Skip to content
2000
image of Efficacy of Eugenol Loaded Chitosan Nanoparticles on Sepsis Induced Liver Injury in Rats

Abstract

Background

Sepsis is a life-threatening condition responsible for high morbidity and mortality rates around the world and is characterized by a dysregulated host response to infection, resulting in multiple organ dysfunctions. Eugenol is a phenolic aromatic compound derived from clove oil. It has anti-inflammatory, antioxidant, antibacterial, antiviral, antifungal, and anticancer characteristics, which have led to its extensive use in diverse fields, including cosmetology, medicine, and pharmacology. The ongoing study aimed to evaluate the efficacy of eugenol-loaded chitosan nanoparticles (EC-NPs) on sepsis-induced liver damage using the cecal ligation and puncture (CLP) model.

Methods

Thirty male albino rats were randomly divided into five groups: Sham, sepsis, and septic rats treated with chitosan, eugenol, or EC-NPs.

Results

EC-NPs showed excellent antibacterial, antioxidant, and anti-inflammatory effects . EC-NP administration significantly improved liver function, as indicated by the decreased liver enzyme activities and C-reactive protein (CRP) level, as well as the increase of albumin content. Moreover, EC-NPs caused an increase in glutathione-reduced and antioxidant enzyme activities, as well as a reduction of malondialdehyde and nitric oxide formation. In addition, the EC-NP treatment reduced the DNA damage in septic rats; also, the EC-NP treatment repaired, to some extent, the abnormal architecture of the hepatic tissues of septic rats. Furthermore, the immunohistochemical examination showed a marked decrease in inflammation through the reduction of TNF-α and IL-1β expression.

Conclusion

In conclusion, EC-NPs attenuated liver injury in sepsis through its anti-inflammatory, anti-bacterial, and anti-oxidant activities and protection of DNA.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708334976241004041438
2024-10-11
2025-01-20
Loading full text...

Full text loading...

References

  1. Xie Z. Shao B. Hoover C. McDaniel M. Song J. Jiang M. Ma Z. Yang F. Han J. Bai X. Ruan C. Xia L. Monocyte upregulation of podoplanin during early sepsis induces complement inhibitor release to protect liver function. JCI Insight 2020 5 13 e134749 10.1172/jci.insight.134749 32641582
    [Google Scholar]
  2. Singer M. Deutschman C.S. Seymour C.W. Shankar-Hari M. Annane D. Bauer M. Bellomo R. Bernard G.R. Chiche J.D. Coopersmith C.M. Hotchkiss R.S. Levy M.M. Marshall J.C. Martin G.S. Opal S.M. Rubenfeld G.D. van der Poll T. Vincent J.L. Angus D.C. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA -. JAMA 2016 315 8 801 810 10.1001/jama.2016.0287 26903338
    [Google Scholar]
  3. Niederman M.S. Baron R.M. Bouadma L. Calandra T. Daneman N. DeWaele J. Kollef M.H. Lipman J. Nair G.B. Initial antimicrobial management of sepsis. Crit. Care 2021 25 1 307 10.1186/s13054‑021‑03736‑w 34446092
    [Google Scholar]
  4. De Backer D. Deutschman C.S. Hellman J. Myatra S.N. Ostermann M. Prescott H.C. Talmor D. Antonelli M. Pontes Azevedo L.C. Bauer S.R. Kissoon N. Loeches I.M. Nunnally M. Tissieres P. Vieillard-Baron A. Coopersmith C.M. Surviving sepsis campaign research priorities 2023. Crit. Care Med. 2024 52 2 268 296 10.1097/CCM.0000000000006135 38240508
    [Google Scholar]
