Full text loading...
-
Automation of Data Flow Class Testing Using Hybrid Evolutionary Algorithms
- Source: Recent Advances in Computer Science and Communications, Volume 14, Issue 1, Jan 2021, p. 317 - 330
-
- 01 Jan 2021
Abstract
Background: Software testing is a time consuming and costly process. Recent advances in complexity of software have gained attention among researchers towards the automation of generation of test data. Objective: This paper focuses on the structural testing of object oriented paradigm based software and proposes a hybrid approach to automate the class testing applying heuristic algorithms. Methods: The proposed algorithm performs data flow testing of classes applying all defuses adequacy criteria by automatically generating test cases. A nested 2-step methodology is applied using meta-heuristic genetic algorithm and its two variant (GA-variant1 and Ga-variant2) to produce optimized method sequences. Results: An experiment is performed applying proposed algorithm on six test classes. The results suggest that proposed approach with GA-variant1 is better than other techniques in terms of Average d-u coverage and Average iterations.