Skip to content
2000
image of Integrating Precision Medicine in Diabetes Mellitus: Enhancing Wound Healing and Shaping Future Therapies

Abstract

This extensive analysis explores the dynamic interface between precision medicine and diabetes mellitus treatment, with a specific emphasis on wound healing in diabetic populations. Beginning with an insightful introduction, the article underscores the critical importance of effective wound healing within the broader context of diabetes mellitus, while tracing the evolutionary trajectory of precision medicine in healthcare. By elucidating the pathophysiological intricacies of diabetic wound healing, the review unveils the complex molecular mechanisms that drive this multifaceted process. Subsequently, a meticulous exploration follows into the application of precision medicine paradigms in diabetic wound care, delineating fundamental principles and diverse avenues through which precision medicine strategies can optimize diabetes management. Through a nuanced discussion of targeted therapies and interventions, the review highlights burgeoning approaches tailored to individual patient needs, accentuating the transformative potential of precision medicine in reshaping treatment paradigms. Drawing upon clinical trials and compelling case studies, the article offers valuable insights into the real-world efficacy of precision treatment modalities, elucidating successful applications and their profound implications for diabetic wound healing outcomes. Moreover, the review anticipates and addresses emerging challenges and future trajectories within the field, including the pivotal roles of biomarkers and diagnostic modalities, the integration of telemedicine platforms, and the increasing influence of artificial intelligence on diabetic wound healing endeavours. By synthesizing contemporary knowledge and delineating prospective pathways, this review underscores the catalytic potential of precision medicine in heralding a new era of enhanced outcomes for diabetic patients grappling with impaired wound healing.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708335238240920035556
2024-10-03
2024-11-26
Loading full text...

Full text loading...

References

  1. Tomic D. Shaw J.E. Magliano D.J. The burden and risks of emerging complications of diabetes mellitus. Nat. Rev. Endocrinol. 2022 18 9 525 539 10.1038/s41574‑022‑00690‑7 35668219
    [Google Scholar]
  2. Kumar R. Saha P. Kumar Y. Sahana S. Dubey A. Prakash O. A Review on Diabetes Mellitus: Type 1 & Type 2. World J. Pharm. Pharm. Sci. 2020 9 10 838 850
    [Google Scholar]
  3. Alam S. Hasan M.K. Neaz S. Hussain N. Hossain M.F. Rahman T. Diabetes Mellitus: Insights from epidemiology, biochemistry, risk factors, diagnosis, complications and comprehensive management. Diabetology 2021 2 2 36 50 10.3390/diabetology2020004
    [Google Scholar]
  4. Reinehr T. Type 2 diabetes mellitus in children and adolescents. World J. Diabetes 2013 4 6 270 281 10.4239/wjd.v4.i6.270 24379917
    [Google Scholar]
  5. Ceriello A. Testa R. Antioxidant anti-inflammatory treatment in type 2 diabetes. Diabetes Care 2009 32 Suppl 2 Suppl. 2 S232 S236 10.2337/dc09‑S316 19875557
    [Google Scholar]
