Skip to content
2000
image of Real Time Object Detection Algorithm in Foggy Weather Based on 
WVIT-YOLO Model

Abstract

Introduction

To address the challenges of low visibility, object recognition difficulties, and low detection accuracy in foggy weather, this paper introduces the WViT-YOLO real-time fog detection model, built on the YOLOv5 framework. The NVIT-Net backbone network, incorporating NTB and NCB modules, enhances the model's ability to extract both global and local features from images.

Method

An efficient convolutional C3_DSConv module is designed and integrated with channel attention mechanisms and ShuffleAttention at each upsampling stage, improving the model's computational speed and its ability to detect small and blurry objects. The Wise-IOU loss function is utilized during the prediction stage to enhance the model's convergence efficiency.

Result

Experimental results on the publicly available RTTS dataset for vehicle detection in foggy conditions demonstrate that the WViT-YOLO model achieves a 3.2% increase in precision, a 9.5% rise in recall, and an 8.6% improvement in mAP50 compared to the baseline model. Furthermore, WViT-YOLO shows a 9.5% and 8.6% mAP50 improvement over YOLOv7 and YOLOv8, respectively. For detecting small and blurry objects in foggy conditions, the model demonstrates approximately a 5% improvement over the benchmark, significantly enhancing the detection network's generalization ability under foggy conditions.

Conclusion

This advancement is crucial for improving vehicle safety in such weather. The code is available at https://github.com/QinghuaZhang1/mode.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558331725241024101310
2024-11-04
2025-01-12
Loading full text...

Full text loading...

