Skip to content
2000
Volume 19, Issue 3
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716

Abstract

This extensive analysis explores the dynamic interface between precision medicine and diabetes mellitus treatment, with a specific emphasis on wound healing in diabetic populations. Beginning with an insightful introduction, the article underscores the critical importance of effective wound healing within the broader context of diabetes mellitus, while tracing the evolutionary trajectory of precision medicine in healthcare. By elucidating the pathophysiological intricacies of diabetic wound healing, the review unveils the complex molecular mechanisms that drive this multifaceted process. Subsequently, a meticulous exploration follows into the application of precision medicine paradigms in diabetic wound care, delineating fundamental principles and diverse avenues through which precision medicine strategies can optimize diabetes management. Through a nuanced discussion of targeted therapies and interventions, the review highlights burgeoning approaches tailored to individual patient needs, accentuating the transformative potential of precision medicine in reshaping treatment paradigms. Drawing upon clinical trials and compelling case studies, the article offers valuable insights into the real-world efficacy of precision treatment modalities, elucidating successful applications and their profound implications for diabetic wound healing outcomes. Moreover, the review anticipates and addresses emerging challenges and future trajectories within the field, including the pivotal roles of biomarkers and diagnostic modalities, the integration of telemedicine platforms, and the increasing influence of artificial intelligence on diabetic wound healing endeavours. By synthesizing contemporary knowledge and delineating prospective pathways, this review underscores the catalytic potential of precision medicine in heralding a new era of enhanced outcomes for diabetic patients grappling with impaired wound healing.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708335238240920035556
2024-10-03
2026-02-20
Loading full text...

Full text loading...

References

  1. TomicD. ShawJ.E. MaglianoD.J. The burden and risks of emerging complications of diabetes mellitus.Nat. Rev. Endocrinol.202218952553910.1038/s41574‑022‑00690‑7 35668219
    [Google Scholar]
  2. KumarR. SahaP. KumarY. SahanaS. DubeyA. PrakashO. A Review on Diabetes Mellitus: Type 1 & Type 2.World J. Pharm. Pharm. Sci.2020910838850
    [Google Scholar]
  3. AlamS. HasanM.K. NeazS. HussainN. HossainM.F. RahmanT. Diabetes Mellitus: Insights from epidemiology, biochemistry, risk factors, diagnosis, complications and comprehensive management.Diabetology202122365010.3390/diabetology2020004
    [Google Scholar]
  4. ReinehrT. Type 2 diabetes mellitus in children and adolescents.World J. Diabetes20134627028110.4239/wjd.v4.i6.270 24379917
    [Google Scholar]
  5. CerielloA TestaR Antioxidant anti-inflammatory treatment in type 2 diabetes.Diabetes Care200932Suppl 2)(Suppl. 2S232610.2337/dc09‑S316 19875557
    [Google Scholar]
  6. LemelmanM.B. LetourneauL. GreeleyS.A.W. Neonatal diabetes mellitus.Clin. Perinatol.2018451415910.1016/j.clp.2017.10.006 29406006
    [Google Scholar]
  7. ChangM. NguyenT.T. Strategy for Treatment of Infected Diabetic Foot Ulcers.Acc. Chem. Res.20215451080109310.1021/acs.accounts.0c00864 33596041
    [Google Scholar]
