Skip to content
2000
image of A Deep Learning Framework with Learning without Forgetting for 
Intelligent Surveillance in IoT-enabled Home Environments in Smart Cities

Abstract

Background

Internet of Things (IoT) technology in smart urban homes has revolutionised sophisticated monitoring. This progress uses interconnected devices and systems to improve security, resource management, and resident safety. Smart cities use technology to improve efficiency, sustainability, and quality. Internet of Things-enabled intelligent monitoring technologies are key to this goal.

Objectives

Intelligent monitoring in IoT-enabled homes in smart cities improves security, convenience, and quality of life from advanced technologies. Using live monitoring and risk identification tools to quickly discover and resolve security breaches and suspicious activity to protect citizens. Intelligent devices allow homeowners to remotely control lighting, security locks, and surveillance cameras. Using advanced technologies to regulate heating, cooling, and lighting based on occupancy and usage.

Method

This study introduces a deep learning architecture that uses LwF (Learning without Forgetting) to keep patterns while absorbing new data. The authors use IoT devices to collect and analyse data in real-time for monitoring and surveillance. They use sophisticated data pre-processing to handle IoT devices' massive data. The authors train the deep learning model with historical and real-time data and cross-validation to ensure resilience.

Result

The proposed model has been validated on two different Robloflow datasets of 7382 images. The proposed model gains an accuracy level of 98.27%. The proposed Yolo-LwF model outperforms both the original Yolo and LwF models in terms of detection speed and adaptive learning.

Conclusion

By raising the bar for intelligent monitoring solutions in smart cities, the suggested system is ideal for real-time, adaptive surveillance in IoT-enabled households. By embracing adaptability and knowledge retention, authors envision heightened security and safety levels in urban settings.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558329951241024183922
2024-11-04
2025-01-12
Loading full text...

Full text loading...