  6. Lemelman M.B. Letourneau L. Greeley S.A.W. Neonatal diabetes mellitus. Clin. Perinatol. 2018 45 1 41 59 10.1016/j.clp.2017.10.006 29406006
    [Google Scholar]
  7. Chang M. Nguyen T.T. Strategy for Treatment of Infected Diabetic Foot Ulcers. Acc. Chem. Res. 2021 54 5 1080 1093 10.1021/acs.accounts.0c00864 33596041
    [Google Scholar]
  8. Gong H Ren Y Li Z Zha P Bista R Li Y Chen D Gao Y Chen L Ran X Wang C Clinical characteristics and risk factors of lower extremity amputation in the diabetic inpatients with foot ulcers. Front Endocrinol (Lausanne). 2023 14 1144806
    [Google Scholar]
  9. Glover K. Stratakos A.C. Varadi A. Lamprou D.A. 3D scaffolds in the treatment of diabetic foot ulcers: New trends vs conventional approaches. Int. J. Pharm. 2021 599 120423 10.1016/j.ijpharm.2021.120423 33647412
    [Google Scholar]
  10. Kolimi P. Narala S. Nyavanandi D. Youssef A.A.A. Dudhipala N. Innovative treatment strategies to accelerate wound healing: Trajectory and recent advancements. Cells 2022 11 15 2439 10.3390/cells11152439 35954282
    [Google Scholar]
  11. Dasari N. Jiang A. Skochdopole A. Chung J. Reece E.M. Vorstenbosch J. Winocour S. Updates in diabetic wound healing, inflammation, and scarring. Semin. Plast. Surg. 2021 35 3 153 158 10.1055/s‑0041‑1731460 34526862
    [Google Scholar]
  12. Čoma M. Manning J.C. Kaltner H. Gál P. The sweet side of wound healing: Galectins as promising therapeutic targets in hemostasis, inflammation, proliferation, and maturation/remodeling. Expert Opin. Ther. Targets 2023 27 1 41 53 10.1080/14728222.2023.2175318 36716023
    [Google Scholar]
  13. Spampinato S.F. Caruso G.I. De Pasquale R. Sortino M.A. Merlo S. The treatment of impaired wound healing in diabetes: Looking among old drugs. Pharmaceuticals (Basel) 2020 13 4 60 10.3390/ph13040060 32244718
    [Google Scholar]
  14. Willenborg S. Injarabian L. Eming S.A. Role of Macrophages in Wound Healing. Cold Spring Harb. Perspect. Biol. 2022 14 12 a041216 10.1101/cshperspect.a041216 36041784
    [Google Scholar]
  15. Zhang S. Ge G. Qin Y. Li W. Dong J. Mei J. Ma R. Zhang X. Bai J. Zhu C. Zhang W. Geng D. Recent advances in responsive hydrogels for diabetic wound healing. Mater. Today Bio 2023 18 100508 10.1016/j.mtbio.2022.100508 36504542
    [Google Scholar]
  16. Al-Mansoori L. Al-Jaber H. Prince M.S. Elrayess M.A. Role of inflammatory cytokines, growth factors and adipokines in adipogenesis and insulin resistance. Inflammation 2022 45 1 31 44 10.1007/s10753‑021‑01559‑z 34536157
    [Google Scholar]
  17. Mallik S.B. Jayashree B.S. Shenoy R.R. Epigenetic modulation of macrophage polarization- perspectives in diabetic wounds. J Diabetes Complications 2018 32 5 524 530 10.1016/j.jdiacomp.2018.01.015
    [Google Scholar]
  18. Drela E. Stankowska K. Kulwas A. Rość D. Endothelial progenitor cells in diabetic foot syndrome. Adv. Clin. Exp. Med. 2012 21 2 249 254 23214290
    [Google Scholar]
  19. Seitz O. Schürmann C. Hermes N. Müller E. Pfeilschifter J. Frank S. Goren I. Wound healing in mice with high-fat diet- or ob gene-induced diabetes-obesity syndromes: A comparative study. Exp. Diabetes Res. 2010 2010 1 15 10.1155/2010/476969 21318183
    [Google Scholar]
