Skip to content
2000
Volume 14, Issue 1
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Background: Object detection algorithm scans every frame in the video to detect the objects present which is time consuming. This process becomes undesirable while dealing with real time system, which needs to act with in a predefined time constraint. To have quick response we need reliable detection and recognition for objects. Methods: To deal with the above problem a hybrid method is being implemented. This hybrid method combines three important algorithms to reduce scanning task for every frame. Recursive Density Estimation (RDE) algorithm decides which frame need to be scanned. You Look at Once (YOLO) algorithm does the detection and recognition in the selected frame. Detected objects are being tracked through Speed Up Robust Feature (SURF) algorithm to track the objects in subsequent frames. Results: Through the experimental study, we demonstrate that hybrid algorithm is more efficient compared to two different algorithm of same level. The algorithm is having high accuracy and low time latency (which is necessary for real time processing). Conclusion: The hybrid algorithm is able to detect with a minimum accuracy of 97 percent for all the conducted experiments and time lag experienced is also negligible, which makes it considerably efficient for real time application.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/2213275912666190429152319
2021-01-01
2024-11-08
Loading full text...

Full text loading...

/content/journals/rascs/10.2174/2213275912666190429152319
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test