  5. Kharga K. Kumar L. Patel S.K.S. Recent advances in monoclonal antibody-based approaches in the management of bacterial sepsis. Biomedicines 2023 11 3 765 10.3390/biomedicines11030765 36979744
    [Google Scholar]
  6. Zhang J. Wang X. Peng Y. Wei J. Luo Y. Luan F. Li H. Zhou Y. Wang C. Yu K. Combined metabolomic and proteomic analysis of sepsis related acute liver injury and its pathogenesis research. Int. Immunopharmacol. 2024 130 111666 10.1016/j.intimp.2024.111666 38412671
    [Google Scholar]
  7. Pan B. Yang Y. Jiang Y. Xiao Q. Chen W. Wang J. Chen F. Yan S. Liu Y. Potential roles of HSYA in attenuating sepsis-induced liver injury through multi-omics analysis. J. Pharm. Biomed. Anal. 2024 238 115801 10.1016/j.jpba.2023.115801 37924577
    [Google Scholar]
  8. Abdelnaser M. Alaaeldin R. Attya M.E. Fathy M. Hepatoprotective potential of gabapentin in cecal ligation and puncture-induced sepsis; targeting oxidative stress, apoptosis, and NF-kB/MAPK signaling pathways. Life Sci. 2023 320 January 121562 10.1016/j.lfs.2023.121562 36907325
    [Google Scholar]
  9. Li Y. Nie Y. Yang X. Liu Y. Deng X. Hayashi Y. Plummer R. Li Q. Luo N. Kasai T. Okumura T. Kamishibahara Y. Komoto T. Ohkuma T. Okamoto S. Isobe Y. Yamaguchi K. Furukawa Y. Taniguchi H. Integration of Kupffer cells into human iPSC-derived liver organoids for modeling liver dysfunction in sepsis. Cell Rep. 2024 43 3 113918 10.1016/j.celrep.2024.113918 38451817
    [Google Scholar]
  10. Xu Ruiming Wang Dawei Zhengyi Shao XL Neoastilbin ameliorates sepsis-induced liver and kidney injury by blocking the TLR4/NF-Κb pathway Histol Histopathol 2024 39 10 1329 1342
    [Google Scholar]
  11. Fahmi O. Therapeutic potential of ramipril, losartan, and spironolactone against sepsis-associated liver tissue injury induced by cecal ligation and puncture in rats. Eur Rev Med Pharmacol Sci. 2024 28 5 1821 1836
    [Google Scholar]
  12. Mohamed A.S. Sadek S.A. Hassanein S.S. Soliman A.M. Hepatoprotective effect of echinochrome pigment in septic rats. J. Surg. Res. 2019 234 317 324 10.1016/j.jss.2018.10.004 30527491
    [Google Scholar]
  13. Bertozzi G Ferrara M Fazio A Di Maiese A Delogu G Fazio N Di Oxidative stress in sepsis: A focus on cardiac pathology. Int J Mol Sci. 2024 25 5 2912 10.3390/ijms25052912
    [Google Scholar]
  14. Hussein A.H. Abbood A.S. Naser H.A. Hassan S.M. DMF ameliorate myocardial damage in rat model of polymicrobial sepsis induced by CLP. Azerbaijan Pharmaceutical and Pharmacotherapy J 2022 22 1 75 78 10.61336/appj/22‑1‑16
    [Google Scholar]
  15. Brooks H.F. Osabutey C.K. Moss R.F. Andrews P.L.R. Davies D.C. Caecal ligation and puncture in the rat mimics the pathophysiological changes in human sepsis and causes multi-organ dysfunction. Metab. Brain Dis. 2007 22 3-4 353 373 10.1007/s11011‑007‑9058‑1 17828620
    [Google Scholar]
  16. Rhodes A. Evans L.E. Alhazzani W. Levy M.M. Antonelli M. Ferrer R. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017 43 3 304 377
    [Google Scholar]
  17. Velasque M.J.S.G. Branchini G. Catarina A.V. Bettoni L. Fernandes R.S. Da Silva A.F. Dorneles G.P. da Silva I.M. Santos M.A. Sumienski J. Peres A. Roehe A.V. Kohek M.B.F. Porawski M. Nunes F.B. Fish oil - Omega-3 exerts protective effect in oxidative stress and liver dysfunctions resulting from experimental sepsis. J. Clin. Exp. Hepatol. 2023 13 1 64 74 10.1016/j.jceh.2022.07.001 36647406
    [Google Scholar]