References

  1. Guo C. Zero-reference deep curve estimation for low-light image enhancement. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 13-19 Jun, 2020, Seattle, WA, USA, 2020, pp. 1777-1786. 10.1109/CVPR42600.2020.00185
    [Google Scholar]
  2. Cai Y. Dai L. Wang H. Chen L. Li Y. DLnet with training task conversion stream for precise semantic segmentation in actual traffic scene. IEEE Transac. Neural Net. Learning Sys. 2021 33 6443 6457 10.1109/TNNLS.2021.3080261
    [Google Scholar]
  3. Liu X. Lin Y. YOLO-GW: quickly and accurately detecting pedestrians in a foggy traffic environment. Sensors (Basel) 2023 23 12 5539 10.3390/s23125539 37420706
    [Google Scholar]
  4. Liu X. Ma Y. Shi Z. Chen J. GridDehazeNet: Attention-Based Multi-Scale Network for Image Dehazing. 2019 IEEE/CVF International Conference on Computer Vision (ICCV) 27 Oct - 02 Nov, 2019, Seoul, Korea (South), 2019, pp. 7313-7322. 10.1109/ICCV.2019.00741
    [Google Scholar]
  5. Dong H. Multi-scale boosted dehazing network with dense feature fusion. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 13-19 Jun, 2020, Seattle, WA, USA, 2020, pp. 2154-2164. 10.1109/CVPR42600.2020.00223
    [Google Scholar]
  6. Qin X. Wang Z. Bai Y. Xie X. Jia H. “FFA-Net: Feature fusion attention network for single image dehazing,” in Proc. AAAI Conf. Artif. Intell. 2020 34 7 11908 11915
    [Google Scholar]
  7. Li B. Peng X. Wang Z. Xu J. Feng D. AOD-Net: All-in-one dehazing network. 2017 IEEE International Conference on Computer Vision (ICCV) 22-29 Oct, 2017, Venice, Italy, 2017, pp. 4780-4788. 10.1109/ICCV.2017.511
    [Google Scholar]
  8. Sindagi V.A. Oza P. Prior-based domain adaptive object detection for hazy and rainy conditions. Computer Vision – ECCV 2020 Glasgow, U.K. Springer 2020 763 780
    [Google Scholar]
  9. Huang S-C. Le T-H. Jaw D-W. DSNet: Joint semantic learning for object detection in inclement weather conditions. IEEE Trans. Pattern Anal. Mach. Intell. 2021 43 8 2623 2633 32149681
    [Google Scholar]
  10. Chen Y. Li W. Sakaridis C. Dai D. an Gool L.V. Domain adaptive faster R-CNN for object detection in the wild. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 18-23 Jun, 2018, Salt Lake City, UT, USA, 2018, pp. 3339-3348. 10.1109/CVPR.2018.00352
    [Google Scholar]
  11. Zhang S. Tuo H. Hu J. Jing Z. Domain adaptive YOLO for one-stage cross-domain detection Proc. Asian Conf. Mach. Learn. 2021 157 785 797
    [Google Scholar]
  12. Kansal I. Kasana S.S. Improved color attenuation prior based image de-fogging technique. Multimedia Tools Appl. 2020 79 17-18 12069 12091 [J]. 10.1007/s11042‑019‑08240‑6
    [Google Scholar]
  13. Cai B. Xu X. Jia K. Qing C. Tao D. Dehazenet: An end-to-end system for single image haze removal. IEEE Trans. Image Process. 2016 25 11 5187 5198 10.1109/TIP.2016.2598681 28873058
    [Google Scholar]
  14. Lin H-Y. Lin C-J. Using a hybrid of fuzzy theory and neural network filter for single image dehazing. Appl. Intell. 2017 47 4 1099 1114 [J]. 10.1007/s10489‑017‑0942‑z
    [Google Scholar]
  15. Eigen D. Restoring an image taken through a window covered with dirt or rain. ICCV '13: Proceedings of the 2013 IEEE International Conference on Computer Vision IEEE Computer Society 2013
    [Google Scholar]
  16. Liu L. Ouyang W. Wang X. Fieguth P. Chen J. Liu X. Pietikäinen M. Deep learning for generic object detection: A survey. Int. J. Comput. Vis. 2020 128 2 261 318 [J]. 10.1007/s11263‑019‑01247‑4
    [Google Scholar]
  17. Zhengxia Z.O.U. Zhenwei S.H.I. Yuhong G.U.O. Object detection in 20 years: A survey Proceed. IEEE 2019 111 3 257 276
    [Google Scholar]
  18. Dalal N. Histograms of oriented gradients for human detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 25 May 2021, San Diego, USA, 2005, 886–893. 10.1109/CVPR.2005.177
    [Google Scholar]
  19. Krizhevsky A. ImageNet classification with deep convolutional neural networks. Commun. ACM 2012 60 6 84 90
    [Google Scholar]
  20. LeCun Y. Bengio Y. Hinton G. Deep learning. Nature 2015 521 7553 436 444 10.1038/nature14539 26017442
    [Google Scholar]
  21. Girshick R. Donahue J. Darrell T. Rich feature hierarchies for accurate object detection and semantic segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition 23-28 Jun, 2014, Columbus, OH, USA, 2014, pp. 580-587.