  8. GongH. RenY. LiZ. Clinical characteristics and risk factors of lower extremity amputation in the diabetic inpatients with foot ulcers.Front. Endocrinol. (Lausanne)2023141144806
    [Google Scholar]
  9. GloverK. StratakosA.C. VaradiA. LamprouD.A. 3D scaffolds in the treatment of diabetic foot ulcers: New trends vs conventional approaches.Int. J. Pharm.202159912042310.1016/j.ijpharm.2021.120423 33647412
    [Google Scholar]
  10. KolimiP. NaralaS. NyavanandiD. YoussefA.A.A. DudhipalaN. Innovative treatment strategies to accelerate wound healing: Trajectory and recent advancements.Cells20221115243910.3390/cells11152439 35954282
    [Google Scholar]
  11. DasariN. JiangA. SkochdopoleA. Updates in diabetic wound healing, inflammation, and scarring.Semin. Plast. Surg.202135315315810.1055/s‑0041‑1731460 34526862
    [Google Scholar]
  12. ČomaM. ManningJ.C. KaltnerH. GálP. The sweet side of wound healing: Galectins as promising therapeutic targets in hemostasis, inflammation, proliferation, and maturation/remodeling.Expert Opin. Ther. Targets2023271415310.1080/14728222.2023.2175318 36716023
    [Google Scholar]
  13. SpampinatoS.F. CarusoG.I. De PasqualeR. SortinoM.A. MerloS. The treatment of impaired wound healing in diabetes: Looking among old drugs.Pharmaceuticals (Basel)20201346010.3390/ph13040060 32244718
    [Google Scholar]
  14. WillenborgS. InjarabianL. EmingS.A. Role of Macrophages in Wound Healing.Cold Spring Harb. Perspect. Biol.20221412a04121610.1101/cshperspect.a041216 36041784
    [Google Scholar]
  15. ZhangS. GeG. QinY. Recent advances in responsive hydrogels for diabetic wound healing.Mater. Today Bio20231810050810.1016/j.mtbio.2022.100508 36504542
    [Google Scholar]
  16. Al-MansooriL. Al-JaberH. PrinceM.S. ElrayessM.A. Role of inflammatory cytokines, growth factors and adipokines in adipogenesis and insulin resistance.Inflammation2022451314410.1007/s10753‑021‑01559‑z 34536157
    [Google Scholar]
  17. MallikS.B. JayashreeB.S. ShenoyR.R. Epigenetic modulation of macrophage polarization- perspectives in diabetic wounds.J. Diabetes Complications201832552453010.1016/j.jdiacomp.2018.01.015
    [Google Scholar]
  18. DrelaE. StankowskaK. KulwasA. RośćD. Endothelial progenitor cells in diabetic foot syndrome.Adv. Clin. Exp. Med.2012212249254 23214290
    [Google Scholar]
  19. SeitzO. SchürmannC. HermesN. Wound healing in mice with high-fat diet- or ob gene-induced diabetes-obesity syndromes: A comparative study.Exp. Diabetes Res.2010201011510.1155/2010/476969 21318183
    [Google Scholar]
  20. BalajiS. HanN. MolesC. Angiopoietin-1 improves endothelial progenitor cell–dependent neovascularization in diabetic wounds.Surgery2015158384685610.1016/j.surg.2015.06.034 26266763
    [Google Scholar]
  21. SchürmannC. GorenI. LinkeA. PfeilschifterJ. FrankS. Deregulated unfolded protein response in chronic wounds of diabetic ob/ob mice: A potential connection to inflammatory and angiogenic disorders in diabetes-impaired wound healing.Biochem. Biophys. Res. Commun.2014446119520010.1016/j.bbrc.2014.02.085 24583133
    [Google Scholar]
  22. PatelS. SrivastavaS. SinghM.R. SinghD. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing.Biomed. Pharmacother.201911210861510.1016/j.biopha.2019.108615 30784919
    [Google Scholar]
  23. LobmannR. ZemlinC. MotzkauM. ReschkeK. LehnertH. Expression of matrix metalloproteinases and growth factors in diabetic foot wounds treated with a protease absorbent dressing.J. Diabetes Complications200620532933510.1016/j.jdiacomp.2005.08.007 16949521
