Skip to content
2000
Volume 23, Issue 1
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Introduction

HIV utilizes a reverse transcriptase (RT) enzyme to convert the HIV-RNA into DNA. Inhibition of the reverse transcription mechanism of HIV-RT may serve as a potential therapeutic approach to impede the proliferation of HIV in those who are infected. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are a type of medication that directly and non-competitively bind to the allosteric site of HIV-RT, inhibiting its polymerase activity.

Aim

This study was aimed at the synthesis of hydrazine derivatives and their evaluation for HIV- reverse transcriptase inhibition using RT-qPCR-based assay.

Objective

The objective of this study was to determine the HIV- reverse transcriptase inhibition using chemical compounds as non-nucleoside reverse transcriptase inhibitors in RT-qPCR.

Methods

This study involved the synthesis of five distinct hydrazine derivatives, which were subsequently tested for their capacity to inhibit HIV-RNA polymerization by targeting HIV-derived reverse transcriptase. For the determination of the study assay, commercially available HIV-RT was subjected to treatment with derivatives and utilized in an RT-qPCR experiment to determine the activity or inhibitory effects of HIV-RT for HIV-RNA polymerization.

Results

The assay results demonstrated a reduction in viral load due to suppression of reverse transcriptase activity when compared to the pre-quantified values obtained from untreated RT. Among the five compounds, 4-N, N-dimethylamino benzaldehyde hydrazine (CHN) had the highest ability to suppress HIV-RT. This molecule reduced HIV-RNA reverse transcription by more than 90% during RT-qPCR, which is a novel and promising strategy.

Conclusion

N, N-dimethylamino benzaldehyde hydrazine (CHN) can suppress the activity of HIV-RT, and this effect becomes more pronounced as the concentration of the compound increases.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525287587240515044540
2024-06-03
2025-01-28
Loading full text...

Full text loading...

