenderR. BerkleyJ.A. BethouA. BielickiJ. BoonkasidechaS. BukosiaJ. CarvalheiroC. Castañeda-OrjuelaC. ChansamouthV. ChaurasiaS. ChiurchiùS. ChowdhuryF. DonatienC.R. CookA.J. CooperB. CresseyT.R. Criollo-MoraE. CunninghamM. DarboeS. DayN.P.J. De LucaM. DokovaK. DramowskiA. DunachieS.J. Duong BichT. EckmannsT. EibachD. EmamiA. FeaseyN. PearsonF.N. ForrestK. GarciaC. GarrettD. GastmeierP. GirefA.Z. GreerR.C. GuptaV. HallerS. HaselbeckA. HayS.I. HolmM. HopkinsS. HsiaY. IregbuK.C. JacobsJ. JarovskyD. JavanmardiF. JenneyA.W.J. KhoranaM. KhusuwanS. KissoonN. KobeissiE. KostyanevT. KrappF. KrumkampR. KumarA. KyuH.H. LimC. LimK. LimmathurotsakulD. LoftusM.J. LunnM. MaJ. ManoharanA. MarksF. MayJ. MayxayM. MturiN. Munera-HuertasT. MusichaP. MusilaL.A. PinhataM.M.M. NaiduR.N. NakamuraT. NanavatiR. NangiaS. NewtonP. NgounC. NovotneyA. NwakanmaD. ObieroC.W. OchoaT.J. MartinezO.A. OlliaroP. OokoE. BrizuelaO.E. OunchanumP. PakG.D. ParedesJ.L. PelegA.Y. PerroneC. PheT. PhommasoneK. PlakkalN. de-LeonP.A. RaadM. RamdinT. RattanavongS. RiddellA. RobertsT. RobothamJ.V. RocaA. RosenthalV.D. RuddK.E. RussellN. SaderH.S. SaengchanW. SchnallJ. ScottJ.A.G. SeekaewS. SharlandM. ShivamallappaM. OsornioS.J. SimpsonA.J. SteenkesteN. StewardsonA.J. StoevaT. TasakN. ThaiprakongA. ThwaitesG. TigoiC. TurnerC. TurnerP. van DoornH.R. VelaphiS. VongpradithA. VongsouvathM. VuH. WalshT. WalsonJ.L. WanerS. WangrangsimakulT. WannapinijP. WozniakT. Young SharmaT.E.M.W. YuK.C. ZhengP. SartoriusB. LopezA.D. StergachisA. MooreC. DolecekC. NaghaviM. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis.Lancet20223991032562965510.1016/S0140‑6736(21)02724‑035065702
    [Google Scholar]
  25. MillerE.B. MurphyR.B. SindhikaraD. BorrelliK.W. GrisewoodM.J. RanalliF. DixonS.L. JeromeS. BoylesN.A. DayT. GhanakotaP. MondalS. RafiS.B. TroastD.M. AbelR. FriesnerR.A. Reliable and accurate solution to the induced fit docking problem for protein–ligand binding.J. Chem. Theory Comput.20211742630263910.1021/acs.jctc.1c0013633779166
    [Google Scholar]
  26. GarridoA. LepailleurA. MignaniS.M. DallemagneP. RochaisC. hERG toxicity assessment: Useful guidelines for drug design.Eur. J. Med. Chem.202019511229010.1016/j.ejmech.2020.11229032283295
    [Google Scholar]
  27. RecanatiniM. PoluzziE. MasettiM. CavalliA. De PontiF. QT prolongation through hERG K + channel blockade: Current knowledge and strategies for the early prediction during drug development.Med. Res. Rev.200525213316610.1002/med.2001915389727
    [Google Scholar]
  28. User manual, Q. Schrödinger Press QikProp 4.4 user manual.2015Available from: http://gohom.win/ManualHom/Schrodinger/Schrodinger_2015-2_docs/qikprop/qikprop_user_manual.pdf
/content/journals/aia/10.2174/0122113525297723240513114228
Loading
/content/journals/aia/10.2174/0122113525297723240513114228
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test