Skip to content
2000
Volume 18, Issue 1
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Artificial Intelligence (AI) techniques are widely being used in the medical fields or various applications including diagnosis of diseases, prediction and classification of diseases, drug discovery, . However, these AI techniques are lacking in the transparency of the predictions or decisions made due to their black box-type operations. The explainable AI (XAI) addresses such issues faced by AI to make better interpretations or decisions by physicians. This article explores XAI techniques in the field of healthcare applications, including the Internet of Medical Things (IoMT). XAI aims to provide transparency, accountability, and traceability in AI-based systems in healthcare applications. It can help in interpreting the predictions or decisions made in medical diagnosis systems, medical decision support systems, smart wearable healthcare devices, . Nowadays, XAI methods have been utilized in numerous medical applications over the Internet of Things (IoT), such as medical diagnosis, prognosis, and explanations of the AI models, and hence, XAI in the context of IoMT and healthcare has the potential to enhance the reliability and trustworthiness of AI systems.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558296699240314055348
2024-03-20
2025-01-15
Loading full text...

Full text loading...

/deliver/fulltext/rascs/18/1/RACSC-18-1-06.html?itemId=/content/journals/rascs/10.2174/0126662558296699240314055348&mimeType=html&fmt=ahah

References

  1. Sadeghi-NiarakiA. Internet of Thing (IoT) review of review: Bibliometric overview since its foundation.Future Gener. Comput. Syst.202314336137710.1016/j.future.2023.01.016
    [Google Scholar]
  2. HemalathaR.J. AkilaD. BalaganeshD. PaulA. The Internet of Medical Things (IoMT).Wiley202210.1002/9781119769200
    [Google Scholar]
  3. González GarcíaC. Núñez-ValdezE. García-DíazV. C. Pelayo G-Bustelo, and J.M. Cueva-Lovelle, “A review of artificial intelligence in the internet of things”.Int. J. Interact. Multimed. Artif. Intell.201954910.9781/ijimai.2018.03.004
    [Google Scholar]
  4. Kökİ. OkayF.Y. MuyanlıÖ. ÖzdemirS. Explainable artificial intelligence (XAI) for internet of things: A survey.IEEE Internet Things J.20231016147641477910.1109/JIOT.2023.3287678
    [Google Scholar]
  5. ZhangW.J. YangG. LinY. JiC. GuptaM.M. "On definition of deep learning", 2018 World Automation Congress (WAC)Stevenson, WA, USA20181510.23919/WAC.2018.8430387
    [Google Scholar]
  6. MuheidatF. TawalbehL.A. AIoMT artificial intelligence (AI) and internet of medical things (IoMT)Computational Intelligence for Medical Internet of Things (MIoT) ApplicationsElsevier,2023143354
    [Google Scholar]
  7. ManickamP. MariappanS.A. MurugesanS.M. HansdaS. KaushikA. ShindeR. ThipperudraswamyS.P. Artificial intelligence (AI) and Internet of Medical Things (IoMT) assisted biomedical systems for intelligent healthcare.Biosensors202212856210.3390/bios12080562 35892459
    [Google Scholar]
  8. SuR. SfarA.R. NatalizioE. MoyalP. SongY.Q. Ensuring trustworthiness in IoIT/AIoT: A phase-based approach.IEEE Internet of Things Magazine202252848810.1109/IOTM.001.2100190
    [Google Scholar]
  9. VekariyaD.D. KannanD.M.K.J. GuptaM.S. MuthusamyP. MahajanM.R. PandeyD.A.K. Recommendation model-based 5G network and cognitive system of cloud data with AI technique in IoMT applications.Int. J. Commun. Netw. Inf. Secur. (IJCNIS)202214323925610.17762/ijcnis.v14i3.5609