References

  1. Aldahmani A. Ouni B. Lestable T. Debbah M. Cyber-security of embedded IoTs in smart homes: Challenges, requirements, countermeasures, and trends. IEEE Open J. Veh. Technol. 2023 4 281 292 10.1109/OJVT.2023.3234069
    [Google Scholar]
  2. Salman L. Salman S. Jahangirian S. Abraham M. German F. Energy efficient IoT-based smart home. Proceedings of 2016 IEEE 3rd World Forum on Internet of Things 12-14 December 2016 Reston, VA, USA 526 529 2017
    [Google Scholar]
  3. Dash S. Choudekar P. Home automation using smart devices and IoT. Proceedings of the 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), ICRITO 2021 03-04 September 2021 Noida, India 1 5 2021 10.1109/ICRITO51393.2021.9596533
    [Google Scholar]
  4. Dhiyanesh B. Kanna K.R. Rajkumar S. Radha R. Improved object detection in video surveillance using deep convolutional neural network learning. Proceedings of the 5th International Conference on IoT in Social, Mobile, Analytics and Cloud (I-SMAC 2021) 11-13 November 2021 United States 913 920 2021
    [Google Scholar]
  5. Kumar S. Swetha S. Kiran V.T. Johri P. IoT based smart home surveillance and automation. Proceedings of 2018 International Conference on Computing, Power and Communication Technologies 28-29 September 2018 Greater Noida, Uttar Pradesh, India 786 790 2019
    [Google Scholar]
  6. Șerban O. Thapen N. Maginnis B. Hankin C. Foot V. Real-time processing of social media with SENTINEL: A syndromic surveillance system incorporating deep learning for health classification. Inf. Process. Manage. 2019 56 3 1166 1184 10.1016/j.ipm.2018.04.011
    [Google Scholar]
  7. Liu W. Zhang M. Luo Z. Cai Y. An ensemble deep learning method for vehicle type classification on visual traffic surveillance sensors. IEEE Access 2017 5 24417 24425 10.1109/ACCESS.2017.2766203
    [Google Scholar]
  8. Wang J. Zheng H. Huang Y. Ding X. Vehicle type recognition in surveillance images from labeled web-nature data using deep transfer learning. IEEE Trans. Intell. Transp. Syst. 2018 19 9 2913 2922 10.1109/TITS.2017.2765676
    [Google Scholar]
  9. Kaşkavalci H.C. Gören S. A deep learning based distributed smart surveillance architecture using edge and cloud computing. Proceedings of 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications 26-28 August 2019 Istanbul, Turkey 1 6 2019 10.1109/Deep‑ML.2019.00009
    [Google Scholar]
  10. Nawaratne R. Alahakoon D. De Silva D. Yu X. Spatiotemporal anomaly detection using deep learning for real-time video surveillance. IEEE Trans. Industr. Inform. 2020 16 1 393 402 10.1109/TII.2019.2938527
    [Google Scholar]
  11. Ramchandani A. Fan C. Mostafavi A. DeepCOVIDNet: An interpretable deep learning model for predictive surveillance of covid-19 using heterogeneous features and their interactions. IEEE Access 2020 8 159915 159930 10.1109/ACCESS.2020.3019989 34786287
    [Google Scholar]
  12. Zhao Y. Yin Y. Gui G. Lightweight deep learning based intelligent edge surveillance techniques. IEEE Trans. Cogn. Commun. Netw. 2020 6 4 1146 1154 10.1109/TCCN.2020.2999479
    [Google Scholar]
  13. Abdelali H.A. Derrouz H. Zennayi Y. Thami R.O.H. Bourzeix F. Multiple hypothesis detection and tracking using deep learning for video traffic surveillance. IEEE Access 2021 9 164282 164291 10.1109/ACCESS.2021.3133529
    [Google Scholar]
  14. Ahmed I. Din S. Jeon G. Piccialli F. Fortino G. Towards collaborative robotics in top view surveillance: A framework for multiple object tracking by detection using deep learning. IEEE/CAA Journal of Automatica Sinica 2021 2021 99 10.1109/JAS.2020.1003453
    [Google Scholar]
  15. Jung Y. Kang T. Chun C. Anomaly analysis on indoor office spaces for facility management using deep learning methods. J. Build. Eng. 2021 43 103139 10.1016/j.jobe.2021.103139
    [Google Scholar]
  16. Wu D. Wang C. Wu Y. Wang Q.C. Huang D.S. Attention deep model with multi-scale deep supervision for person re-identification. IEEE Trans. Emerg. Top. Comput. Intell. 2021 5 1 70 78 10.1109/TETCI.2020.3034606
    [Google Scholar]
  17. Sivachandiran S. Jagan Mohan K. Mohammed Nazer G. Deep Learning driven automated person detection and tracking model on surveillance videos. Meas. Sensors 2022 24 100422 10.1016/j.measen.2022.100422
    [Google Scholar]
  18. Kulurkar P. Dixit C. Bharathi V.C. Monikavishnuvarthini A. Dhakne A. Preethi P. AI based elderly fall prediction system using wearable sensors: A smart home-care technology with IOT. Meas. Sensors 2023 25 100614 10.1016/j.measen.2022.100614
    [Google Scholar]
  19. Wan Y. Lin X. Xu K. Wang F. Xue G. Extracting Spatial Information of IoT Device Events for Smart Home Safety Monitoring IEEE INFOCOM 2023 - IEEE Conference on Computer Communications 26-28 August 2019 New York City, NY, USA 2023 10.1109/INFOCOM53939.2023.10228993
    [Google Scholar]