  20. Balaji S. Han N. Moles C. Shaaban A.F. Bollyky P.L. Crombleholme T.M. Keswani S.G. Angiopoietin-1 improves endothelial progenitor cell–dependent neovascularization in diabetic wounds. Surgery 2015 158 3 846 856 10.1016/j.surg.2015.06.034 26266763
    [Google Scholar]
  21. Schürmann C. Goren I. Linke A. Pfeilschifter J. Frank S. Deregulated unfolded protein response in chronic wounds of diabetic ob/ob mice: A potential connection to inflammatory and angiogenic disorders in diabetes-impaired wound healing. Biochem. Biophys. Res. Commun. 2014 446 1 195 200 10.1016/j.bbrc.2014.02.085 24583133
    [Google Scholar]
  22. Patel S. Srivastava S. Singh M.R. Singh D. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed. Pharmacother. 2019 112 108615 10.1016/j.biopha.2019.108615 30784919
    [Google Scholar]
  23. Lobmann R. Zemlin C. Motzkau M. Reschke K. Lehnert H. Expression of matrix metalloproteinases and growth factors in diabetic foot wounds treated with a protease absorbent dressing. J. Diabetes Complications 2006 20 5 329 335 10.1016/j.jdiacomp.2005.08.007 16949521
    [Google Scholar]
  24. Van Netten J.J. Woodburn J. Bus S.A. The future for diabetic foot ulcer prevention: A paradigm shift from stratified healthcare towards personalized medicine. Diabetes Metab. Res. Rev. 2020 36 S1 Suppl. 1 e3234 10.1002/dmrr.3234 31944530
    [Google Scholar]
  25. McGrath S. Ghersi D. Building towards precision medicine: Empowering medical professionals for the next revolution. BMC Med. Genomics 2016 9 1 23 10.1186/s12920‑016‑0183‑8 27160306
    [Google Scholar]
  26. Ashley E.A. Towards precision medicine. Nat. Rev. Genet. 2016 17 9 507 522 10.1038/nrg.2016.86 27528417
    [Google Scholar]
  27. Carr A.L.J. Evans-Molina C. Oram R.A. Precision medicine in type 1 diabetes. Diabetologia 2022 65 11 1854 1866 10.1007/s00125‑022‑05778‑3 35994083
    [Google Scholar]
  28. Chung W.K. Erion K. Florez J.C. Hattersley A.T. Hivert M.F. Lee C.G. McCarthy M.I. Nolan J.J. Norris J.M. Pearson E.R. Philipson L. McElvaine A.T. Cefalu W.T. Rich S.S. Franks P.W. Precision medicine in diabetes: A consensus report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2020 43 7 1617 1635 10.2337/dci20‑0022 32561617
    [Google Scholar]
  29. Cook J.C. Wu H. Aleo M.D. Adkins K. Principles of precision medicine and its application in toxicology. J. Toxicol. Sci. 2018 43 10 565 577 10.2131/jts.43.565 30298845
    [Google Scholar]
  30. Tranvåg E.J. Strand R. Ottersen T. Norheim O.F. Precision medicine and the principle of equal treatment: A conjoint analysis. BMC Med. Ethics 2021 22 1 55 10.1186/s12910‑021‑00625‑3 33971875
    [Google Scholar]
  31. Naithani N. Sinha S. Misra P. Vasudevan B. Sahu R. Precision medicine: Concept and tools. Med. J. Armed Forces India 2021 77 3 249 257 10.1016/j.mjafi.2021.06.021 34305276
    [Google Scholar]
  32. Delpierre C. Lefèvre T. Precision and personalized medicine: What their current definition says and silences about the model of health they promote. Implication for the development of personalized health. Front. Sociol. 2023 8 1112159 10.3389/fsoc.2023.1112159 36895332
    [Google Scholar]
  33. Rich S.S. Cefalu W.T. The impact of precision medicine in diabetes: A multidimensional perspective. Diabetes Care 2016 39 11 1854 1857 10.2337/dc16‑1833 27926886
    [Google Scholar]