    [Google Scholar]
  10. HeZ. SayadiH. "Image-based zero-day malware detection in IoMT devices: A hybrid AI-enabled method", 24th International Symposium on Quality Electronic Design (ISQED) San FranciscoCA, USA, 05-07 April202318
    [Google Scholar]
  11. EnamamuT.S. Intelligent authentication framework for internet of medical things (IoMT).Illumination of Artificial Intelligence in Cybersecurity and Forensics.Springer International Publishing20229712110.1007/978‑3‑030‑93453‑8_5
    [Google Scholar]
  12. VishnuS. RamsonS.R.J. JeganR. "Internet of medical things (IoMT) - An overview", 2020 5th International Conference on Devices, Circuits and Systems (ICDCS)Coimbatore, India, 05-06 March202010110410.1109/ICDCS48716.2020.243558
    [Google Scholar]
  13. MoutaibM. AhajjamT. FattahM. FarhaouiY. AghoutaneB. Internet of medical things.Networking Technologies in Smart Healthcare.CRC Press2022799610.1201/9781003239888‑4
    [Google Scholar]
  14. KagitaM.K. ThilakarathneN. GadekalluT.R. MaddikuntaP.K.R. A review on security and privacy of internet of medical things.Internet of Things.Springer International Publishing202217118710.1007/978‑3‑030‑81473‑1_8
    [Google Scholar]
  15. GatouillatA. BadrY. MassotB. SejdicE. Internet of medical things: A review of recent contributions dealing with cyber-physical systems in medicine.IEEE Internet Things J.2018553810382210.1109/JIOT.2018.2849014
    [Google Scholar]
  16. RazdanS. SharmaS. i “Internet of medical thngs (IoMT): Overview, emerging technologies, and case studies”.IETE Tech. Rev.202139477578810.1080/02564602.2021.1927863
    [Google Scholar]
  17. KawaleS.R. NarmadhaD. NancyR.G. MuleS.B. VermaB.K. ReddyP.C.S. Internet of medical things.Int. J. Health Sci.Technical University of Manabi2022105201053110.53730/ijhs.v6nS3.8359
    [Google Scholar]
  18. WalP. WalA. VermaN. KarunakakaranR. KapoorA. Internet of Medical Things – The Future of Healthcare.Open Public Health J.202215114210.2174/18749445‑v15‑e221215‑2022‑142
    [Google Scholar]
  19. KhaledA.E. Internet of medical things (IoMT): Overview, taxonomies, and classifications.J. Comput. Commun.2022108648910.4236/jcc.2022.108005
    [Google Scholar]
  20. ThandapaniS. MahaboobM.I. IwendiC. SelvarajD. DumkaA. RashidM. MohanS. IoMT with deep CNN: AI-based intelligent support system for pandemic diseases.Electronics202312242410.3390/electronics12020424
    [Google Scholar]
  21. WazidM. SinghJ. DasA.K. ShettyS. KhanM.K. RodriguesJ.J.P.C. ASCP-IoMT: AI-enabled lightweight secure communication protocol for internet of medical things.IEEE Access202210579905800410.1109/ACCESS.2022.3179418
    [Google Scholar]
  22. Rachana Mehta, Evolving technologies: IoT and artificial intelligence for healthcare informatics.Innovations in Healthcare Informatics: From interoperability to data analysis.IET Press202323125410.1049/PBHE041E_ch8
    [Google Scholar]
  23. MuheidatF. TawalbehL.A. AIoMT artificial intelligence (AI) and Internet of Medical Things (IoMT): Applications, challenges, and future trendsAdvances in ubiquitous sensing applications for healthcare,Computational Intelligence for Medical Internet of Things (MIoT) Applications, Academic Press2023143354
    [Google Scholar]
  24. SuryaL. IoT security techniques based on machine learning: How IoT devices use AI to enhance security.Int. J. Comput. Trends Tech.20196726568
    [Google Scholar]
