Skip to content
2000
Volume 18, Issue 1
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Background

With the development of intelligent technology, Unmanned aerial vehicles (UAVs) are widely used in military and civilian fields. Path planning is the most important part of UAV navigation system. Its purpose is to find a smooth and feasible path from the start to the end.

Objective

In order to obtain a better flight path, this paper presents an improved Aquila optimizer combing the opposition-based learning and the local escaping operator, named LEOAO, to deal with the UAV path planning problem in three-dimensional environments.

Methods

UAV path planning is modelled as a constrained optimization problem in which the cost function consists of one objective: path length and four constraints: safe distance, flight height, turning angle and climbing/diving angle. In this paper, the LEOAO is introduced to find the optimal path by minimizing the cost function, and B-Spline is invited to represent a smooth path. The local escaping operator is used to enhance the search ability of the algorithm.

Results

To test the performance of LEOAO, two scenarios are applied based on basic terrain function. Experiments show that the proposed LEOAO outperforms other algorithms such as the grey wolf optimizer, whale optimization algorithm, including the original Aquila optimizer.

Conclusion

The proposed algorithm combines the opposition-based learning and local escaping operator. The opposition-based learning algorithm has the ability to accelerate convergence. And the introduction of LEO effectively balances the exploration and exploitation abilities of the algorithm and improves the quality of the population. Finally, the improved Aquila optimizer obtains a better path.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558295501240418093550
2024-04-25
2025-01-15
Loading full text...

Full text loading...

/deliver/fulltext/rascs/18/1/RACSC-18-1-03.html?itemId=/content/journals/rascs/10.2174/0126662558295501240418093550&mimeType=html&fmt=ahah