    [Google Scholar]
  24. Van NettenJ.J. WoodburnJ. BusS.A. The future for diabetic foot ulcer prevention: A paradigm shift from stratified healthcare towards personalized medicine.Diabetes Metab. Res. Rev.202036S1Suppl. 1e323410.1002/dmrr.3234 31944530
    [Google Scholar]
  25. McGrathS. GhersiD. Building towards precision medicine: Empowering medical professionals for the next revolution.BMC Med. Genomics2016912310.1186/s12920‑016‑0183‑8 27160306
    [Google Scholar]
  26. AshleyE.A. Towards precision medicine.Nat. Rev. Genet.201617950752210.1038/nrg.2016.86 27528417
    [Google Scholar]
  27. CarrA.L.J. Evans-MolinaC. OramR.A. Precision medicine in type 1 diabetes.Diabetologia202265111854186610.1007/s00125‑022‑05778‑3 35994083
    [Google Scholar]
  28. ChungW.K. ErionK. FlorezJ.C. Precision medicine in diabetes: A consensus report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD).Diabetes Care20204371617163510.2337/dci20‑0022 32561617
    [Google Scholar]
  29. CookJ.C. WuH. AleoM.D. AdkinsK. Principles of precision medicine and its application in toxicology.J. Toxicol. Sci.2018431056557710.2131/jts.43.565 30298845
    [Google Scholar]
  30. TranvågE.J. StrandR. OttersenT. NorheimO.F. Precision medicine and the principle of equal treatment: A conjoint analysis.BMC Med. Ethics20212215510.1186/s12910‑021‑00625‑3 33971875
    [Google Scholar]
  31. NaithaniN. SinhaS. MisraP. VasudevanB. SahuR. Precision medicine: Concept and tools.Med. J. Armed Forces India202177324925710.1016/j.mjafi.2021.06.021 34305276
    [Google Scholar]
  32. DelpierreC. LefèvreT. Precision and personalized medicine: What their current definition says and silences about the model of health they promote. Implication for the development of personalized health.Front. Sociol.20238111215910.3389/fsoc.2023.1112159 36895332
    [Google Scholar]
  33. RichS.S. CefaluW.T. The impact of precision medicine in diabetes: A multidimensional perspective.Diabetes Care201639111854185710.2337/dc16‑1833 27926886
    [Google Scholar]
  34. PearsonE. Precision treatment in type 2 diabetes: Can we predict response and outcomes to diabetes therapies? PDM2021: A virtual conference. Day 3, workshop 1.2021
    [Google Scholar]
  35. FlanaginA. FreyT. ChristiansenS.L. Updated guidance on the reporting of race and ethnicity in medical and science journals.JAMA2021326762162710.1001/jama.2021.13304 34402850
    [Google Scholar]
  36. AhlqvistE. StormP. KäräjämäkiA. Novel subgroups of adult-onset diabetes and their association with outcomes: A data-driven cluster analysis of six variables.Lancet Diabetes Endocrinol.20186536136910.1016/S2213‑8587(18)30051‑2 29503172
    [Google Scholar]
  37. ChambersD.A. FeeroW.G. KhouryM.J. Convergence of implementation science, precision medicine, and the learning health care system: A new model for biomedical research.JAMA2016315181941194210.1001/jama.2016.3867 27163980
    [Google Scholar]
  38. KlonoffD.C. Precision medicine for managing diabetes.J. Diabetes Sci. Technol.2015913710.1177/1932296814563643 25550409
    [Google Scholar]
  39. GreeleyS.A. McCauleyM.K. PhilipsonL.H. SperlingM.A. Monogenic diabetes mellitus: Neonatal diabetes and maturity-onset diabetes of the young. Sperling Pediatric Endocrinology.AmsterdamElsevier2021
    [Google Scholar]