  25. DaveD. NaikH. SinghalS. PatelP. Explainable ai meets healthcare: A study on heart disease datasetarXiv preprint2020201103195
    [Google Scholar]
  26. JagatheesaperumalS.K. PhamQ-V. RubyR. YangZ. XuC. ZhangZ. Explainable AI over the internet of things (IoT): Overview, state-of-the-art and future directions.IEEE Open J. Commun. Soc.202232106213610.1109/OJCOMS.2022.3215676
    [Google Scholar]
  27. AhmadC. PengJ. XuJ. Survey of explainable AI techniques in healthcare.Sensors202323263410.3390/s23020634
    [Google Scholar]
  28. LiC. Explainable artificial intelligence (XAI) with IoHT for smart healthcare: A review.Interpretable Cognitive Internet of Things for Healthcare, Internet of Things.ChamSpringer202312410.1007/978‑3‑031‑08637‑3_1
    [Google Scholar]
  29. KunduS. AI in medicine must be explainable.Nat. Med.2021278132810.1038/s41591‑021‑01461‑z 34326551
    [Google Scholar]
  30. MatthiasH. ArioS. ChristianM. Explainable AI identifies diagnostic cells of genetic AML subtypes.PLOS Digit. Health202323e000018710.1371/journal.pdig.0000187
    [Google Scholar]
  31. SalomeO. GonçaloM. SophioB. "Artificial intelligence for internet of things and enhanced medical systems", Bio-inspired Neurocomputing. Studies in Computational Intelligence.SingaporeSpringer2021903435910.1007/978‑981‑15‑5495‑7_3
    [Google Scholar]
  32. MaisF. "Explained artificial intelligence helps to integrate artificial and human intelligence into medical diagnostic systems: Analytical review of publications", 2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)Tashkent, Uzbekistan, 07-09 October20201410.1109/AICT50176.2020.9368576
    [Google Scholar]
  33. AmannJ. BlasimmeA. VayenaE. FreyD. MadaiV.I. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective.BMC Med. Inform. Decis. Mak.202020131010.1186/s12911‑020‑01332‑6
    [Google Scholar]
  34. P.D. S, R. Kumar K, V. S, N. K, and A. K, “Adalarasu, k. (2023). An Overview Of Interpretability Techniques For Explainable Artificial Intelligence (XAI) In Deep Learning-Based”.Med. Image Anal.202317518210.1109/ICACCS57279.2023.10113001
    [Google Scholar]
  35. UrjaP. O’Shea. Donna, and R. Susan,"Explainable AI in healthcare", 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), Dublin, Ireland, 15-19 June20201210.1109/CyberSA49311.2020.9139655
    [Google Scholar]
  36. RaneN. ChoudharyS. RaneJ. Explainable artificial intelligence (XAI) in healthcare: Interpretable models for clinical decision supportAvailable from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4637897(November 15, 2023).2023
  37. ZhangY. WengY. LundJ. Applications of explainable artificial intelligence in diagnosis and surgery.Diagnostics202212223710.3390/diagnostics12020237
    [Google Scholar]
  38. SubhanF. MirzaA. Su’udM.B.M. AlamM.M. NisarS. HabibU. IqbalM.Z. AI-enabled wearable medical internet of things in healthcare system: A survey.Appl. Sci.2023133139410.3390/app13031394
    [Google Scholar]
  39. SingampalliD.T. PiseA.A. AI-based internet of things (AIoT).Handbook of Research on AI and Knowledge Engineering for Real-Time Business Intelligence.IGI Global202310513010.4018/978‑1‑6684‑6519‑6.ch007
    [Google Scholar]
  40. SankaranK.S. KimT-H. RenjithP.N. An improved ai-based secure m-trust privacy protocol for medical internet of things in smart healthcare system.IEEE Internet Things J.20231021184771848510.1109/JIOT.2023.3280592
    [Google Scholar]
  41. SinhaA. SapraD. SrivastavaG. AnupM. SinwarD. AI-assisted big data analytics for smart healthcare systems.Intelligent Internet of Things for Smart Healthcare Systems.CRC Press20238110010.1201/9781003326182‑6