  20. Mehmood H. Khalid A. Kostakos P. Gilman E. Pirttikangas S. A novel Edge architecture and solution for detecting concept drift in smart environments. Future Gener. Comput. Syst. 2023
    [Google Scholar]
  21. Erzi H.M. Aydin A.A. IoT based mobile smart home surveillance application. Proceedings of the 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) 22-24 October 2020 Istanbul, Turkey 2020 1 5 10.1109/ISMSIT50672.2020.9255303
    [Google Scholar]
  22. Huang Y. Liu Z. Jiang M. Yu X. Ding X. Cost-effective vehicle type recognition in surveillance images with deep active learning and web data. IEEE Trans. Intell. Transp. Syst. 2020 21 1 79 86 10.1109/TITS.2018.2888698
    [Google Scholar]
  23. Sooraj S.K. Sundaravel E. Shreesh B. Sireesha K. IoT smart home assistant for physically challenged and elderly people. Proceedings of the International Conference on Smart Electronics and Communication (ICOSEC 2020) 10-12 September 2020 Trichy, India 2020 809 814 10.1109/ICOSEC49089.2020.9215389
    [Google Scholar]
  24. Xu Z. Ansari S. Abdulghani A.M. Imran M.A. Abbasi Q.H. IoT enabled smart security framework for 3d printed smart home. Proceedings of the 2020 IEEE International Conference on Smart Internet of Things (SmartIoT 2020) 14-16 August 2020 Beijing, China 2020 117 123 10.1109/SmartIoT49966.2020.00026
    [Google Scholar]
  25. García-González J. Molina-Cabello M.A. Luque-Baena R.M. Ortiz-de-Lazcano-Lobato J.M. López-Rubio E. Road pollution estimation from vehicle tracking in surveillance videos by deep convolutional neural networks. Appl. Soft Comput. 2021 113 107950 10.1016/j.asoc.2021.107950
    [Google Scholar]
  26. Kumar M.B.H. Kaushik A.G. Prajeesha P. Smart home surveillance system using LDR technology. Proceedings of the 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA 2021) 02-04 December 2021 Coimbatore, India 415 421 2021
    [Google Scholar]
  27. Mahamuni C.V. Jalauddin Z.M. Intrusion monitoring in military surveillance applications using wireless sensor networks (wsns) with deep learning for multiple object detection and tracking. 2021 International Conference on Control, Automation, Power and Signal Processing (CAPS) 10-12 December 2021 Jabalpur, India 2021 10.1109/CAPS52117.2021.9730647
    [Google Scholar]
  28. Dalal S. Poongodi M. Lilhore U.K. Seth B. Simaiya S. Hamdi M. Raahemifar K. Extremely boosted neural network for more accurate multi-stage Cyber attack prediction in cloud computing environment. J. Cloud Comput. (Heidelb.) 2023 12 1 1 22
    [Google Scholar]
  29. Xie J. Zheng Y. Du R. Xiong W. Cao Y. Ma Z. Cao D. Guo J. Deep learning-based computer vision for surveillance in its: Evaluation of state-of-the-art methods. IEEE Trans. Vehicular Technol. 2021 70 4 3027 3042 10.1109/TVT.2021.3065250
    [Google Scholar]
  30. Malik M. Nandal R. Dalal S. Maan U. Le D.N. An efficient driver behavioral pattern analysis based on fuzzy logical feature selection and classification in big data analysis. J. Intell. Fuzzy Syst. 2022 43 3 3283 3292 10.3233/JIFS‑212007
    [Google Scholar]
  31. Akhmetzhanov B.K. Gazizuly O.A. Nurlan Z. Zhakiyev N. Integration of a video surveillance system into a smart home using the home assistant platform. Proceedings of 2022 International Conference on Smart Information Systems and Technologies 28-30 April 2022 Astana, Kazakhstan 28 30 2022 10.1109/SIST54437.2022.9945718
    [Google Scholar]
  32. Alshamrani M. IoT and artificial intelligence implementations for remote healthcare monitoring systems: A survey. J. King Saud Univ. - Comp. Inform. Sci. 2022 34 8 4687 4701 10.1016/j.jksuci.2021.06.005
    [Google Scholar]
  33. Chawla N. Dalal S. Edge AI with Wearable IoT: A Review on Leveraging Edge Intelligence in Wearables for Smart Healthcare. Green Internet of Things for Smart Cities Cham Springer 2021 205 231 10.1201/9781003032397‑14
    [Google Scholar]
  34. Zaki J. Nayyar A. Dalal S. Ali Z.H. House price prediction using hedonic pricing model and machine learning techniques. Concurr. Computat. Prac. Exp. 2022 33 11 7342 10.1002/cpe.7342
    [Google Scholar]
  35. Ibrahim A.S. Youssef K.Y. Eldeeb A.H. Abouelatta M. Kamel H. Adaptive aggregation based IoT traffic patterns for optimizing smart city network performance. Alex. Eng. J. 2022 61 12 9553 9568 10.1016/j.aej.2022.03.037
    [Google Scholar]
  36. Li J. Hu S. Shi C. Dong Z. Pan J. Ai Y. Liu J. Zhou W. Deng Y. Li Y. Yuan J. Zeng Z. Wu L. Yu H. A deep learning and natural language processing-based system for automatic identification and surveillance of high-risk patients undergoing upper endoscopy: A multicenter study. EClinicalMedicine 2022 53 101704 10.1016/j.eclinm.2022.101704 36467456
    [Google Scholar]
  37. Madhuri N.S. Shailaja K. Saha D. P R. Glory K.B. Sumithra M. IOT integrated smart grid management system for effective energy management. Meas. Sensors 2022 24 100488 10.1016/j.measen.2022.100488
    [Google Scholar]