  40. GalianoR.D. TepperO.M. PeloC.R. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells.Am. J. Pathol.200416461935194710.1016/S0002‑9440(10)63754‑6 15161630
    [Google Scholar]
  41. ChenJ. LiX. LiuH. Bone marrow stromal cell‐derived exosomal circular RNA improves diabetic foot ulcer wound healing by activating the nuclear factor erythroid 2‐related factor 2 pathway and inhibiting ferroptosis.Diabet. Med.2023407e1503110.1111/dme.15031 36537855
    [Google Scholar]
  42. BarrientosS. BremH. StojadinovicO. Tomic-CanicM. Clinical application of growth factors and cytokines in wound healing.Wound Repair Regen.201422556957810.1111/wrr.12205 24942811
    [Google Scholar]
  43. HanG. CeilleyR. Chronic wound healing: A review of current management and treatments.Adv. Ther.201734359961010.1007/s12325‑017‑0478‑y 28108895
    [Google Scholar]
  44. YouH.J. HanS.K. Cell therapy for wound healing.J. Korean Med. Sci.201429331131910.3346/jkms.2014.29.3.311 24616577
    [Google Scholar]
  45. KolluruG.K. BirS.C. KevilC.G. Endothelial Dysfunction and Diabetes: Effects on Angiogenesis, Vascular Remodeling, and Wound Healing.Int. J. Vasc. Med.2012201991826710.1155/2012/918267
    [Google Scholar]
  46. CastillaD.M. LiuZ.J. TianR. LiY. LivingstoneA.S. VelazquezO.C. A novel autologous cell-based therapy to promote diabetic wound healing.Ann. Surg.2012256456057210.1097/SLA.0b013e31826a9064 22964729
    [Google Scholar]
  47. TengM. HuangY. ZhangH. Application of stems cells in wound healing—An update.Wound Repair Regen.201422215116010.1111/wrr.12152 24635168
    [Google Scholar]
  48. JarajapuY.P.R. GrantM.B. The promise of cell-based therapies for diabetic complications: Challenges and solutions.Circ. Res.2010106585486910.1161/CIRCRESAHA.109.213140 20299675
    [Google Scholar]
  49. HuangY. KyriakidesT.R. The role of extracellular matrix in the pathophysiology of diabetic wounds.Matrix Biol. Plus20206-710003710.1016/j.mbplus.2020.100037 33543031
    [Google Scholar]
  50. KunkemoellerB. KyriakidesT.R. Redox signaling in diabetic wound healing regulates extracellular matrix deposition.Antioxid. Redox Signal.2017271282383810.1089/ars.2017.7263 28699352
    [Google Scholar]
  51. TorregrossaM. KakpenovaA. SimonJ.C. FranzS. Modulation of macrophage functions by ECM-inspired wound dressings – a promising therapeutic approach for chronic wounds.Biol. Chem.2021402111289130710.1515/hsz‑2021‑0145 34390641
    [Google Scholar]
  52. ChoH. BlatchleyM.R. DuhE.J. GerechtS. Acellular and cellular approaches to improve diabetic wound healing.Adv. Drug Deliv. Rev.201914626728810.1016/j.addr.2018.07.019 30075168
    [Google Scholar]
  53. de SmetG.H.J. KroeseL.F. MenonA.G. Oxygen therapies and their effects on wound healing.Wound Repair Regen.201725459160810.1111/wrr.12561 28783878
    [Google Scholar]
  54. OropalloA.R. SerenaT.E. ArmstrongD.G. NiederauerM.Q. Molecular biomarkers of oxygen therapy in patients with diabetic foot ulcers.Biomolecules202111792510.3390/biom11070925 34206433
    [Google Scholar]
  55. HayesP.D. AlzuhirN. CurranG. LoftusI.M. Topical oxygen therapy promotes the healing of chronic diabetic foot ulcers: A pilot study.J. Wound Care2017261165266010.12968/jowc.2017.26.11.652 29131746
    [Google Scholar]
  56. HowardM.A. AsmisR. EvansK.K. MustoeT.A. Oxygen and wound care: A review of current therapeutic modalities and future direction.Wound Repair Regen.201321450351110.1111/wrr.12069 23756299
    [Google Scholar]