    [Google Scholar]
  42. BillaC. ChavaliM. Artificial intelligence leveraged internet of medical things and continuous health monitoring and combating pandemics within the internet of medical things framework.Emerging Technologies for Combatting Pandemics.Auerbach Publications202212810.1201/9781003324447‑1
    [Google Scholar]
  43. AlizadehsaniR. RoshanzamirM. IzadiN.H. GravinaR. KabirH.M.D. NahavandiD. Alinejad-RoknyH. KhosraviA. AcharyaU.R. NahavandiS. FortinoG. Swarm intelligence in internet of medical things: A review.Sensors2023233146610.3390/s23031466
    [Google Scholar]
  44. QianZ. LinY. JingW. MaZ. LiuH. YinR. LiZ. BiZ. ZhangW. Development of a real-time wearable fall detection system in the context of internet of things.IEEE Internet Things J.2022921219992200710.1109/JIOT.2022.3181701
    [Google Scholar]
  45. UsakM. KubiatkoM. ShabbirM.S. Viktorovna DudnikO. JermsittiparsertK. RajabionL. Health care service delivery based on the Internet of things: A systematic and comprehensive study.Int. J. Commun. Syst.2020332e417910.1002/dac.4179
    [Google Scholar]
  46. YadavA. SinghA. ArpithaM.S. MithunK.A. RakeshS. “Better healthcare using machine learning”, Int. J. Adv. Res.Comput. Sci.2018931013
    [Google Scholar]
  47. López PinedaA. YeY. VisweswaranS. CooperG.F. WagnerM.M. TsuiF.R. Comparison of machine learning classifiers for influenza detection from emergency department free-text reports.J. Biomed. Inform.201558606910.1016/j.jbi.2015.08.019 26385375
    [Google Scholar]
  48. ManjushaM. HarikumarR. "Performance analysis of KNN classifier and K -means clustering for robust classification of epilepsy from EEG signals", Proc. Int. Conf. Wireless Commun., Signal Process. Netw.(WiSPNET), Mar. 20162412241610.1109/WiSPNET.2016.7566575
    [Google Scholar]
  49. LucasA. WilliamsA.T. CabralesP. Prediction of recovery from severe hemorrhagic shock using logistic regression.IEEE J. Transl. Eng. Health Med.201971910.1109/JTEHM.2019.2924011 31367491
    [Google Scholar]
  50. Lopez-RinconA. TondaA. Mendoza-MaldonadoL. ClaassenE. GarssenJ. KraneveldA.D. "Accurate identification of SARS-CoV-2 from viral genome sequences using deep learning", bioRxiv1212020
    [Google Scholar]
  51. SareenS. SoodS.K. GuptaS.K. IoT-based cloud framework to control Ebola virus outbreak.J. Ambient Intell. Humaniz. Comput.20189345947610.1007/s12652‑016‑0427‑7 32218876
    [Google Scholar]
  52. TabeiF. GreshamJ.M. AskarianB. JungK. ChongJ.W. Cuff- less blood pressure monitoring system using smartphones.IEEE Access20208115341154510.1109/ACCESS.2020.2965082
    [Google Scholar]
  53. AniR. KrishnaS. AnjuN. AslamM.S. DeepaO.S. "IoT based patient monitoring and diagnostic prediction tool using ensemble clas- sifier", 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI),Udupi, 13-16 September201715881593
    [Google Scholar]
  54. Pérez-GandíaC. FacchinettiA. SparacinoG. CobelliC. GómezE.J. RiglaM. de LeivaA. HernandoM.E. Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring.Diabetes Technol. Ther.2010121818810.1089/dia.2009.0076 20082589
    [Google Scholar]
  55. CastaldoR. MelilloP. IzzoR. De LucaN. PecchiaL. Fall prediction in hypertensive patients via short-term HRV analysis.IEEE J. Biomed. Health Inform.201721239940610.1109/JBHI.2016.2543960 28113874
    [Google Scholar]