References

  1. Ait SaadiA. SoukaneA. MeraihiY. Benmessaoud GabisA. MirjaliliS. Ramdane-CherifA. UAV path planning using optimization approaches: A survey.Arch. Comput. Methods Eng.20222964233428410.1007/s11831‑022‑09742‑7
    [Google Scholar]
  2. TsourosD.C. BibiS. SarigiannidisP.G. A review on uav-based applications for precision agriculture.Information2019101134910.3390/info10110349
    [Google Scholar]
  3. JiangX. ZhouQ. YeY. "Method of task assignment for uav based on particle swarm optimization in logistics", ISMSI '17: Proceedings of the 2017 International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence25 March 2017, New York, NY, United States,201711311710.1145/3059336.3059337
    [Google Scholar]
  4. WangS. ChenH. LiuJ. LiuY. Adaptive trajectory tracking of UAV with a cable-suspended load using vision-inertial-based estimation.Automatica202315811131010.1016/j.automatica.2023.111310
    [Google Scholar]
  5. ZhiM. ZhuY. JangJ-C. WangS. ChiangP-C. SuC. LiangS. LiY. YuanY. Analysis of storage capacity change and dam failure risk for tailings ponds using webGIS-based UAV 3D image.Sustainability202315191406210.3390/su151914062
    [Google Scholar]
  6. PandeyP. ShuklaA. TiwariR. "Aerial path planning using meta-heuristics: A survey",2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT)", 22-24 February 2017, Coimbatore, India17201710.1109/ICECCT.2017.8118040
    [Google Scholar]
  7. AggarwalS. KumarN. Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges.Comput. Commun.202014927029910.1016/j.comcom.2019.10.014
    [Google Scholar]
  8. ZhangX. LuX. JiaS. LiX. A novel phase angle-encoded fruit fly optimization algorithm with mutation adaptation mechanism applied to UAV path planning.Appl. Soft Comput.20187037138810.1016/j.asoc.2018.05.030
    [Google Scholar]
  9. FuY. DingM. ZhouC. Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV.IEEE Trans. Syst. Man Cybern. A Syst. Hum.201242251152610.1109/TSMCA.2011.2159586
    [Google Scholar]
  10. RobergeV. TarbouchiM. LabonteG. Comparison of parallel genetic algorithm and particle swarm optimization for real-time uav path planning.IEEE Trans. Industr. Inform.20139113214110.1109/TII.2012.2198665
    [Google Scholar]
  11. WuJ. WangH. LiN. YaoP. HuangY. YangH. Path planning for solar-powered UAV in urban environment.Neurocomputing20182752055206510.1016/j.neucom.2017.10.037
    [Google Scholar]
  12. NikolosI.K. BrintakiA.N. "Coordinated UAV path planning using differential evolution", Mediterrean Conference on Control and Automation Intelligent Control 27-29June 2005, Limassol, Cyprus200554955610.1109/.2005.1467074
    [Google Scholar]
  13. ZhangR. LiS. DingY. QinX. XiaQ. UAV path planning algorithm based on improved harris hawks optimization.Sensors20222214523210.3390/s22145232
    [Google Scholar]
  14. FuY. DingM. ZhouC. CaiC. SunY. Path planning for UAV based on quantum-behaved particle swarm optimizationMIPPR 2009: Medical Imaging, Parallel Processing of Images, and Optimization Techniques,SPIE digital library2009749774970B
    [Google Scholar]
  15. LiuY. ZhangX. GuanX. DelahayeD. Adaptive sensitivity decision based path planning algorithm for unmanned aerial vehicle with improved particle swarm optimization.Aerosp. Sci. Technol.2016589210210.1016/j.ast.2016.08.017
    [Google Scholar]
  16. LiS. ChenH. WangM. HeidariA.A. MirjaliliS. Slime mould algorithm: A new method for stochastic optimization.Future Gener. Comput. Syst.202011130032310.1016/j.future.2020.03.055
    [Google Scholar]
  17. RadmaneshM. KumarM. SarimM. Grey wolf optimization based sense and avoid algorithm in a Bayesian framework for multiple UAV path planning in an uncertain environment.Aerosp. Sci. Technol.20187716817910.1016/j.ast.2018.02.031
    [Google Scholar]
  18. YaoJ. ShaY. ChenY. ZhangG. HuX. BaiG. LiuJ. IHSSAO: An improved hybrid salp swarm algorithm and aquila optimizer for uav path planning in complex terrain.Appl. Sci.20221211563410.3390/app12115634
    [Google Scholar]
  19. YuX. JiangN. WangX. LiM. A hybrid algorithm based on grey wolf optimizer and differential evolution for UAV path planning.Expert Syst. Appl.202321511932710.1016/j.eswa.2022.119327
    [Google Scholar]
  20. PhungM.D. HaQ.P. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization.Appl. Soft Comput.202110710737610.1016/j.asoc.2021.107376
    [Google Scholar]
  21. Wei-minZ. Shao-junL. FengQ. θ-PSO: A new strategy of particle swarm optimization.J. Zhejiang Univ. Sci. A20089678679010.1631/jzus.A071278
    [Google Scholar]
  22. JunS. BinF. WenboX. "Particle swarm optimization with particles having quantum behavior", Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753) 19-23 June 2004,Portland, OR, USA, 2004132533110.1109/CEC.2004.1330875