  18. Alrahlah A. Al-Odayni A.B. Saeed W.S. Abduh N.A.Y. Khan R. Alshabib A. Almajhdi F.F.N. Alodeni R.M. De Vera M.A.T. Influence of eugenol and its novel methacrylated derivative on the polymerization degree of resin-based composites. Polymers (Basel) 2023 15 5 1124 10.3390/polym15051124 36904361
    [Google Scholar]
  19. Devi K.P. Nisha S.A. Sakthivel R. Pandian S.K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 2010 130 1 107 115 10.1016/j.jep.2010.04.025 20435121
    [Google Scholar]
  20. Aranaz I. Mengibar M. Harris R. Panos I. Miralles B. Acosta N. Functional characterization of chitin and chitosan. Curr. Chem. Biol. 2009 3 2 203 230
    [Google Scholar]
  21. Yoon H.J. Moon M.E. Park H.S. Im S.Y. Kim Y.H. Chitosan oligosaccharide (COS) inhibits LPS-induced inflammatory effects in RAW 264.7 macrophage cells. Biochem. Biophys. Res. Commun. 2007 358 3 954 959 10.1016/j.bbrc.2007.05.042 17512902
    [Google Scholar]
  22. Moghaddam F.D. Zare E.N. Hassanpour M. Bertani F.R. Serajian A. Ziaei S.F. Paiva-Santos A.C. Neisiany R.E. Makvandi P. Iravani S. Xu Y. Chitosan-based nanosystems for cancer diagnosis and therapy: Stimuli-responsive, immune response, and clinical studies. Carbohydr. Polym. 2024 330 February 121839 10.1016/j.carbpol.2024.121839 38368115
    [Google Scholar]
  23. Malik S. Muhammad K. Waheed Y. Nanotechnology: A revolution in modern industry. Molecules 2023 28 2 661 10.3390/molecules28020661 36677717
    [Google Scholar]
  24. Pant A. Mackraj I. Govender T. Advances in sepsis diagnosis and management: a paradigm shift towards nanotechnology. J. Biomed. Sci. 2021 28 1 6 10.1186/s12929‑020‑00702‑6 33413364
    [Google Scholar]
  25. Kurnia H.P. Puruhita D.T. Nazhif Haykal M. Eugenol nanoparticle encapsulated chitosan enhances cell cycle arrest in hela human cervical cancer cells. Syst Rev Pharm. 2021 12 1 692 699
    [Google Scholar]
  26. Scott A.C. Mackie & mccartney practical medical microbiology Churchill Livingstone New York 1996 14th ed 161 181 Available from: https://search.worldcat.org/title/mackie-mccartney-practical-medical-microbiology/oclc/438723144?referer=di&ht=edition
    [Google Scholar]
  27. Mohamed M.S.M. Mostafa H.M. Mohamed S.H. Abd El-Moez S.I. Kamel Z. Combination of silver nanoparticles and vancomycin to overcome antibiotic resistance in planktonic/biofilm cell from clinical and animal source. Microb. Drug Resist. 2020 26 11 1410 1420 10.1089/mdr.2020.0089 32354252
    [Google Scholar]
  28. Mahdi-Pour B. Jothy S.L. Latha L.Y. Chen Y. Sasidharan S. Antioxidant activity of methanol extracts of different parts of lantana camara. Asian Pac. J. Trop. Biomed. 2012 2 12 960 965 10.1016/S2221‑1691(13)60007‑6 23593576
    [Google Scholar]
  29. Anjum N.F. Shanmugarajan D. Prashantha Kumar B.R. Faizan S. Durai P. Raju R.M. Javid S. Purohit M.N. Novel derivatives of eugenol as a new class of pparγ agonists in treating inflammation: Design, synthesis, sar analysis and in vitro anti-inflammatory activity. Molecules 2023 28 9 3899 10.3390/molecules28093899 37175309
    [Google Scholar]
  30. Chinedu E. Arome D. Ameh F. A new method for determining acute toxicity in animal models. Toxicol. Int. 2013 20 3 224 226 10.4103/0971‑6580.121674 24403732
    [Google Scholar]
  31. Meunier C.J. Burton J. Cumps J. Verbeeck R.K. Evaluation of the formalin test to assess the analgesic activity of diflunisal in the rat. Eur. J. Pharm. Sci. 1998 6 4 307 312 10.1016/S0928‑0987(97)10020‑3 9795087
    [Google Scholar]
