Skip to content
2000
image of Field Pest Detection via Pyramid Vision Transformer and Prime Sample Attention

Abstract

Background

Pest detection plays a crucial role in smart agriculture; it is one of the primary factors that significantly impact crop yield and quality. Objective: In actual field environments, pests often appear as dense and small objects, which pose a great challenge to field pest detection. Therefore, this paper addresses the problem of dense small pest detection.

Methods

We combine a pyramid vision transformer and prime sample attention (named PVT-PSA) to design an effective pest detection model. Firstly, a pyramid vision transformer is adopted to extract pest feature information. Pyramid vision transformer fuses multi-scale pest features through pyramid structure and can capture context information of small pests, which is conducive to the feature expression of small pests. Then, we design prime sample attention to guide the selection of pest samples in the model training process to alleviate the occlusion effect between dense pests and enhance the overall pest detection accuracy.

Results

The effectiveness of each module is verified by the ablation experiment. According to the comparison experiment, the detection and inference performance of the PVT-PSA is better than the other eleven detectors in field pest detection. Finally, we deploy the PVT- PSA model on a terrestrial robot based on the Jetson TX2 motherboard for field pest detection.

Conclusion

The pyramid vision transformer is utilized to extract relevant features of pests. Additionally, prime sample attention is employed to identify key samples that aid in effectively training the pest detection models. The model deployment further demonstrates the practicality and effectiveness of our proposed approach in smart agriculture applications.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558345887241127062525
2024-12-10
2025-01-12
Loading full text...

Full text loading...