  56. MahmudM.S. WangH. KimY. "Accelerated prediction of brady-cardia in preterm infants using time-frequency analysis", 2019 International Conference on Computing, Networking and Communications (ICNC)2019Honolulu, HI, USA, 18-21 February468472
    [Google Scholar]
  57. GiovanniC. TabeaE. "Why we do need Explainable AI for Healthcare", arXiv2022
    [Google Scholar]
  58. GimenoM. San José-EnérizE. VillarS. AgirreX. ProsperF. RubioA. CarazoF. Explainable artificial intelligence for precision medicine in acute myeloid leukemia.Front. Immunol.20221397735810.3389/fimmu.2022.977358
    [Google Scholar]
  59. AwotundeJ.B. AdeniyiE.A. AjagbeS.A. ImoizeA.L. OkiO.A. MisraS. Explainable artificial intelligence (XAI) in medical decision support systems (MDSS): Applicability, prospects, legal implications, and challenges.Explainable Artificial Intelligence in MDSS.IET2022459010.1049/PBHE050E_ch2
    [Google Scholar]
  60. Manresa-Yee CristinaAdvances in XAI: Explanation interfaces in healthcareHandbook of Artificial Intelligence in Healthcare. Intelligent Systems Reference Library,Springer, Cham.202221235736910.1007/978‑3‑030‑83620‑7_15
    [Google Scholar]
  61. Riboni Daniele"Keynote: Explainable AI in pervasive healthcare: Open challenges and research directions", 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops),Kassel, Germany, 22-26 March20211110.1109/PerComWorkshops51409.2021.9431134
    [Google Scholar]
  62. SamantaK. "Explainable artificial intelligence for human decision-support system in medical domain", arXiv: Artificial Intelligence2021
    [Google Scholar]
  63. Bourdon Pascal,Explainable AI for medical imaging: Knowledge matters.Multi-faceted Deep Learning.ChamSpringer202126729210.1007/978‑3‑030‑74478‑6_11
    [Google Scholar]
  64. DrăgulinescuA.M.C. ManeaA.F. FratuO. DrăgulinescuA. LoRa-based medical IoT system architecture and testbed.Wirel. Pers. Commun.20221261254710.1007/s11277‑020‑07235‑z
    [Google Scholar]
  65. SubramanianP.M. RajeswariA. Lora-based infrastructure for medical IoT system.Advances in Industrial Machines and Mechanisms. Lecture Notes in Mechanical Engineering.SingaporeSpringer202133133710.1007/978‑981‑16‑1769‑0_30
    [Google Scholar]
  66. ChenJ. DaiX. YuanQ. LuC. HuangH. "Towards interpretable clinical diagnosis with bayesian network ensembles stacked on entity-aware CNNs", Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics StroudsburgPA, USA July 20203143315310.18653/v1/2020.acl‑main.286
    [Google Scholar]
  67. RuccoM. ViticchiG. FalsettiL. Towards personalized diagnosis of glioblastoma in fluid-attenuated inversion re- covery (FLAIR) by topological interpretable machine learning.Mathematics20208577010.3390/math8050770
    [Google Scholar]
  68. WangL. LinZ.Q. WongA. COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images.Sci. Rep.20201011954910.1038/s41598‑020‑76550‑z 33177550
    [Google Scholar]
  69. El-SappaghS. AlonsoJ.M. IslamS.M.R. SultanA.M. KwakK.S. A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease.Sci. Rep.2021111266010.1038/s41598‑021‑82098‑3 33514817
    [Google Scholar]
  70. SarpS. KuzluM. WilsonE. CaliU. GulerO. The enlightening role of explainable artificial intelligence in chronic wound classification.Electronics20211012140610.3390/electronics10121406
    [Google Scholar]
  71. SabolP. SinčákP. HartonoP. KočanP. BenetinováZ. BlichárováA. VerbóováĽ. ŠtammováE. Sabolová-FabianováA. JaškováA. Explainable classifier for improving the accountability in decision-making for colorectal cancer diagnosis from histopathological images.J. Biomed. Inform.202010910352310.1016/j.jbi.2020.103523 32758538