  32. Liu M.W. Su M.X. Zhang W. Wang Y.H. Qin L.F. Liu X. Tian M.L. Qian C.Y. Effect of Melilotus suaveolens extract on pulmonary microvascular permeability by downregulating vascular endothelial growth factor expression in rats with sepsis. Mol. Med. Rep. 2015 11 5 3308 3316 10.3892/mmr.2015.3146 25571852
    [Google Scholar]
  33. Mohamed A.S. Hosney M. Bassiony H. Hassanein S.S. Soliman A.M. Fahmy S.R. Gaafar K. Sodium pentobarbital dosages for exsanguination affect biochemical, molecular and histological measurements in rats. Sci. Rep. 2020 10 1 378 10.1038/s41598‑019‑57252‑7 31942001
    [Google Scholar]
  34. Longo B Sommerfeld EP Dual role of eugenol on chronic gastric ulcer in rats: Low-dose healing efficacy and the worsening gastric lesion in high doses. Chem. Biol. Interact. 2020 2021 333 33245926
    [Google Scholar]
  35. Koura R.A.A. Mohamed H.R.H. Ahmed K.A. Baiomy A.A.A. Bahaaeldine M.A. Mohamed A.S. The therapeutic role of chitosan-saponin-bentonite nanocomposite on acute kidney injury induced by chromium in male wistar rats. Biointerface Res. Appl. Chem. 2023 13 6 1 23
    [Google Scholar]
  36. Wu D. Zhou S. Hu S. Liu B. Inflammatory responses and histopathological changes in a mouse model of Staphylococcus aureus-induced bloodstream infections. J. Infect. Dev. Ctries. 2017 11 4 294 305 10.3855/jidc.7800 28459220
    [Google Scholar]
  37. Reitman S. Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 1957 28 1 56 63 10.1093/ajcp/28.1.56 13458125
    [Google Scholar]
  38. Belfield A. Goldberg D.M. Revised assay for serum phenyl phosphatase activity using 4-amino-antipyrine. Enzyme 1971 12 5 561 573 10.1159/000459586 5169852
    [Google Scholar]
  39. Szasz G. A kinetic photometric method for serum γ-glutamyl transpeptidase. Clin. Chem. 1969 15 2 124 136 10.1093/clinchem/15.2.124 5773262
    [Google Scholar]
  40. Tietz N.W. Clinical guide to laboratory tests. 1990
    [Google Scholar]
  41. Ohkawa H. Ohishi N. Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979 95 2 351 358 10.1016/0003‑2697(79)90738‑3 36810
    [Google Scholar]
  42. Beutler E. Duron O. Kelly B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 1963 61 882 888 13967893
    [Google Scholar]
  43. Aebi H. Catalase in vitro. Methods Enzymol. 1984 105 121 126 10.1016/S0076‑6879(84)05016‑3 6727660
    [Google Scholar]
  44. Nishikimi M. Appaji Rao N. Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 1972 46 2 849 854 10.1016/S0006‑291X(72)80218‑3 4400444
    [Google Scholar]
  45. Habig W.H. Pabst M.J. Jakoby W.B. Glutathione S-Transferases. J. Biol. Chem. 1974 249 22 7130 7139 10.1016/S0021‑9258(19)42083‑8 4436300
    [Google Scholar]
  46. Paglia D.E. Valentine W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967 70 1 158 169 6066618
    [Google Scholar]
  47. Montgomery H.A.C. Dymock J.F. The rapid determination of nitrate in fresh and saline waters. Analyst (Lond.) 1962 87 1034 374 378 10.1039/an9628700374
    [Google Scholar]
  48. loannou Y.A. Chen F.W. Quantitation of DNA fragmentation in apoptosis. Nucleic Acids Res. 1996 24 5 992 993 10.1093/nar/24.5.992 8600475
    [Google Scholar]
  49. Al Shawous A. Soliman A. Fahmy S. Mohamed A. Therapeutic efficacy of anodonta cygnea and crayfish procambarus clarkii hemolymph extracts on sepsis-induced acute liver injury in neonate rats. Int. J. Pharmacol. 2023 19 2 185 196 10.3923/ijp.2023.185.196
    [Google Scholar]