References

  1. EngelmanA. CherepanovP. The structural biology of HIV-1: Mechanistic and therapeutic insights.Nat. Rev. Microbiol.201210427929010.1038/nrmicro274722421880
    [Google Scholar]
  2. EspositoF. CoronaA. TramontanoE. HIV-1 reverse transcriptase still remains a new drug target: Structure, function, classical inhibitors, and new inhibitors with innovative mechanisms of actions.Mol. Biol. Int.20122012586401
    [Google Scholar]
  3. DeeksS.G. OverbaughJ. PhillipsA. BuchbinderS. HIV infection.Nat. Rev. Dis. Primers2015111503510.1038/nrdp.2015.3527188527
    [Google Scholar]
  4. MaartensG. CelumC. LewinS.R. HIV infection: Epidemiology, pathogenesis, treatment, and prevention.Lancet2014384993925827110.1016/S0140‑6736(14)60164‑124907868
    [Google Scholar]
  5. SharmaKK PrzybillaF RestleT GodetJ MélyY FRET-based assay to screen inhibitors of HIV-1 reverse transcriptase and nucleocapsid protein.Nucleic aci. res.20164487410.1093/nar/gkv1532
    [Google Scholar]
  6. DivitaG. BaillonJ.G. RittingerK. ChermannJ.C. GoodyR.S. Interface peptides as structure-based human immunodeficiency virus reverse transcriptase inhibitors.J. Biol. Chem.199527048286422864610.1074/jbc.270.48.286427499382
    [Google Scholar]
  7. Sluis-CremerN. ArionD. ParniakM.A. Molecular mechanisms of HIV-1 resistance to nucleoside reverse transcriptase inhibitors (NRTIs).Cel. Molecu. Life. Sci. CMLS2000571408571422
    [Google Scholar]
  8. DingJ. DasK. HsiouY. ZhangW. ArnoldE. YadavP.N. HughesS.H. Structural studies of HIV-1 reverse transcriptase and implications for drug design.Struc.Based.Drug Des.201884182
    [Google Scholar]
  9. SarafianosS.G. MarchandB. DasK. HimmelD.M. ParniakM.A. HughesS.H. ArnoldE. Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition.J. Mol. Biol.2009385369371310.1016/j.jmb.2008.10.07119022262
    [Google Scholar]
  10. TanJ.J. CongX.J. HuL.M. WangC.X. JiaL. LiangX.J. Therapeutic strategies underpinning the development of novel techniques for the treatment of HIV infection.Drug Discov. Today2010155-618619710.1016/j.drudis.2010.01.00420096804
    [Google Scholar]
  11. LandovitzR.J. ScottH. DeeksS.G. Prevention, treatment and cure of HIV infection.Nat. Rev. Microbiol.2023211065767010.1038/s41579‑023‑00914‑137344551
    [Google Scholar]
  12. PauwelsR. New non-nucleoside reverse transcriptase inhibitors (NNRTIs) in development for the treatment of HIV infections.Curr. Opin. Pharmacol.20044543744610.1016/j.coph.2004.07.00515351347
    [Google Scholar]
  13. Sluis-CremerN. TachedjianG. Mechanisms of inhibition of HIV replication by non-nucleoside reverse transcriptase inhibitors.Virus Res.20081341-214715610.1016/j.virusres.2008.01.00218372072
    [Google Scholar]
  14. Jacobo-MolinaA. ArnoldE. HIV reverse transcriptase structure-function relationships.Biochemistry199130266351636110.1021/bi00240a0011711368
    [Google Scholar]
  15. JochmansD. Novel HIV-1 reverse transcriptase inhibitors.Virus Res.20081341-217118510.1016/j.virusres.2008.01.00318308412
    [Google Scholar]
  16. AmmaranondP. SanguansittiananS. Mechanism of HIV antiretroviral drugs progress toward drug resistance.Fundam. Clin. Pharmacol.201226114616110.1111/j.1472‑8206.2011.01009.x22118474
    [Google Scholar]
  17. IlinaT. ParniakM.A. Inhibitors of HIV-1 reverse transcriptase.Adv. Pharmacol.20085612116710.1016/S1054‑3589(07)56005‑918086411
    [Google Scholar]
  18. HimmelD.M. MaegleyK.A. PaulyT.A. BaumanJ.D. DasK. DhariaC. ClarkA.D.Jr RyanK. HickeyM.J. LoveR.A. HughesS.H. BergqvistS. ArnoldE. Structure of HIV-1 reverse transcriptase with the inhibitor β-Thujaplicinol bound at the RNase H active site.Structure200917121625163510.1016/j.str.2009.09.01620004166
    [Google Scholar]
  19. LurieA. FinkC. GosselinG. DekabanG.A. DikeakosJ.D. Inhibitors of HIV-1 Nef: Applications and developments for a practical cure.Virologie2022261173310.1684/vir.2022.094035766095
    [Google Scholar]
  20. ZhouZ. LinX. MaduraJ.D. HIV-1 RT nonnucleoside inhibitors and their interaction with RT for antiviral drug development.Infect. Disord. Drug Targ.200664391413
    [Google Scholar]
  21. XavierRUIZ F.; Arnold, E. Evolving understanding of HIV-1 reverse transcriptase structure, function, inhibition, and resistance.Curr. Opin. Struct. Biol.20206111312310.1016/j.sbi.2019.11.01131935541
    [Google Scholar]
  22. PataJ.D. StirtanW.G. GoldsteinS.W. SteitzT.A. Structure of HIV-1 reverse transcriptase bound to an inhibitor active against mutant reverse transcriptases resistant to other nonnucleoside inhibitors.Proc. Natl. Acad. Sci.200410129105481055310.1073/pnas.040415110115249669
    [Google Scholar]
  23. AmblardF. PatelD. MichailidisE. CoatsS.J. KasthuriM. BiteauN. TberZ. EhteshamiM. SchinaziR.F. HIV nucleoside reverse transcriptase inhibitors.Eur. J. Med. Chem.202224011455410.1016/j.ejmech.2022.11455435792384
    [Google Scholar]
  24. TorbettB.E. GoodsellD.S. RichmanD.D. The Future of HIV-1 Therapeutics: Resistance Is Futile?Drug Resistance, Virology, Infectious Diseases.Springer2015125410.1007/978‑3‑319‑18518‑7
    [Google Scholar]
  25. LiangC. XiaJ. LeiD. LiX. YaoQ. GaoJ. Synthesis, in vitro and in vivo antitumor activity of symmetrical bis-Schiff base derivatives of isatin.Eur. J. Med. Chem.20147474275010.1016/j.ejmech.2013.04.04024176732