    [Google Scholar]
  22. Girshick R. Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV) 07-13 Dec, 2015, Santiago, Chile, 2015, pp. 1440-1448.
    [Google Scholar]
  23. Ren S. He K. Girshick R. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015 2015 28
    [Google Scholar]
  24. Liu W. Anguelov D. Erhan D. Ssd: Single shot multibox detector, Computer Vision–ECCV 2016. 14th European Conference October 11–14, 2016, Amsterdam, The Netherlands, pp. 21-37.
    [Google Scholar]
  25. Redmon J. Divvala S. Girshick R. You only look once: Unified, real-time object detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 27-30 Jun, 2016, Las Vegas, NV, USA, 2016, pp. 779-788.
    [Google Scholar]
  26. Bochkovskiy A. Wang C.Y. Liao H.Y.M. Yolov4: Optimal speed and accuracy of object detection arXiv.2004.10934 2020
    [Google Scholar]
  27. Farhadi A. YOLOv3: An incremental improvement arXiv.1804.02767 2018
    [Google Scholar]
  28. Wang C.Y. Bochkovskiy A. Liao H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 17-24 Jun, 2023, Vancouver, BC, Canada, 2023, pp. 7464-7475. 10.1109/CVPR52729.2023.00721
    [Google Scholar]
  29. Li Y. You S. Brown M.S. Tan R.T. Haze visibility enhancement: A Survey and quantitative benchmarking. Comput. Vis. Image Underst. 2017 165 1 16 [J]. 10.1016/j.cviu.2017.09.003
    [Google Scholar]
  30. XU Y Review of video and image defogging algorithms and related studies on image restoration and enhancement. IEEE Access 2015 4 165 188 [J].
    [Google Scholar]
  31. Singh D. Kumar V. KUMAR V J.A comprehensive review of computational dehazing techniques. Arch. Comput. Methods Eng. 2019 26 5 1395 1413 10.1007/s11831‑018‑9294‑z
    [Google Scholar]
  32. Gui J. A comprehensive survey on image dehazing based on deep learning. ArXiv abs/2106.03323 2021
    [Google Scholar]
  33. Kaiming He Jian Sun Xiaoou Tang Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2011 33 12 2341 2353 10.1109/TPAMI.2010.168 20820075
    [Google Scholar]
  34. He K. Sun J. Tang X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013 35 6 1397 1409 10.1109/TPAMI.2012.213 23599054
    [Google Scholar]
  35. Yang D. Proximal dehaze-net: A prior learning-based deep network for single image dehazing. Lecture Notes in Computer Science Springer 2018
    [Google Scholar]
  36. Li B. An all-in-one network for dehazing and beyond. arXiv:1707.06543 2017
    [Google Scholar]
  37. Hasan M.K. Dahal L. Samarakoon P.N. Tushar F.I. Martí R. DSNet: Automatic dermoscopic skin lesion segmentation. Comput. Biol. Med. 2020 120 103738 10.1016/j.compbiomed.2020.103738 32421644
    [Google Scholar]
  38. ZHANG H IEEE Trans. Neural Netw. Learn. Syst. 2019 31 6 1794 1807 [J]. 31329133
    [Google Scholar]
  39. Fang W. Zhang G. Zheng Y. Chen Y. Multi-task learning for UAV aerial object detection in foggy weather condition. Remote Sens. (Basel) 2023 15 18 4617 10.3390/rs15184617
    [Google Scholar]
  40. Gopalan R. Domain adaptation for object recognition: An unsupervised approach. ICCV '11: Proceedings of the 2011 International Conference on Computer Vision IEEE Computer Society 2011
    [Google Scholar]
  41. Mansour Y. Domain adaptation:Learning bounds and algorithms. ArXiv abs/0902.3430 2009
    [Google Scholar]
  42. BEN- DAVID S A theory of learning from different domains. Mach. Learn. 2010 79 1 151 175 [J].
    [Google Scholar]
  43. Chen Y. Wang H. Li W. Sakaridis C. Dai D. Van Gool L. Scale- aware domain adaptive Faster R-CNN. Int. J. Comput. Vis. 2021 129 7 2223 2243 10.1007/s11263‑021‑01447‑x
    [Google Scholar]
  44. He Z. Multi-adversarial faster-rcnn for unrestricted object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 27 Oct - 02 Nov 2019, Seoul, Korea (South), pp. 6667-6676.
    [Google Scholar]
  45. Zhu X. Adapting object detectors via selective cross-domain alignment. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) June 10–17, 2019, Nashville, Tennessee, pp.687-696.
    [Google Scholar]
  46. Saito K. Strong-weak distribution alignment for adaptive object detection. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 15-20 Jun, 2019, Long Beach, CA, USA, 2019, pp. 6949-6958.
    [Google Scholar]