  50. Refaie M.M.M. El-Hussieny M. The role of interleukin‐1b and its antagonist (diacerein) in estradiol benzoate‐induced endometrial hyperplasia and atypia in female rats. Fundam. Clin. Pharmacol. 2017 31 4 438 446 10.1111/fcp.12285 28299811
    [Google Scholar]
  51. Dyck B. Unterberg M. Adamzik M. Koos B. The impact of pathogens on sepsis prevalence and outcome. Pathogens 2024 13 1 89 10.3390/pathogens13010089 38276162
    [Google Scholar]
  52. Marchese A. Barbieri R. Coppo E. Orhan I.E. Daglia M. Nabavi S.F. Izadi M. Abdollahi M. Nabavi S.M. Ajami M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 2017 43 6 668 689 10.1080/1040841X.2017.1295225 28346030
    [Google Scholar]
  53. Nazzaro F. Fratianni F. De Martino L. Coppola R. De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel) 2013 6 12 1451 1474 10.3390/ph6121451 24287491
    [Google Scholar]
  54. Devi K.P. Sakthivel R. Nisha S.A. Suganthy N. Pandian S.K. Eugenol alters the integrity of cell membrane and acts against the nosocomial pathogen Proteus mirabilis. Arch. Pharm. Res. 2013 36 3 282 292 10.1007/s12272‑013‑0028‑3 23444040
    [Google Scholar]
  55. Costa E.M. Silva S. Pina C. Tavaria F.K. Pintado M.M. Evaluation and insights into chitosan antimicrobial activity against anaerobic oral pathogens. Anaerobe 2012 18 3 305 309 10.1016/j.anaerobe.2012.04.009 22561525
    [Google Scholar]
  56. Krajewska B. Wydro P. Jańczyk A. Probing the modes of antibacterial activity of chitosan. effects of ph and molecular weight on chitosan interactions with membrane lipids in langmuir films. Biomacromolecules 2011 12 11 4144 4152 10.1021/bm2012295 21936509
    [Google Scholar]
  57. Raafat D. von Bargen K. Haas A. Sahl H.G. Insights into the mode of action of chitosan as an antibacterial compound. Appl. Environ. Microbiol. 2008 74 12 3764 3773 10.1128/AEM.00453‑08 18456858
    [Google Scholar]
  58. Li J. Zhuang S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives. Eur. Polym. J. 2020 138 July 109984 [Internet]. 10.1016/j.eurpolymj.2020.109984
    [Google Scholar]
  59. Ow C.P.C. Trask-Marino A. Betrie A.H. Evans R.G. May C.N. Lankadeva Y.R. Targeting oxidative stress in septic acute kidney injury: From theory to practice. J. Clin. Med. 2021 10 17 3798 10.3390/jcm10173798 34501245
    [Google Scholar]
  60. Bondet V. Brand-Williams W. Berset C. Kinetics and mechanisms of antioxidant activity using the DPPH• free radical method. Lebensm. Wiss. Technol. 1997 30 6 609 615 10.1006/fstl.1997.0240
    [Google Scholar]
  61. El Ghallab Y. Al Jahid A. Jamal Eddine J. Ait Haj Said A. Zarayby L. Derfoufi S. Syzygium aromaticum L.: phytochemical investigation and comparison of the scavenging activity of essential oil, extracts and eugenol. Advances in Traditional Medicine 2020 20 2 153 158 [Internet]. 10.1007/s13596‑019‑00416‑7
    [Google Scholar]
  62. Rui L. Xie M. Hu B. Zhou L. Saeeduddin M. Zeng X. Enhanced solubility and antioxidant activity of chlorogenic acid-chitosan conjugates due to the conjugation of chitosan with chlorogenic acid. Carbohydr. Polym. 2017 170 206 216 10.1016/j.carbpol.2017.04.076 28521988
    [Google Scholar]
  63. Giamarellos-Bourboulis E.J. Aschenbrenner A.C. Bauer M. Bock C. Calandra T. Gat-Viks I. Kyriazopoulou E. Lupse M. Monneret G. Pickkers P. Schultze J.L. van der Poll T. van de Veerdonk F.L. Vlaar A.P.J. Weis S. Wiersinga W.J. Netea M.G. The pathophysiology of sepsis and precision-medicine-based immunotherapy. Nat. Immunol. 2024 25 1 19 28 10.1038/s41590‑023‑01660‑5 38168953