    [Google Scholar]
  26. BrahmayyaM. DaiS.A. SuenS.Y. Synthesis of 5-substituted-3H-[1,3,4]-oxadiazol-2-one derivatives: A carbon dioxide route (CDR).RSC Advances2015580653516535710.1039/C5RA08910G
    [Google Scholar]
  27. KalsiP. S. Spectroscopy of organic compoundsNew age international20071652
    [Google Scholar]
  28. LiaoL. LiZ. HuW. HuangY. LiuB. WangL. WangM. WangJ. Design, synthesis and evaluation of a novel fluorescent probe to accurately detect H 2 S in lysosomes.Tetrahedron Lett.201859272683268710.1016/j.tetlet.2018.05.083
    [Google Scholar]
  29. LiY. KongD. WuH. Analysis and evaluation of essential oil components of cinnamon barks using GC–MS and FTIR spectroscopy.Ind. Crops Prod.20134126927810.1016/j.indcrop.2012.04.056
    [Google Scholar]
  30. SierraS. WalterH. Targets for inhibition of HIV replication: entry, enzyme action, release and maturation.Intervirology2012552849710.1159/00033199522286875
    [Google Scholar]
  31. Sluis-CremerN. TemizN. BaharI. Conformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding.Curr. HIV Res.20042432333210.2174/157016204335109315544453
    [Google Scholar]
  32. RodgersD.W. GamblinS.J. HarrisB.A. RayS. CulpJ.S. HellmigB. WoolfD.J. DebouckC. HarrisonS.C. The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1.Proc. Natl. Acad. Sci.19959241222122610.1073/pnas.92.4.12227532306
    [Google Scholar]
  33. BrignetiG. VoinnetO. LiW.X. JiL.H. DingS.W. BaulcombeD.C. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana.EMBO J.199817226739674610.1093/emboj/17.22.67399822616
    [Google Scholar]
  34. EsnoufR.M. StuartD.I. De ClercqE. SchwartzE. BalzariniJ. Models which explain the inhibition of reverse transcriptase by HIV-1-specific (thio)carboxanilide derivatives.Biochem. Biophys. Res. Commun.1997234245846410.1006/bbrc.1997.65529177293
    [Google Scholar]
  35. DingJ. HughesS.H. ArnoldE. Protein–nucleic acid interactions and DNA conformation in a complex of human immunodeficiency virus type 1 reverse transcriptase with a double-stranded DNA template-primer.Biopolymers199744212513810.1002/(SICI)1097‑0282(1997)44:2<125::AID‑BIP2>3.0.CO;2‑X9354757
    [Google Scholar]
  36. LevinsonW. Levinson’s Review of Medical Microbiology & Immunology.A Guide to Clinical Infectious Diseases, 18thEdition.MCGRAW HILL ACCESS2014
    [Google Scholar]
  37. ClumeckN. Current use of anti-HIV drugs in AIDS.J. Antimicrob. Chemother.199332Suppl. A13313810.1093/jac/32.suppl_A.1338407695
    [Google Scholar]
  38. De ClercqE. Emerging anti-HIV drugs.Expert Opin. Emerg. Drugs200510224127410.1517/14728214.10.2.24115934866
    [Google Scholar]
  39. AndradeC.H. FreitasL.M. OliveiraV. Twenty-six years of HIV science: An overview of anti-HIV drugs metabolism.Braz. J. Pharm. Sci.201147220923010.1590/S1984‑82502011000200003
    [Google Scholar]
  40. HimmelD.M. SarafianosS.G. DharmasenaS. HossainM.M. McCoy-SimandleK. IlinaT. ClarkA.D.Jr KnightJ.L. JuliasJ.G. ClarkP.K. Krogh-JespersenK. LevyR.M. HughesS.H. ParniakM.A. ArnoldE. HIV-1 reverse transcriptase structure with RNase H inhibitor dihydroxy benzoyl naphthyl hydrazone bound at a novel site.ACS Chem. Biol.200611170271210.1021/cb600303y17184135
    [Google Scholar]
  41. RatnerL. HaseltineW. PatarcaR. LivakK.J. StarcichB. JosephsS.F. DoranE.R. RafalskiJ.A. WhitehornE.A. BaumeisterK. IvanoffL. PettewayS.R.Jr PearsonM.L. LautenbergerJ.A. PapasT.S. GhrayebJ. ChangN.T. GalloR.C. Wong-StaalF. Complete nucleotide sequence of the AIDS virus, HTLV-III.Nature1985313600027728410.1038/313277a02578615
    [Google Scholar]
  42. SinghK. SarafianosS.G. SönnerborgA. Long-acting anti-HIV drugs targeting HIV-1 reverse transcriptase and integrase.Pharmaceuticals20191226210.3390/ph1202006231010004
    [Google Scholar]
  43. KangJ.X. ZhaoG.K. YangX.M. HuangM.X. HuiW.Q. ZengR. OuyangQ. Recent advances on dual inhibitors targeting HIV reverse transcriptase associated polymerase and ribonuclease H.Eur. J. Med. Chem.202325011519610.1016/j.ejmech.2023.11519636787657
    [Google Scholar]
  44. ShenL. PetersonS. SedaghatA.R. McMahonM.A. CallenderM. ZhangH. ZhouY. PittE. AndersonK.S. AcostaE.P. SilicianoR.F. Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs.Nat. Med.200814776276610.1038/nm177718552857
    [Google Scholar]
  45. BehjaW. JemalM. Anti-HIV drug discovery, development and synthesis of delavirdine.Int. Res. J. Pure Appl. Chem.201920311610.9734/irjpac/2019/v20i330137
    [Google Scholar]
  46. Marino-MerloF. FrezzaC. PapaianniE. VallettaE. MastinoA. MacchiB. Development and evaluation of a simple and effective RT-qPCR inhibitory assay for detection of the efficacy of compounds towards HIV reverse transcriptase.Appl. Microbiol. Biotechnol.2017101228249825810.1007/s00253‑017‑8544‑628963576
    [Google Scholar]
  47. OkelloJ.B.A. RodriguezL. PoinarD. BosK. OkwiA.L. BimenyaG.S. SewankamboN.K. HenryK.R. KuchM. PoinarH.N. Quantitative assessment of the sensitivity of various commercial reverse transcriptases based on armored HIV RNA.PLoS One2010511e1393110.1371/journal.pone.001393121085668
    [Google Scholar]
/content/journals/aia/10.2174/0122113525287587240515044540
Loading
/content/journals/aia/10.2174/0122113525287587240515044540
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test