  34. Pearson E. Precision treatment in type 2 diabetes: Can we predict response and outcomes to diabetes therapies? PDM2021: A virtual conference. Day 3, workshop 1. 2021
  35. Flanagin A. Frey T. Christiansen S.L. Updated guidance on the reporting of race and ethnicity in medical and science journals. JAMA 2021 326 7 621 627 10.1001/jama.2021.13304 34402850
    [Google Scholar]
  36. Ahlqvist E. Storm P. Käräjämäki A. Martinell M. Dorkhan M. Carlsson A. Vikman P. Prasad R.B. Aly D.M. Almgren P. Wessman Y. Shaat N. Spégel P. Mulder H. Lindholm E. Melander O. Hansson O. Malmqvist U. Lernmark Å. Lahti K. Forsén T. Tuomi T. Rosengren A.H. Groop L. Novel subgroups of adult-onset diabetes and their association with outcomes: A data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018 6 5 361 369 10.1016/S2213‑8587(18)30051‑2 29503172
    [Google Scholar]
  37. Chambers D.A. Feero W.G. Khoury M.J. Convergence of implementation science, precision medicine, and the learning health care system: A new model for biomedical research. JAMA 2016 315 18 1941 1942 10.1001/jama.2016.3867 27163980
    [Google Scholar]
  38. Klonoff D.C. Precision medicine for managing diabetes. J. Diabetes Sci. Technol. 2015 9 1 3 7 10.1177/1932296814563643 25550409
    [Google Scholar]
  39. Greeley S.A. McCauley M.K. Philipson L.H. Sperling M.A. Monogenic diabetes mellitus: Neonatal diabetes and maturity-onset diabetes of the young. Sperling Pediatric Endocrinology Amsterdam Elsevier 2021
    [Google Scholar]
  40. Galiano R.D. Tepper O.M. Pelo C.R. Bhatt K.A. Callaghan M. Bastidas N. Bunting S. Steinmetz H.G. Gurtner G.C. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am. J. Pathol. 2004 164 6 1935 1947 10.1016/S0002‑9440(10)63754‑6 15161630
    [Google Scholar]
  41. Chen J. Li X. Liu H. Zhong D. Yin K. Li Y. Zhu L. Xu C. Li M. Wang C. Bone marrow stromal cell‐derived exosomal circular RNA improves diabetic foot ulcer wound healing by activating the nuclear factor erythroid 2‐related factor 2 pathway and inhibiting ferroptosis. Diabet. Med. 2023 40 7 e15031 10.1111/dme.15031 36537855
    [Google Scholar]
  42. Barrientos S. Brem H. Stojadinovic O. Tomic-Canic M. Clinical application of growth factors and cytokines in wound healing. Wound Repair Regen. 2014 22 5 569 578 10.1111/wrr.12205 24942811
    [Google Scholar]
  43. Han G. Ceilley R. Chronic wound healing: A review of current management and treatments. Adv. Ther. 2017 34 3 599 610 10.1007/s12325‑017‑0478‑y 28108895
    [Google Scholar]
  44. You H.J. Han S.K. Cell therapy for wound healing. J. Korean Med. Sci. 2014 29 3 311 319 10.3346/jkms.2014.29.3.311 24616577
    [Google Scholar]
  45. Kolluru GK Bir SC Kevil CG Endothelial Dysfunction and Diabetes: Effects on Angiogenesis, Vascular Remodeling, and Wound Healing. Int J Vasc Med. 2012 2019 918267 10.1155/2012/918267
    [Google Scholar]
  46. Castilla D.M. Liu Z.J. Tian R. Li Y. Livingstone A.S. Velazquez O.C. A novel autologous cell-based therapy to promote diabetic wound healing. Ann. Surg. 2012 256 4 560 572 10.1097/SLA.0b013e31826a9064 22964729
    [Google Scholar]
  47. Teng M. Huang Y. Zhang H. Application of stems cells in wound healing—An update. Wound Repair Regen. 2014 22 2 151 160 10.1111/wrr.12152 24635168
    [Google Scholar]