    [Google Scholar]
  64. Sun Y. Sun S. Chen P. Dai Y. Yang D. Lin Y. Yi L. Maresins as novel anti-inflammatory actors and putative therapeutic targets in sepsis. Pharmacol. Res. 2024 202 107113 10.1016/j.phrs.2024.107113 38387744
    [Google Scholar]
  65. Barboza JN da Silva Maia Bezerra Filho C Silva RO Medeiros JVR de Sousa DP An overview on the anti-inflammatory potential and antioxidant profile of eugenol. xid Med Cell Longev. 2018 22 2018 3957262 10.1155/2018/3957262
    [Google Scholar]
  66. Nazir A. Chronic post-ICU pain: A review of the mechanism and the rehabilitation management. Anaesth. Pain Intensive Care 2024 28 1 159 165 10.35975/apic.v28i1.2389
    [Google Scholar]
  67. Sadek S.A. Hassanein S.S. Mohamed A.S. Soliman A.M. Fahmy S.R. Echinochrome pigment extracted from sea urchin suppress the bacterial activity, inflammation, nociception, and oxidative stress resulted in the inhibition of renal injury in septic rats. J. Food Biochem. 2022 46 3 e13729 10.1111/jfbc.13729 33871886
    [Google Scholar]
  68. Dubuisson D. Dennis S.G. The formalin test: A quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 1977 4 2 Suppl. C 161 174 10.1016/0304‑3959(77)90130‑0 564014
    [Google Scholar]
  69. Chung G. Rhee J.N. Jung S.J. Kim J.S. Oh S.B. Modulation of CaV2.3 calcium channel currents by eugenol. J. Dent. Res. 2008 87 2 137 141 10.1177/154405910808700201 18218839
    [Google Scholar]
  70. Okamoto Y. Kawakami K. Miyatake K. Morimoto M. Shigemasa Y. Minami S. Analgesic effects of chitin and chitosan. Carbohydr. Polym. 2002 49 3 249 252 10.1016/S0144‑8617(01)00316‑2
    [Google Scholar]
  71. Schuurman A.R. Sloot P.M.A. Wiersinga W.J. van der Poll T. Embracing complexity in sepsis. Crit. Care 2023 27 1 102 10.1186/s13054‑023‑04374‑0 36906606
    [Google Scholar]
  72. Ge C.L. Chen W. Zhang L.N. Ai Y.H. Zou Y. Peng Q.Y. Hippocampus‐prefrontal cortex inputs modulate spatial learning and memory in a mouse model of sepsis induced by cecal ligation puncture. CNS Neurosci. Ther. 2023 29 1 390 401 10.1111/cns.14013 36377471
    [Google Scholar]
  73. Ventura F. Greub G. Liles W.C. Jacob S.T. Proposed framework for conducting clinically relevant translational biomarker research for the diagnosis, prognosis and management of sepsis. Diagnostics (Basel) 2024 14 3 300 10.3390/diagnostics14030300 38337815
    [Google Scholar]
  74. Manandhar S. Gaddam R.R. Chambers S. Bhatia M. Kupffer cell inactivation alters endothelial cell adhesion molecules in cecal ligation and puncture-induced sepsis. Biomolecules 2024 14 1 84 10.3390/biom14010084 38254684
    [Google Scholar]
  75. Alkharfy K. Ahmad A. Jan B. Raish M. Rehman M. Thymoquinone modulates the expression of sepsis‑related microRNAs in a CLP model. Exp. Ther. Med. 2022 23 6 395 10.3892/etm.2022.11322 35495595
    [Google Scholar]
  76. Karuppasamy V. The anti-integrity activity of eugenol on inflammatory markers of chronic atherosclerosis. Syst Rev Pharm. 2022 13 2 177 187
    [Google Scholar]
  77. Wang Z.F. Wang M.Y. Yu D.H. Zhao Y. Xu H.M. Zhong S. Sun W.Y. He Y.F. Niu J.Q. Gao P.J. Li H.J. Therapeutic effect of chitosan on CCl4‑induced hepatic fibrosis in rats. Mol. Med. Rep. 2018 18 3 3211 3218 10.3892/mmr.2018.9343 30085342
    [Google Scholar]
  78. Bilginaylar K. Aykac A. Sayiner S. Özkayalar H. Şehirli A.Ö. Evaluation of the antiapoptotic and anti-inflammatory properties of chitosan in methotrexate-induced oral mucositis in rats. Mol. Biol. Rep. 2022 49 4 3237 3245 10.1007/s11033‑022‑07158‑x 35064410