  47. Hnewa M. Multiscale domain adaptive yolo for cross-domain object detection. 2021 IEEE International Conference on Image Processing (ICIP) 19-22 Sept, 2021, Anchorage, AK, USA, 2021, pp. 3323-3327.
    [Google Scholar]
  48. Wang Y. Domain-specific suppression for adaptive object detection. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 20-25 Jun, 2021, Nashville, TN, USA, 2021, pp. 9598-9607.
    [Google Scholar]
  49. Liu W. Ren G. Yu R. Guo S. Zhu J. Zhang L. Image-adaptive YOLO for object detection in adverse weather conditions. Proc. Conf. AAAI Artif. Intell. 2022 36 2 1792 1800 10.1609/aaai.v36i2.20072
    [Google Scholar]
  50. Lin T.Y. Goyal P. Girshick R. Focal loss for dense object detection. 2017 IEEE International Conference on Computer Vision (ICCV) 22-29 Oct, 2017, Venice, Italy, 2017, pp. 2999-3007.
    [Google Scholar]
  51. Shuai K. Jianwu Z. Zunjie Z. An improved YOLOv4 algorithm for pedestrian detection in complex visual scenes. Telecommun. Sci. 2021 37 8
    [Google Scholar]
  52. Wang H. Xu Y. He Y. YOLOv5-Fog: A multiobjective visual detection algorithm for fog driving scenes based on improved YOLOv5. IEEE Trans. Instrum. Meas. 2022 71 1 12 [J]. 10.1109/TIM.2022.3216413
    [Google Scholar]
  53. Tong Z. Chen Y. Xu Z. Wise-IoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism. arXiv.2301.10051 2023
    [Google Scholar]
  54. Li J. Xia X. Li W. Next-vit: Next generation vision transformer for efficient deployment in realistic industrial scenarios. ArXiv abs/2207.05501 2022
    [Google Scholar]
  55. Liu T. Li J. Cai M. An Improved YOLOv3-SPP Algorithm for Image-Based Pothole Detection. Advances in Neural Networks – ISNN 2024: 18th International Symposium on Neural Networks July 11–14, 2024, Weihai, China, pp. 328-335.
    [Google Scholar]
  56. Saoud L.S. Niu Z. Sultan A. ADOD: Adaptive Domain-Aware Object Detection with Residual Attention for Underwater Environments. 2023 21st International Conference on Advanced Robotics (ICAR) 05-08 Dec, 2023, Abu Dhabi, United Arab Emirates, 2023, pp. 633-638.
    [Google Scholar]
  57. Liu J. Qiao H. Yang L. Guo J. Improved lightweight YOLOv4 foreign object detection method for conveyor belts combined with CBAM. Appl. Sci. (Basel) 2023 13 14 8465 [J]. 10.3390/app13148465
    [Google Scholar]
  58. Fu H. Song G. Wang Y. Improved YOLOv4 marine target detection combined with CBAM. Symmetry (Basel) 2021 13 4 623 [J]. 10.3390/sym13040623
    [Google Scholar]
  59. Lin C.T. Huang S.W. Wu Y.Y. Lai S-H. GAN-based day-to-night image style transfer for nighttime vehicle detection. IEEE Trans. Intell. Transp. Syst. 2021 22 2 951 963 [J]. 10.1109/TITS.2019.2961679
    [Google Scholar]
  60. Yang L. Zhong J. Zhang Y. Bai S. Li G. Yang Y. Zhang J. An improving faster-RCNN with multi-attention ResNet for small target detection in intelligent autonomous transport with 6G. IEEE Trans. Intell. Transp. Syst. 2023 24 7 7717 7725 [J]. 10.1109/TITS.2022.3193909
    [Google Scholar]
  61. Yu G. Chang Q. Lv W. PP-PicoDet: A better real-time object detector on mobile devices. arXiv.2111.00902 2021
    [Google Scholar]
  62. Yu J. Jiang Y. Wang Z. UnitBox: An advanced object detection network. MM '16: Proceedings of the 24th ACM international conference on Multimedia Oct 15-19, 2016, Melbourne, Australia, pp.516-520.
    [Google Scholar]
  63. Zhang Y.F. Ren W. Zhang Z. Jia Z. Wang L. Tan T. Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing 2022 506 146 157 [J]. 10.1016/j.neucom.2022.07.042
    [Google Scholar]
  64. Zhao W. Kang Y. Chen H. Zhao Z. Zhai Y. Yang P. A target detection algorithm for remote sensing images based on a combination of feature fusion and improved anchor. IEEE Trans. Instrum. Meas. 2022 71 1 8 [J]. 10.1109/TIM.2022.3181927
    [Google Scholar]
  65. Zheng Z. Wang P. Liu W. Li J. Ye R. Ren D. Distance-IoU loss: Faster and better learning for bounding box regression. Proc. Conf. AAAI Artif. Intell. 2020 34 7 12993 13000 [C]. 10.1609/aaai.v34i07.6999
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558331725241024101310
Loading
/content/journals/rascs/10.2174/0126662558331725241024101310
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: NViT-Net ; Real-time vehicle detection ; WIOU ; C3_DSConv ; WViT-YOLO
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test