  48. Jarajapu Y.P.R. Grant M.B. The promise of cell-based therapies for diabetic complications: Challenges and solutions. Circ. Res. 2010 106 5 854 869 10.1161/CIRCRESAHA.109.213140 20299675
    [Google Scholar]
  49. Huang Y. Kyriakides T.R. The role of extracellular matrix in the pathophysiology of diabetic wounds. Matrix Biol. Plus 2020 6-7 100037 10.1016/j.mbplus.2020.100037 33543031
    [Google Scholar]
  50. Kunkemoeller B. Kyriakides T.R. Redox signaling in diabetic wound healing regulates extracellular matrix deposition. Antioxid. Redox Signal. 2017 27 12 823 838 10.1089/ars.2017.7263 28699352
    [Google Scholar]
  51. Torregrossa M. Kakpenova A. Simon J.C. Franz S. Modulation of macrophage functions by ECM-inspired wound dressings – a promising therapeutic approach for chronic wounds. Biol. Chem. 2021 402 11 1289 1307 10.1515/hsz‑2021‑0145 34390641
    [Google Scholar]
  52. Cho H. Blatchley M.R. Duh E.J. Gerecht S. Acellular and cellular approaches to improve diabetic wound healing. Adv. Drug Deliv. Rev. 2019 146 267 288 10.1016/j.addr.2018.07.019 30075168
    [Google Scholar]
  53. de Smet G.H.J. Kroese L.F. Menon A.G. Jeekel J. van Pelt A.W.J. Kleinrensink G.J. Lange J.F. Oxygen therapies and their effects on wound healing. Wound Repair Regen. 2017 25 4 591 608 10.1111/wrr.12561 28783878
    [Google Scholar]
  54. Oropallo A.R. Serena T.E. Armstrong D.G. Niederauer M.Q. Molecular biomarkers of oxygen therapy in patients with diabetic foot ulcers. Biomolecules 2021 11 7 925 10.3390/biom11070925 34206433
    [Google Scholar]
  55. Hayes P.D. Alzuhir N. Curran G. Loftus I.M. Topical oxygen therapy promotes the healing of chronic diabetic foot ulcers: A pilot study. J. Wound Care 2017 26 11 652 660 10.12968/jowc.2017.26.11.652 29131746
    [Google Scholar]
  56. Howard M.A. Asmis R. Evans K.K. Mustoe T.A. Oxygen and wound care: A review of current therapeutic modalities and future direction. Wound Repair Regen. 2013 21 4 503 511 10.1111/wrr.12069 23756299
    [Google Scholar]
  57. Lotfollahi Z. Dawson J. Fitridge R. Bursill C. The anti-inflammatory and proangiogenic properties of high-density lipoproteins: An emerging role in diabetic wound healing. Adv. Wound Care (New Rochelle) 2021 10 7 370 380 10.1089/wound.2020.1308 33176621
    [Google Scholar]
  58. Shukla S.K. Sharma A.K. Gupta V. Yashavarddhan M.H. Pharmacological control of inflammation in wound healing. J. Tissue Viability 2019 28 4 218 222 10.1016/j.jtv.2019.09.002 31542301
    [Google Scholar]
  59. Salazar J.J. Ennis W.J. Koh T.J. Diabetes medications: Impact on inflammation and wound healing. J. Diabetes Complications 2016 30 4 746 752 10.1016/j.jdiacomp.2015.12.017 26796432
    [Google Scholar]
  60. Yaghoobi R. Kazerouni A. kazerouni O. Evidence for clinical use of honey in wound healing as an anti-bacterial, anti-inflammatory anti-oxidant and anti-viral agent: A review. Jundishapur J. Nat. Pharm. Prod. 2013 8 3 100 104 10.17795/jjnpp‑9487 24624197
    [Google Scholar]
  61. Monika P. Chandraprabha M.N. Rangarajan A. Waiker P.V. Chidambara Murthy K.N. Challenges in healing wound: Role of complementary and alternative medicine. Front. Nutr. 2022 8 791899 10.3389/fnut.2021.791899 35127787
    [Google Scholar]
  62. Tavakoli S. Klar A.S. Bioengineered skin substitutes: Advances and future trends. Appl. Sci. (Basel) 2021 11 4 1493 10.3390/app11041493