    [Google Scholar]
  72. YooT.K. RyuI.H. ChoiH. KimJ.K. LeeI.S. KimJ.S. LeeG. RimT.H. Explainable machine learning approach as a tool to understand factors used to select the refractive surgery technique on the expert level.Transl. Vis. Sci. Technol.20209281410.1167/tvst.9.2.8 32704414
    [Google Scholar]
  73. DasD. ItoJ. KadowakiT. TsudaK. An interpretable machine learning model for diagnosis of Alzheimer’s disease.PeerJ20197e654310.7717/peerj.6543 30842909
    [Google Scholar]
  74. MageshP.R. MylothR.D. TomR.J. An explainable machine learning model for early detection of Parkinson’s disease using LIME on DaTSCAN imagery.Comput. Biol. Med.202012610404110.1016/j.compbiomed.2020.104041 33074113
    [Google Scholar]
  75. ChoJ. AlharinA. HuZ. FellN. SartipiM. "Predicting post-stroke hospital discharge disposition using interpretable machine learning approaches", Proceedings of the 2019 IEEE International Conference on Big Data (Big Data)Los Angeles, CA, USA, December20194817482210.1109/BigData47090.2019.9006592
    [Google Scholar]
  76. ChittajalluD.R. DongB. TunisonP. CollinsR. WellsK. FleshmanJ. SankaranarayananG. SchwaitzbergS. CavuotoL. EnquobahrieA. "XAI-CBIR: Explainable ai system for content based retrieval of video frames from minimally invasive surgery videos", 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)Venice, Italy, 08-11 April2019666910.1109/ISBI.2019.8759428
    [Google Scholar]
  77. HossainM.S. MuhammadG. GuizaniN. Explainable ai and mass surveillance system-based healthcare framework to combat COVID-19 like pandemics.IEEE Netw.202034412613210.1109/MNET.011.2000458
    [Google Scholar]
  78. MonroeW.S. SkidmoreF.M. OdaiboD.G. TanikM.M. HihO: accelerating artificial intelligence interpretability for medical imaging in IoT applications using hierarchical occlusion.Neural Comput. Appl.202133116027603810.1007/s00521‑020‑05379‑4
    [Google Scholar]
  79. PnevmatikakisA. KanavosS. MatikasG. KostopoulouK. CesarioA. KyriazakosS. Risk assessment for personalized health insurance based on real-world data.Risks2021934610.3390/risks9030046
    [Google Scholar]
  80. HatwellJ. GaberM.M. Atif AzadR.M. Ada-WHIPS: Explaining AdaBoost classification with applications in the health sciences.BMC Med. Inform. Decis. Mak.202020125010.1186/s12911‑020‑01201‑2 33008388
    [Google Scholar]
  81. GozziN. MalandriL. MercorioF. PedrocchiA. XAI for myo-controlled prosthesis: Explaining EMG data for hand gesture classification.Knowl. Base. Syst.202224010805310.1016/j.knosys.2021.108053
    [Google Scholar]
  82. YangG. RaschkeF. BarrickT.R. HoweF.A. Manifold Learning in MR spectroscopy using nonlinear dimensionality reduction and unsupervised clustering.Magn. Reson. Med.201574386887810.1002/mrm.25447 25199640
    [Google Scholar]
  83. ZhaoL.P. BolouriH. Object-oriented regression for building predictive models with high dimensional omics data from translational studies.J. Biomed. Inform.20166043144510.1016/j.jbi.2016.03.001 26972839
    [Google Scholar]
  84. KimS.G. Theera-AmpornpuntN. FangC.H. HarwaniM. GramaA. ChaterjiS. Opening up the blackbox: An interpretable deep neural network-based classifier for cell-type specific enhancer predictions BMC Syst. Biol.vol. 10, no. S2, suppl. Suppl. 2, p. 54, 2016.10.1186/s12918‑016‑0302‑3 27490187
    [Google Scholar]