  57. LotfollahiZ. DawsonJ. FitridgeR. BursillC. The anti-inflammatory and proangiogenic properties of high-density lipoproteins: An emerging role in diabetic wound healing.Adv. Wound Care (New Rochelle)202110737038010.1089/wound.2020.1308 33176621
    [Google Scholar]
  58. ShuklaS.K. SharmaA.K. GuptaV. YashavarddhanM.H. Pharmacological control of inflammation in wound healing.J. Tissue Viability201928421822210.1016/j.jtv.2019.09.002 31542301
    [Google Scholar]
  59. SalazarJ.J. EnnisW.J. KohT.J. Diabetes medications: Impact on inflammation and wound healing.J. Diabetes Complications201630474675210.1016/j.jdiacomp.2015.12.017 26796432
    [Google Scholar]
  60. YaghoobiR. KazerouniA. kazerouni O. Evidence for clinical use of honey in wound healing as an anti-bacterial, anti-inflammatory anti-oxidant and anti-viral agent: A review.Jundishapur J. Nat. Pharm. Prod.20138310010410.17795/jjnpp‑9487 24624197
    [Google Scholar]
  61. MonikaP. ChandraprabhaM.N. RangarajanA. WaikerP.V. Chidambara MurthyK.N. Challenges in healing wound: Role of complementary and alternative medicine.Front. Nutr.2022879189910.3389/fnut.2021.791899 35127787
    [Google Scholar]
  62. TavakoliS. KlarA.S. Bioengineered skin substitutes: Advances and future trends.Appl. Sci. (Basel)2021114149310.3390/app11041493
    [Google Scholar]
  63. WidgerowA.D. Bioengineered skin substitute considerations in the diabetic foot ulcer.Ann. Plast. Surg.201473223924410.1097/SAP.0b013e31826eac22 23511743
    [Google Scholar]
  64. SaapL.J. DonohueK. FalangaV. Clinical classification of bioengineered skin use and its correlation with healing of diabetic and venous ulcers.Dermatol. Surg.200430810951100 15274699
    [Google Scholar]
  65. BhardwajN. ChouhanD. MandalB.B. Tissue engineered skin and wound healing: Current strategies and future directions.Curr. Pharm. Des.2017232434553482 28552069
    [Google Scholar]
  66. BurgessJ.L. WyantW.A. Abdo AbujamraB. KirsnerR.S. JozicI. Diabetic wound-healing science.Medicina (Kaunas)20215710107210.3390/medicina57101072 34684109
    [Google Scholar]
  67. LebrunE. Tomic-CanicM. KirsnerR.S. The role of surgical debridement in healing of diabetic foot ulcers.Wound Repair Regen.201018543343810.1111/j.1524‑475X.2010.00619.x 20840517
    [Google Scholar]
  68. Demidova-RiceT.N. HamblinM.R. HermanI.M. Acute and impaired wound healing: Pathophysiology and current methods for drug delivery, part 2: Role of growth factors in normal and pathological wound healing: Therapeutic potential and methods of delivery.Adv. Skin Wound Care201225834937010.1097/01.ASW.0000418541.31366.a3 22820962
    [Google Scholar]
  69. HurlowJ.J. HumphreysG.J. BowlingF.L. McBainA.J. Diabetic foot infection: A critical complication.Int. Wound J.201815581482110.1111/iwj.12932 29808598
    [Google Scholar]
  70. WangZ HasanR FirwanaB A systematic review and metaanalysis of tests to predict wound healing in diabetic foot.J Vasc Surg2016632Suppl.29S36S36S.e2.10.1016/j.jvs.2015.10.004 26804365
    [Google Scholar]
  71. SinghT.P. VangavetiV.N. KennedyR.L. MalabuU.H. Role of telehealth in diabetic foot ulcer management - A systematic review.Aust. J. Rural Health201624422422910.1111/ajr.12284 27098271
    [Google Scholar]
  72. SoodA. GranickM.S. TrialC. The role of telemedicine in wound care: A review and analysis of a database of 5,795 patients from a mobile wound-healing center in Languedoc-Roussillon, France.Plast. Reconstr. Surg.20161383S248S256S10.1097/PRS.0000000000002702 27556769
    [Google Scholar]