    [Google Scholar]
  23. ZhangC. ZhouW. QinW. TangW. A novel UAV path planning approach: Heuristic crossing search and rescue optimization algorithm.Expert Syst. Appl.202321511924310.1016/j.eswa.2022.119243
    [Google Scholar]
  24. ChowdhuryA. DeD. RGSO-UAV: Reverse Glowworm Swarm Optimization inspired UAV path-planning in a 3D dynamic environment.Ad Hoc Netw.202314010306810.1016/j.adhoc.2022.103068
    [Google Scholar]
  25. ChenQ. HeQ. ZhangD. UAV path planning based on an improved chimp optimization algorithm.Axioms202312770210.3390/axioms12070702
    [Google Scholar]
  26. AbualigahL. YousriD. Abd ElazizM. EweesA.A. Al-qanessM.A.A. GandomiA.H. Aquila Optimizer: A novel meta-heuristic optimization algorithm.Comput. Ind. Eng.202115710725010.1016/j.cie.2021.107250
    [Google Scholar]
  27. Nadimi-ShahrakiM.H. TaghianS. MirjaliliS. AbualigahL. Binary aquila optimizer for selecting effective features from medical data: A COVID-19 case study.Mathematics20221011192910.3390/math10111929
    [Google Scholar]
  28. Al-qanessM.A.A. EweesA.A. FanH. AlRassasA.M. Abd ElazizM. Modified aquila optimizer for forecasting oil production.Geo Spat. Inf. Sci.202225451953510.1080/10095020.2022.2068385
    [Google Scholar]
  29. Abd ElazizM. DahouA. AlsalehN.A. ElsheikhA.H. SabaA.I. AhmadeinM. Boosting COVID-19 image classification using mobilenetV3 and aquila optimizer algorithm.Entropy20212311138310.3390/e23111383
    [Google Scholar]
  30. QuC. GaiW. ZhangJ. ZhongM. A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning.Knowl. Base. Syst.202019410553010.1016/j.knosys.2020.105530
    [Google Scholar]
  31. HuangC. ZhouX. RanX. WangJ. ChenH. DengW. Adaptive cylinder vector particle swarm optimization with differential evolution for UAV path planning.Eng. Appl. Artif. Intell.202312110594210.1016/j.engappai.2023.105942
    [Google Scholar]
  32. WangX. PanJ.S. YangQ. KongL. SnášelV. ChuS.C. Modified mayfly algorithm for UAV path planning.Drones20226513410.3390/drones6050134
    [Google Scholar]
  33. LiW. WangL. ZouA. CaiJ. HeH. TanT. Path planning for UAV Based on Improved PRM.Energies20221519726710.3390/en15197267
    [Google Scholar]
  34. NikolosI.K. ValavanisK.P. TsourveloudisN.C. KostarasA.N. Evolutionary algorithm based offline/online path planner for uav navigation.IEEE Trans. Syst. Man Cybern. B Cybern.200333689891210.1109/TSMCB.2002.804370 18238242
    [Google Scholar]
  35. XuC. DuanH. LiuF. Chaotic artificial bee colony approach to Uninhabited Combat Air Vehicle (UCAV) path planning.Aerosp. Sci. Technol.201014853554110.1016/j.ast.2010.04.008
    [Google Scholar]
  36. TizhooshH.R. "Opposition-based learning: A new scheme for machine intelligence", International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06)28-30 November 2005, Vienna, Austri695701200510.1109/CIMCA.2005.1631345
    [Google Scholar]
  37. RahnamayanS. TizhooshH.R. SalamaM.M.A. "Quasi-oppositional differential evolution", 2007 IEEE Congress on Evolutionary Computation25-28 September 2007, Singapore22292236200710.1109/CEC.2007.4424748
    [Google Scholar]
  38. EweesA.A. Abd ElazizM. HousseinE.H. Improved grasshopper optimization algorithm using opposition-based learning.Expert Syst. Appl.201811215617210.1016/j.eswa.2018.06.023
    [Google Scholar]
  39. OszustM. Enhanced marine predators algorithm with local escaping operator for global optimization.Knowl. Base. Syst.202123210746710.1016/j.knosys.2021.107467
    [Google Scholar]
  40. ZhangY.J. YanY.X. ZhaoJ. GaoZ.M. AOAAO: The hybrid algorithm of arithmetic optimization algorithm with aquila optimizer.IEEE Access202210109071093310.1109/ACCESS.2022.3144431
    [Google Scholar]
  41. MirjaliliS. MirjaliliS.M. LewisA. Grey Wolf Optimizer.Adv. Eng. Softw.201469466110.1016/j.advengsoft.2013.12.007
    [Google Scholar]
  42. MirjaliliS. LewisA. The whale optimization algorithm.Adv. Eng. Softw.201695516710.1016/j.advengsoft.2016.01.008
    [Google Scholar]
  43. CymerysK. OszustM. Attraction repulsion optimization algorithm for global optimization problems.Swarm Evol. Comput.20248410145910.1016/j.swevo.2023.101459
    [Google Scholar]
  44. GaoY. PID-based search algorithm: A novel metaheuristic algorithm based on PID algorithm.Expert Syst. Appl.202323212088610.1016/j.eswa.2023.120886
    [Google Scholar]
  45. AmiriM.H. Mehrabi HashjinN. MontazeriM. MirjaliliS. KhodadadiN. Hippopotamus optimization algorithm: A novel nature-inspired optimization algorithm.Sci. Rep.2024141503210.1038/s41598‑024‑54910‑3 38424229
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558295501240418093550
Loading
/content/journals/rascs/10.2174/0126662558295501240418093550
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test