  85. BernardiniM. RomeoL. MisericordiaP. FrontoniE. Discovering the type 2 diabetes in electronic health records using the sparse balanced support vector machine.IEEE J. Biomed. Health Inform.202024123524610.1109/JBHI.2019.2899218 30762572
    [Google Scholar]
  86. LethamB. RudinC. McCormickT.H. MadiganD. Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model.Ann. Appl. Stat.2015931350137110.1214/15‑AOAS848
    [Google Scholar]
  87. MingY. QuH. BertiniE. Rulematrix: Visualizing and understanding classifiers with rules.IEEE Trans. Vis. Comput. Graph.201925134235210.1109/TVCG.2018.2864812 30130210
    [Google Scholar]
  88. LeeH. KimS.T. RoY.M. Generation of multimodal justification using visual word constraint model for explainable computer-aided diagnosis.Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support.Springer20192129
    [Google Scholar]
  89. GeW. HuhJ-W. ParkY.R. LeeJ-H. KimY-H. TurchinA. An interpretable ICU mortality prediction model based on logistic regression and recurrent neural networks with LSTM units.AMIA Annu. Symp. Proc.20182018460469
    [Google Scholar]
  90. ZuallaertJ. GodinF. KimM. SoeteA. SaeysY. De NeveW. SpliceRover: Interpretable convolutional neural networks for improved splice site prediction.Bioinformatics201834244180418810.1093/bioinformatics/bty497 29931149
    [Google Scholar]
  91. KwonB.C. ChoiM.J. KimJ.T. ChoiE. KimY.B. KwonS. SunJ. ChooJ. Retainvis: Visual analytics with interpretable and interactive recurrent neural networks on electronic medical records.IEEE Trans. Vis. Comput. Graph.201925129930910.1109/TVCG.2018.2865027 30136973
    [Google Scholar]
  92. LeeH. YuneS. MansouriM. KimM. TajmirS.H. GuerrierC.E. EbertS.A. PomerantzS.R. RomeroJ.M. KamalianS. GonzalezR.G. LevM.H. DoS. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets.Nat. Biomed. Eng.20183317318210.1038/s41551‑018‑0324‑9 30948806
    [Google Scholar]
  93. PorumbM. StrangesS. PescapèA. PecchiaL. Precision medicine and artificial intelligence: A pilot study on deep learning for hypoglycemic events detection based on ECG.Sci. Rep.202010117010.1038/s41598‑019‑56927‑5 31932608
    [Google Scholar]
  94. BharatiS. Hossain MondalM. R. PodderP. "A review on explainable artificial intelligence for healthcare: Why, How, and When?", arXiv202323040478010.1109/TAI.2023.3266418
    [Google Scholar]
  95. Barredo ArrietaA. Díaz-RodríguezN. Del SerJ. BennetotA. TabikS. BarbadoA. GarcíaS. Gil-LópezS. MolinaD. BenjaminsR. ChatilaR. HerreraF. Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI.Inf. Fusion2020588211510.1016/j.inffus.2019.12.012
    [Google Scholar]
  96. AnwarS.H. AhmadU. KhanM.M. HaiderM.F. AkhtarJ. Book chapter on Artificial Intelligence in Healthcare: An Overview.IntechOpen202210.5772/intechopen.102768
    [Google Scholar]
  97. ClementT. KemmerzellN. AbdelaalM. AmbergM. A Systematic Metareview of Explainable AI (XAI) Aligned to the Software Development ProcessMach. Learn. Knowl. Extr.5(1), 78-108, 2023.10.3390/make5010006
    [Google Scholar]
  98. ViloneG. LongoL. Classification of Explainable Artificial Intelligence Methods through Their Output Formats.Mach. Learn. Knowl. Extr. 3, 202161566110.3390/make3030032
    [Google Scholar]
  99. ChaddadA. PengJ. XuJ. BouridaneA. Survey of Explainable AI Techniques in Healthcare.Sensors23(2), 634, 2023.10.3390/s23020634
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558296699240314055348
Loading
/content/journals/rascs/10.2174/0126662558296699240314055348
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test