  38. Pawar K. Attar V. Deep learning based detection and localization of road accidents from traffic surveillance videos. ICT Express 2022 8 3 379 387 10.1016/j.icte.2021.11.004
    [Google Scholar]
  39. Sayed A.N. Himeur Y. Bensaali F. Deep and transfer learning for building occupancy detection: A review and comparative analysis. Eng. Appl. Artif. Intell. 2022 115 105254 10.1016/j.engappai.2022.105254
    [Google Scholar]
  40. Yang J. Xu Y. Cao H. Zou H. Xie L. Deep learning and transfer learning for device-free human activity recognition: A survey. Journal of Automation and Intelligence 2022 1 1 100007 10.1016/j.jai.2022.100007
    [Google Scholar]
  41. Ye M. Shen J. Lin G. Xiang T. Shao L. Hoi S.C.H. Deep learning for person re-identification: A survey and outlook. IEEE Trans. Pattern Anal. Mach. Intell. 2022 44 6 2872 2893 10.1109/TPAMI.2021.3054775 33497329
    [Google Scholar]
  42. Yun W.J. Park S. Kim J. Shin M. Jung S. Mohaisen D.A. Kim J-H. Cooperative multiagent deep reinforcement learning for reliable surveillance via autonomous multi-uav control. IEEE Trans. Industr. Inform. 2022 18 10 7086 7096 10.1109/TII.2022.3143175
    [Google Scholar]
  43. Al Koutayni M.R. Reis G. Stricker D. DeepEdgeSoC: End-to-end deep learning framework for edge IoT devices. Internet of Things 2023 21 100665 10.1016/j.iot.2022.100665
    [Google Scholar]
  44. Cai D. Bamisile O. Zhang W. Chang Z. Li J. Zhang Z. Wu J. Huang Q. Anti-occlusion multi-object surveillance based on improved deep learning approach and multi-feature enhancement for unmanned smart grid safety. Energy Rep. 2023 9 594 603 10.1016/j.egyr.2023.01.074
    [Google Scholar]
  45. Carnegie A.J. Eslick H. Barber P. Nagel M. Stone C. Airborne multispectral imagery and deep learning for biosecurity surveillance of invasive forest pests in urban landscapes. Urban For. Urban Green. 2023 81 127859 10.1016/j.ufug.2023.127859
    [Google Scholar]
  46. Himeur Y. Al-Maadeed S. Kheddar H. Al-Maadeed N. Abualsaud K. Mohamed A. Khattab T. Video surveillance using deep transfer learning and deep domain adaptation: Towards better generalization. Eng. Appl. Artif. Intell. 2023 119 105698 10.1016/j.engappai.2022.105698
    [Google Scholar]
  47. Madhu B. Venu Gopala Chari M. Vankdothu R. Silivery A.K. Aerranagula V. Intrusion detection models for IOT networks via deep learning approaches. Meas. Sensors 2023 25 100641 10.1016/j.measen.2022.100641
    [Google Scholar]
  48. Nurnoby M.F. Helmy T. A real-time deep learning-based smart surveillance using fog a real-time deep smart surveillance using fog computing: A complete architecture computing: Complete architecture nurnoby. Procedia Comput. Sci. 2023 218 1102 1111 10.1016/j.procs.2023.01.089
    [Google Scholar]
  49. Prazeres N. Costa R.L.C. Santos L. Rabadão C. Engineering the application of machine learning in an IDS based on IoT traffic flow. Intelligent Systems with Applications 2023 17 200189 10.1016/j.iswa.2023.200189
    [Google Scholar]
  50. Thakur P. Goel S. Puthooran E. Edge AI Enabled IoT Framework for Secure Smart Home Infrastructure. Procedia Comput. Sci. 2024 235 3369 3378 10.1016/j.procs.2024.04.317
    [Google Scholar]
  51. Dalal S. Lilhore U.K. Sharma N. Arora S. Simaiya S. Ayadi M. Almujally N.A. Ksibi A. Improving smart home surveillance through YOLO model with transfer learning and quantization for enhanced accuracy and efficiency. PeerJ Comput. Sci. 2024 10 e1939 10.7717/peerj‑cs.1939
    [Google Scholar]
  52. Mudarakola L.P. Bukkarayasamudram V.K. Jadhav S.D. Goviraboyina S.S. Sharma S. Mukherjee S. Reddy P.C.S. A Deep Learning Framework for IoT Lightweight TrafficMulti-classification: Smart-cities. Int. J. Sensors Wirel. Commun. Control 2024 14 3 175 184 10.2174/0122103279292479240226111739
    [Google Scholar]
  53. Al-Mekhlafi Z.G. Lashari S.A. Al-Shareeda M.A. Mohammed B.A. Alshudukhi J.S. Al-Dhlan K.A. Manickam S. Coherent taxonomy of vehicular ad hoc networks (VANETs)-enabled by fog computing: A review. IEEE Sens. J. 2024 1 10.1109/JSEN.2024.3436612
    [Google Scholar]
  54. Al-Mekhlafi Z.G. Lashari S.A. Oblivious Transfer-Based Authentication and Privacy-Preserving Protocol for 5G-Enabled Vehicular Fog Computing. IEEE Access 2024 12 2169 3536
    [Google Scholar]
  55. Al-Janabi H.D.K. Lashari S.A. Khalil A. Al-Shareeda M.A. Alsadhan A.A. Almaiah M.A. Alkhdour T. D-BlockAuth: An authentication scheme-based dual blockchain for 5G-assisted vehicular fog computing. IEEE Access 2024 12 99321 99332 10.1109/ACCESS.2024.3428830
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558329951241024183922
Loading
/content/journals/rascs/10.2174/0126662558329951241024183922
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: real-time security surveillance ; face detection ; Deep learning ; face recognition ; accuracy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test