    [Google Scholar]
  63. Widgerow A.D. Bioengineered skin substitute considerations in the diabetic foot ulcer. Ann. Plast. Surg. 2014 73 2 239 244 10.1097/SAP.0b013e31826eac22 23511743
    [Google Scholar]
  64. Saap L.J. Donohue K. Falanga V. Clinical classification of bioengineered skin use and its correlation with healing of diabetic and venous ulcers. Dermatol. Surg. 2004 30 8 1095 1100 15274699
    [Google Scholar]
  65. Bhardwaj N. Chouhan D. Mandal B.B. Tissue engineered skin and wound healing: Current strategies and future directions. Curr. Pharm. Des. 2017 23 24 3455 3482 28552069
    [Google Scholar]
  66. Burgess J.L. Wyant W.A. Abdo Abujamra B. Kirsner R.S. Jozic I. Diabetic wound-healing science. Medicina (Kaunas) 2021 57 10 1072 10.3390/medicina57101072 34684109
    [Google Scholar]
  67. Lebrun E. Tomic-Canic M. Kirsner R.S. The role of surgical debridement in healing of diabetic foot ulcers. Wound Repair Regen. 2010 18 5 433 438 10.1111/j.1524‑475X.2010.00619.x 20840517
    [Google Scholar]
  68. Demidova-Rice T.N. Hamblin M.R. Herman I.M. Acute and impaired wound healing: Pathophysiology and current methods for drug delivery, part 2: Role of growth factors in normal and pathological wound healing: Therapeutic potential and methods of delivery. Adv. Skin Wound Care 2012 25 8 349 370 10.1097/01.ASW.0000418541.31366.a3 22820962
    [Google Scholar]
  69. Hurlow J.J. Humphreys G.J. Bowling F.L. McBain A.J. Diabetic foot infection: A critical complication. Int. Wound J. 2018 15 5 814 821 10.1111/iwj.12932 29808598
    [Google Scholar]
  70. Wang Z. Hasan R. Firwana B. Elraiyah T. Tsapas A. Prokop L. Mills J.L. Sr Murad M.H. A systematic review and meta-analysis of tests to predict wound healing in diabetic foot. J. Vasc. Surg. 2016 63 2 Suppl. 29S 36S, 36S.e2 10.1016/j.jvs.2015.10.004 26804365
    [Google Scholar]
  71. Singh T.P. Vangaveti V.N. Kennedy R.L. Malabu U.H. Role of telehealth in diabetic foot ulcer management - A systematic review. Aust. J. Rural Health 2016 24 4 224 229 10.1111/ajr.12284 27098271
    [Google Scholar]
  72. Sood A. Granick M.S. Trial C. Lano J. Palmier S. Ribal E. Téot L. The role of telemedicine in wound care: A review and analysis of a database of 5,795 patients from a mobile wound-healing center in Languedoc-Roussillon, France. Plast. Reconstr. Surg. 2016 138 3S 248S 256S 10.1097/PRS.0000000000002702 27556769
    [Google Scholar]
  73. Raghupathi W. Raghupathi V. Big data analytics in healthcare: Promise and potential. Health Inf. Sci. Syst. 2014 2 1 3 10.1186/2047‑2501‑2‑3 25825667
    [Google Scholar]
  74. Dankwa-Mullan I. Rivo M. Sepulveda M. Park Y. Snowdon J. Rhee K. Transforming diabetes care through artificial intelligence: The future is here. Popul. Health Manag. 2019 22 3 229 242 10.1089/pop.2018.0129 30256722
    [Google Scholar]
  75. Shankaracharya O.D. Odedra D. Samanta S. Vidyarthi A.S. Computational intelligence in early diabetes diagnosis: A review. Rev. Diabet. Stud. 2010 7 4 252 262 10.1900/RDS.2010.7.252 21713313
    [Google Scholar]
  76. Ellahham S. Artificial intelligence: The future for diabetes care. Am. J. Med. 2020 133 8 895 900 10.1016/j.amjmed.2020.03.033 32325045
    [Google Scholar]