  73. RaghupathiW. RaghupathiV. Big data analytics in healthcare: Promise and potential.Health Inf. Sci. Syst.201421310.1186/2047‑2501‑2‑3 25825667
    [Google Scholar]
  74. Dankwa-MullanI. RivoM. SepulvedaM. ParkY. SnowdonJ. RheeK. Transforming diabetes care through artificial intelligence: The future is here.Popul. Health Manag.201922322924210.1089/pop.2018.0129 30256722
    [Google Scholar]
  75. ShankaracharyaO.D. OdedraD. SamantaS. VidyarthiA.S. Computational intelligence in early diabetes diagnosis: A review.Rev. Diabet. Stud.20107425226210.1900/RDS.2010.7.252 21713313
    [Google Scholar]
  76. EllahhamS. Artificial intelligence: The future for diabetes care.Am. J. Med.2020133889590010.1016/j.amjmed.2020.03.033 32325045
    [Google Scholar]
  77. ZhaoF. ChenY. HouY. HeX. Segmentation of blood vessels using rule-based and machine-learning-based methods: A review.Multimedia Syst.201925210911810.1007/s00530‑017‑0580‑7
    [Google Scholar]
  78. AnisuzzamanD.M. WangC. RostamiB. GopalakrishnanS. NiezgodaJ. YuZ. Image-based artificial intelligence in wound assessment: A systematic review.Adv. Wound Care (New Rochelle)2022111268770910.1089/wound.2021.0091 34544270
    [Google Scholar]
  79. ZhavoronkovA. VanhaelenQ. OpreaT.I. Will artificial intelligence for drug discovery impact clinical pharmacology?Clin. Pharmacol. Ther.2020107478078510.1002/cpt.1795 31957003
    [Google Scholar]
  80. PaulD. SanapG. ShenoyS. KalyaneD. KaliaK. TekadeR.K. Artificial intelligence in drug discovery and development.Drug Discov. Today2021261809310.1016/j.drudis.2020.10.010 33099022
    [Google Scholar]
  81. JonesG.S. BaldwinD.R. Recent advances in the management of lung cancer.Clin. Med. (Lond.)2018182Suppl. 2s41s4610.7861/clinmedicine.18‑2‑s41 29700092
    [Google Scholar]
  82. PaolilloS ScardoviAB CampodonicoJ Role of comorbidities in heart failure prognosis Part I: Anaemia, iron deficiency, diabetes, atrial fibrillation.Eur J Prev Cardiol2020272_suppl)(Suppl.273410.1177/2047487320960288 33238738
    [Google Scholar]
  83. GrinnellF. BillinghamR.E. BurgessL. Distribution of fibronectin during wound healing in vivo.J. Invest. Dermatol.198176318118910.1111/1523‑1747.ep12525694 7240787
    [Google Scholar]
  84. RepeshL.A. FitzgeraldT.J. FurchtL.T. Fibronectin involvement in granulation tissue and wound healing in rabbits.J. Histochem. Cytochem.198230435135810.1177/30.4.6174568 6174568
    [Google Scholar]
  85. GailitJ. ClarkR.A.F. Wound repair in the context of extracellular matrix.Curr. Opin. Cell Biol.19946571772510.1016/0955‑0674(94)90099‑X 7530463
    [Google Scholar]
  86. GailitJ. ClarkR.A.F. WelchM.P. TGF-β 1 stimulates expression of keratinocyte integrins during re-epithelialization of cutaneous wounds.J. Invest. Dermatol.1994103222122710.1111/1523‑1747.ep12393176 8040614
    [Google Scholar]
  87. OngenaeK.C. PhillipsT.J. ParkH.Y. Level of fibronectin mRNA is markedly increased in human chronic wounds.Dermatol. Surg.200026544745110.1046/j.1524‑4725.2000.99281.x 10816233
    [Google Scholar]
  88. LobmannR. AmbroschA. SchultzG. WaldmannK. SchiweckS. LehnertH. Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients.Diabetologia20024571011101610.1007/s00125‑002‑0868‑8 12136400
    [Google Scholar]
  89. LobmannR. SchultzG. LehnertH. [Molecular fundamentals of wound healing in diabetic foot syndrome].Med. Klin. (Munich)200398529230110.1007/s00063‑003‑1260‑2 12721676
    [Google Scholar]