References

  1. Oikonomidis A. Catal C. Kassahun A. Deep learning for crop yield prediction: A systematic literature review. N. Z. J. Crop Hortic. Sci. 2023 51 1 1 26 10.1080/01140671.2022.2032213
    [Google Scholar]
  2. Jia F. Luo S. Yin G. Ye Y. A novel variant of the salp swarm algorithm for engineering optimization. J. Artif. Intell. Soft Comput. Res. 2023 13 3 131 149 10.2478/jaiscr‑2023‑0011
    [Google Scholar]
  3. Al-Mekhlafi Z.G. Al-Shareeda M.A. Manickam S. Mohammed B.A. Alreshidi A. Alazmi M. Alshudukhi J.S. Alsaffar M. Alsewari A. Chebyshev polynomial-based fog computing scheme supporting pseudonym revocation for 5g-enabled vehicular networks. Electronics 2023 12 4 872 10.3390/electronics12040872
    [Google Scholar]
  4. Al-Mekhlafi Z.G. Al-Shareeda M.A. Manickam S. Mohammed B.A. Qtaish A. Lattice-based lightweight quantum resistant scheme in 5g-enabled vehicular networks. Mathematics 2023 11 2 399 10.3390/math11020399
    [Google Scholar]
  5. Mohammed B. A. Al-Shareeda M. A. Manickam S. FC-PA: Fog computing-based pseudonym authentication scheme in 5G-enabled vehicular networks. IEEE Access 2023 11 18571 18581 10.1109/ACCESS.2023.3247222
    [Google Scholar]
  6. Al-Shareeda M.A. Manickam S. Covid-19 vehicle based on an efficient mutual authentication scheme for 5g-enabled vehicular fog computing. Int. J. Environ. Res. Public Health 2022 19 23 15618 10.3390/ijerph192315618 36497709
    [Google Scholar]
  7. Dai M. Dorjoy M.M.H. Miao H. Zhang S. A new pest detection method based on improved yolov5m. Insects 2023 14 1 54 10.3390/insects14010054 36661982
    [Google Scholar]
  8. Wang X. Du J. Xie C. Wu S. Ma X. Liu K. Dong S. Chen T. Prior knowledge auxiliary for few-shot pest detection in the wild. Front. Plant Sci. 2023 13 1033544 10.3389/fpls.2022.1033544 36777532
    [Google Scholar]
  9. Wang X. Zhang S. Wang X. Xu C. Crop pest detection by three-scale convolutional neural network with attention. PLoS One 2023 18 6 e0276456 10.1371/journal.pone.0276456 37267397
    [Google Scholar]
  10. Gao T. Wushouer M. Tuerhong G. Dms-yolov5: A decoupled multi-scale yolov5 method for small object detection Applied Sci. 2023 13 10 6124 10.3390/app13106124
    [Google Scholar]
  11. Qu J. Tang Z. Zhang L. Zhang Y. Zhang Z. Remote sensing small object detection network based on attention mechanism and multi-scale feature fusion. Remote Sens. 2023 15 11 2728 10.3390/rs15112728
    [Google Scholar]
  12. Liu W. Zhou B. Wang Z. Yu G. Yang S. Fppnet: A fixed- perspective-perception module for small object detection based on background difference. IEEE Sens. J. 2023 23 10 11057 11069 10.1109/JSEN.2023.3263539
    [Google Scholar]
  13. Li X. Lv C. Wang W. Li G. Yang L. Yang J. Generalized focal loss: Towards efficient representation learning for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2023 45 3 3139 3153 35679384
    [Google Scholar]
  14. Zhu C. Liang J. Zhou F. Transfer learning-based yolov3 model for road dense object detection. Information 2023 14 10 560 10.3390/info14100560
    [Google Scholar]
  15. Gao Z. Yoloca: Center aware yolo for dense object detection J. Phys. Conf. Ser. 2023 2425 1 012019 10.1088/1742‑6596/2425/1/012019
    [Google Scholar]
  16. Wang R. Liu L. Xie C. Yang P. Li R. Zhou M. Agripest: A large-scale domain-specific benchmark dataset for practical agri- cultural pest detection in the wild. Sensors 2021 21 5 1601 10.3390/s21051601 33668820
    [Google Scholar]
  17. Zou Z. Chen K. Shi Z. Guo Y. Ye J. Object detection in 20 years: A survey. Proc. IEEE 2023 111 3 257 276 10.1109/JPROC.2023.3238524
    [Google Scholar]
  18. Wang W. Xie E. Li X. Fan D-P. Song K. Liang D. Lu T. Luo P. Shao L. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions International Conference on Computer Vision Montreal, QC, Canada, 2021, pp. 548-558, 10.1109/ICCV48922.2021.00061
    [Google Scholar]
  19. Henderson P. Ferrari V. End-to-end training of object class detectors for mean average precision. 2016 13th Asian Conference on Computer Vision, November-20-24-2016, Taipei, Taiwan, pp. 198-213
    [Google Scholar]
  20. Liu S. Qi L. Qin H. Shi J. Jia J. Path aggregation network for instance segmentation. Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 8759-8768.
    [Google Scholar]
  21. Wang J. Chen K. Xu R. Liu Z. Loy C.C. Lin D. Carafe: Content-aware reassembly of features. IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019, pp. 3007-3016.
    [Google Scholar]
  22. Zhang H. Wang Y. Dayoub F. Sunderhauf N. Varifocalnet: An iou-aware dense object detector. IEEE/CVF Conference on Computer Vision and Pattern Recognition, United States of America, 2021, pp. 8510-8519.
    [Google Scholar]
  23. Zhu B. Wang J. Jiang Z. Zong F. Liu S. Li Z. Sun J. Au- toassign: Differentiable label assignment for dense object detection arXiv 2020
    [Google Scholar]
  24. Lin T-Y. Goyal P. Girshick R. He K. Dolla’r P. Focal loss for dense object detection. IEEE International Conference on Computer Vision, Venice, Italy, 2017, pp. 2999-3007.
    [Google Scholar]
  25. Tian Z. Shen C. Chen H. He T. FCOS: Fully convolutional one- stage object detection. IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019, pp. 9626-9635. 10.1109/ICCV.2019.00972
    [Google Scholar]
  26. Liu Z. Lin Y. Cao Y. Hu H. Wei Y. Zhang Z. Lin S. Guo B. Swin transformer: Hierarchical vision transformer using shifted windows. IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 2021, pp. 9992-10002. 10.1109/ICCV48922.2021.00986
    [Google Scholar]
  27. Lyu C. Zhang W. Huang H. Zhou Y. Wang Y. Liu Y. Zhang S. Chen K. Rtmdet: An empirical study of designing real-time object detectors arXiv 2022
    [Google Scholar]
  28. Liu S. Li F. Zhang H. Yang X. Qi X. Su H. Zhu J. Zhang L. DAB-DETR: Dynamic anchor boxes are better queries for DETR arXiv 2022
    [Google Scholar]
  29. Zhang S. Wang X. Wang J. Pang J. Lyu C. Zhang W. Luo P. Chen K. Dense distinct query for end-to-end object detection IEEE/CVF conference on computer vision and pattern recognition Vancouver, BC, Canada, 2023, pp. 7329-7338. 10.1109/CVPR52729.2023.00708
    [Google Scholar]
  30. Zhang H. Li F. Liu S. Zhang L. Su H. Zhu J. Ni L.M. Shum H-Y. Dino: Detr with improved denoising anchor boxes for end-to-end object detection arXiv 2023
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558345887241127062525
Loading
/content/journals/rascs/10.2174/0126662558345887241127062525
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: vision transformer ; deep learning ; attention mechanism ; pest detection ; Smart agriculture
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test