  77. Zhao F. Chen Y. Hou Y. He X. Segmentation of blood vessels using rule-based and machine-learning-based methods: A review. Multimedia Syst. 2019 25 2 109 118 10.1007/s00530‑017‑0580‑7
    [Google Scholar]
  78. Anisuzzaman D.M. Wang C. Rostami B. Gopalakrishnan S. Niezgoda J. Yu Z. Image-based artificial intelligence in wound assessment: A systematic review. Adv. Wound Care (New Rochelle) 2022 11 12 687 709 10.1089/wound.2021.0091 34544270
    [Google Scholar]
  79. Zhavoronkov A. Vanhaelen Q. Oprea T.I. Will artificial intelligence for drug discovery impact clinical pharmacology? Clin. Pharmacol. Ther. 2020 107 4 780 785 10.1002/cpt.1795 31957003
    [Google Scholar]
  80. Paul D. Sanap G. Shenoy S. Kalyane D. Kalia K. Tekade R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021 26 1 80 93 10.1016/j.drudis.2020.10.010 33099022
    [Google Scholar]
  81. Jones G.S. Baldwin D.R. Recent advances in the management of lung cancer. Clin. Med. (Lond.) 2018 18 2 Suppl. 2 s41 s46 10.7861/clinmedicine.18‑2‑s41 29700092
    [Google Scholar]
  82. Paolillo S. Scardovi A.B. Campodonico J. Role of comorbidities in heart failure prognosis Part I: Anaemia, iron deficiency, diabetes, atrial fibrillation. Eur. J. Prev. Cardiol. 2020 27 2_suppl Suppl. 27 34 10.1177/2047487320960288 33238738
    [Google Scholar]
  83. Grinnell F. Billingham R.E. Burgess L. Distribution of fibronectin during wound healing in vivo. J. Invest. Dermatol. 1981 76 3 181 189 10.1111/1523‑1747.ep12525694 7240787
    [Google Scholar]
  84. Repesh L.A. Fitzgerald T.J. Furcht L.T. Fibronectin involvement in granulation tissue and wound healing in rabbits. J. Histochem. Cytochem. 1982 30 4 351 358 10.1177/30.4.6174568 6174568
    [Google Scholar]
  85. Gailit J. Clark R.A.F. Wound repair in the context of extracellular matrix. Curr. Opin. Cell Biol. 1994 6 5 717 725 10.1016/0955‑0674(94)90099‑X 7530463
    [Google Scholar]
  86. Gailit J. Clark R.A.F. Welch M.P. TGF-β 1 stimulates expression of keratinocyte integrins during re-epithelialization of cutaneous wounds. J. Invest. Dermatol. 1994 103 2 221 227 10.1111/1523‑1747.ep12393176 8040614
    [Google Scholar]
  87. Ongenae K.C. Phillips T.J. Park H.Y. Level of fibronectin mRNA is markedly increased in human chronic wounds. Dermatol. Surg. 2000 26 5 447 451 10.1046/j.1524‑4725.2000.99281.x 10816233
    [Google Scholar]
  88. Lobmann R. Ambrosch A. Schultz G. Waldmann K. Schiweck S. Lehnert H. Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients. Diabetologia 2002 45 7 1011 1016 10.1007/s00125‑002‑0868‑8 12136400
    [Google Scholar]
  89. Lobmann R. Schultz G. Lehnert H. [Molecular fundamentals of wound healing in diabetic foot syndrome] Med. Klin. (Munich) 2003 98 5 292 301 10.1007/s00063‑003‑1260‑2 12721676
    [Google Scholar]
  90. Nwomeh B.C. Liang H.X. Cohen I.K. Yager D.R. MMP-8 is the predominant collagenase in healing wounds and nonhealing ulcers. J. Surg. Res. 1999 81 2 189 195 10.1006/jsre.1998.5495 9927539
    [Google Scholar]
  91. Barone E.J. Yager D.R. Pozez A.L. Olutoye O.O. Crossland M.C. Diegelmann R.F. Cohen K.I. Interleukin-1alpha and collagenase activity are elevated in chronic wounds. Plast. Reconstr. Surg. 1998 102 4 1023 1027 10.1097/00006534‑199809020‑00015 9734419
    [Google Scholar]