  90. NwomehB.C. LiangH.X. CohenI.K. YagerD.R. MMP-8 is the predominant collagenase in healing wounds and nonhealing ulcers.J. Surg. Res.199981218919510.1006/jsre.1998.5495 9927539
    [Google Scholar]
  91. BaroneE.J. YagerD.R. PozezA.L. Interleukin-1alpha and collagenase activity are elevated in chronic wounds.Plast. Reconstr. Surg.199810241023102710.1097/00006534‑199809020‑00015 9734419
    [Google Scholar]
  92. DinhT.L. VevesA. A review of the mechanisms implicated in the pathogenesis of the diabetic foot.Int. J. Low. Extrem. Wounds20054315415910.1177/1534734605280130 16100096
    [Google Scholar]
  93. HolzerP. Neurogenic vasodilatation and plasma leakage in the skin.Gen. Pharmacol.199830151110.1016/S0306‑3623(97)00078‑5 9457475
    [Google Scholar]
  94. ForstT. PfütznerA. KuntT. Skin microcirculation in patients with type I diabetes with and without neuropathy after neurovascular stimulation.Clin. Sci. (Lond.)199894325526110.1042/cs0940255 9616259
    [Google Scholar]
  95. NakagawaN. SanoH. IwamotoI. Substance P induces the expression of intercellular adhesion molecule-1 on vascular endothelial cells and enhances neutrophil transendothelial migration.Peptides199516472172510.1016/0196‑9781(95)00037‑K 7479308
    [Google Scholar]
  96. TomasekJ.J. GabbianiG. HinzB. ChaponnierC. BrownR.A. Myofibroblasts and mechano-regulation of connective tissue remodelling.Nat. Rev. Mol. Cell Biol.20023534936310.1038/nrm809 11988769
    [Google Scholar]
  97. CarverW. NagpalM.L. NachtigalM. BorgT.K. TerracioL. Collagen expression in mechanically stimulated cardiac fibroblasts.Circ. Res.199169111612210.1161/01.RES.69.1.116 2054929
    [Google Scholar]
  98. RohrS. Role of gap junctions in the propagation of the cardiac action potential.Cardiovasc. Res.200462230932210.1016/j.cardiores.2003.11.035 15094351
    [Google Scholar]
  99. CamellitiP. BorgT. KohlP. Structural and functional characterisation of cardiac fibroblasts.Cardiovasc. Res.2005651405110.1016/j.cardiores.2004.08.020 15621032
    [Google Scholar]
  100. GoldsmithE.C. HoffmanA. MoralesM.O. Organization of fibroblasts in the heart.Dev. Dyn.2004230478779410.1002/dvdy.20095 15254913
    [Google Scholar]
  101. QiuC. CoutinhoP. FrankS. Targeting connexin43 expression accelerates the rate of wound repair.Curr. Biol.200313191697170310.1016/j.cub.2003.09.007 14521835
    [Google Scholar]
  102. SaitohM. OyamadaM. OyamadaY. KakuT. MoriM. Changes in the expression of gap junction proteins (connexins) in hamster tongue epithelium during wound healing and carcinogenesis.Carcinogenesis19971871319132810.1093/carcin/18.7.1319 9230274
    [Google Scholar]
  103. CoutinhoP. QiuC. FrankS. TamberK. BeckerD. Dynamic changes in connexin expression correlate with key events in the wound healing process.Cell Biol. Int.200327752554110.1016/S1065‑6995(03)00077‑5 12842092
    [Google Scholar]
  104. MansbridgeJ. Skin substitutes to enhance wound healing.Expert Opin. Investig. Drugs19987580380910.1517/13543784.7.5.803 15991970
    [Google Scholar]
  105. MansbridgeJ. LiuK. PatchR. SymonsK. PinneyE. Three-dimensional fibroblast culture implant for the treatment of diabetic foot ulcers: Metabolic activity and therapeutic range.Tissue Eng.19984440341410.1089/ten.1998.4.403 9916172
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708335238240920035556
Loading
/content/journals/raiad/10.2174/0127722708335238240920035556
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test