  92. Dinh T.L. Veves A. A review of the mechanisms implicated in the pathogenesis of the diabetic foot. Int. J. Low. Extrem. Wounds 2005 4 3 154 159 10.1177/1534734605280130 16100096
    [Google Scholar]
  93. Holzer P. Neurogenic vasodilatation and plasma leakage in the skin. Gen. Pharmacol. 1998 30 1 5 11 10.1016/S0306‑3623(97)00078‑5 9457475
    [Google Scholar]
  94. Forst T. Pfützner A. Kunt T. Pohlmann T. Schenk U. Bauersachs R. Küstner E. Beyer J. Skin microcirculation in patients with type I diabetes with and without neuropathy after neurovascular stimulation. Clin. Sci. (Lond.) 1998 94 3 255 261 10.1042/cs0940255 9616259
    [Google Scholar]
  95. Nakagawa N. Sano H. Iwamoto I. Substance P induces the expression of intercellular adhesion molecule-1 on vascular endothelial cells and enhances neutrophil transendothelial migration. Peptides 1995 16 4 721 725 10.1016/0196‑9781(95)00037‑K 7479308
    [Google Scholar]
  96. Tomasek J.J. Gabbiani G. Hinz B. Chaponnier C. Brown R.A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 2002 3 5 349 363 10.1038/nrm809 11988769
    [Google Scholar]
  97. Carver W. Nagpal M.L. Nachtigal M. Borg T.K. Terracio L. Collagen expression in mechanically stimulated cardiac fibroblasts. Circ. Res. 1991 69 1 116 122 10.1161/01.RES.69.1.116 2054929
    [Google Scholar]
  98. Rohr S. Role of gap junctions in the propagation of the cardiac action potential. Cardiovasc. Res. 2004 62 2 309 322 10.1016/j.cardiores.2003.11.035 15094351
    [Google Scholar]
  99. Camelliti P. Borg T. Kohl P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc. Res. 2005 65 1 40 51 10.1016/j.cardiores.2004.08.020 15621032
    [Google Scholar]
  100. Goldsmith E.C. Hoffman A. Morales M.O. Potts J.D. Price R.L. McFadden A. Rice M. Borg T.K. Organization of fibroblasts in the heart. Dev. Dyn. 2004 230 4 787 794 10.1002/dvdy.20095 15254913
    [Google Scholar]
  101. Qiu C. Coutinho P. Frank S. Franke S. Law L. Martin P. Green C.R. Becker D.L. Targeting connexin43 expression accelerates the rate of wound repair. Curr. Biol. 2003 13 19 1697 1703 10.1016/j.cub.2003.09.007 14521835
    [Google Scholar]
  102. Saitoh M. Oyamada M. Oyamada Y. Kaku T. Mori M. Changes in the expression of gap junction proteins (connexins) in hamster tongue epithelium during wound healing and carcinogenesis. Carcinogenesis 1997 18 7 1319 1328 10.1093/carcin/18.7.1319 9230274
    [Google Scholar]
  103. Coutinho P. Qiu C. Frank S. Tamber K. Becker D. Dynamic changes in connexin expression correlate with key events in the wound healing process. Cell Biol. Int. 2003 27 7 525 541 10.1016/S1065‑6995(03)00077‑5 12842092
    [Google Scholar]
  104. Mansbridge J. Skin substitutes to enhance wound healing. Expert Opin. Investig. Drugs 1998 7 5 803 809 10.1517/13543784.7.5.803 15991970
    [Google Scholar]
  105. Mansbridge J. Liu K. Patch R. Symons K. Pinney E. Three-dimensional fibroblast culture implant for the treatment of diabetic foot ulcers: Metabolic activity and therapeutic range. Tissue Eng. 1998 4 4 403 414 10.1089/ten.1998.4.403 9916172
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708335238240920035556
Loading
/content/journals/raiad/10.2174/0127722708335238240920035556
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test