    [Google Scholar]
  79. Beyer D. Hoff J. Sommerfeld O. Zipprich A. Gaßler N. Press A.T. The liver in sepsis: Molecular mechanism of liver failure and their potential for clinical translation. Mol. Med. 2022 28 1 84 10.1186/s10020‑022‑00510‑8 35907792
    [Google Scholar]
  80. Kasirzadeh S Ghahremani MH Setayesh N Jeivad F Shadboorestan A Taheri A β -Sitosterol Alters the Inflammatory Response in CLP Rat Model of Sepsis by Modulation of NF κ B Signaling. Biomed Res Int. 2021
    [Google Scholar]
  81. Saleh H. Soliman A.M. Mohamed A.S. Marie M.A.S. Antioxidant effect of sepia ink extract on extrahepatic cholestasis induced by bile duct ligation in rats. Biomed. Environ. Sci. 2015 28 8 582 594 26383596
    [Google Scholar]
  82. Zhang J. Wang T. Fang Y. Wang M. Liu W. Zhao J. Wang B. Wu Z. Lv Y. Wu R. Clinical significance of serum albumin/globulin ratio in patients with pyogenic liver abscess. Front. Surg. 2021 8 November 677799 10.3389/fsurg.2021.677799 34917645
    [Google Scholar]
  83. Bion E. Brenard R. Pariente E.A. Lebrec D. Degott C. Maitre F. Benhamou J.P. Sinusoidal portal hypertension in hepatic amyloidosis. Gut 1991 32 2 227 230 10.1136/gut.32.2.227 1864548
    [Google Scholar]
  84. Fathy M. Khalifa E.M.M.A. Fawzy M.A. Modulation of inducible nitric oxide synthase pathway by eugenol and telmisartan in carbon tetrachloride-induced liver injury in rats. Life Sci. 2019 216 216 207 214 10.1016/j.lfs.2018.11.031 30452970
    [Google Scholar]
  85. Andrades M. Ritter C. de Oliveira M.R. Streck E.L. Fonseca Moreira J.C. Dal-Pizzol F. Antioxidant treatment reverses organ failure in rat model of sepsis: role of antioxidant enzymes imbalance, neutrophil infiltration, and oxidative stress. J. Surg. Res. 2011 167 2 e307 e313 10.1016/j.jss.2009.08.005 19959187
    [Google Scholar]
  86. Joffre J. Hellman J. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation. Antioxid. Redox Signal. 2021 35 15 1291 1307 10.1089/ars.2021.0027 33637016
    [Google Scholar]
  87. Bacanlı M. Aydın S. Taner G. Göktaş H.G. Şahin T. Başaran A.A. Başaran N. Does rosmarinic acid treatment have protective role against sepsis-induced oxidative damage in Wistar Albino rats? Hum. Exp. Toxicol. 2016 35 8 877 886 10.1177/0960327115607971 26429925
    [Google Scholar]
  88. Kumar S. Saxena J. Srivastava V.K. Kaushik S. Singh H. Abo-EL-Sooud K. Abdel-Daim M.M. Jyoti A. Saluja R. The interplay of oxidative stress and ros scavenging: Antioxidants as a therapeutic potential in sepsis. Vaccines (Basel) 2022 10 10 1575 10.3390/vaccines10101575 36298439
    [Google Scholar]
  89. Senousy S.R. Ahmed A.S.F. Abdelhafeez D.A. Khalifa M.M.A. Abourehab M.A.S. El-Daly M. Alpha-chymotrypsin protects against acute lung, kidney, and liver injuries and increases survival in clp-induced sepsis in rats through inhibition of TLR4/NF-κB pathway. Drug Des. Devel. Ther. 2022 16 3023 3039 10.2147/DDDT.S370460 36105322
    [Google Scholar]
  90. Lee R.P. Wang D. Lin N.T. Chen H.I. Physiological and chemical indicators for early and late stages of sepsis in conscious rats. J. Biomed. Sci. 2002 9 6 613 621 10.1007/BF02254989 12432227
    [Google Scholar]
  91. Aydemir Celep N. Gedikli S. Protective effect of silymarin on liver in experimental in the sepsis model of rats. Acta Histochem. Cytochem. 2023 56 1 9 19 10.1267/ahc.22‑00059 36890848
    [Google Scholar]
  92. Slameňová D. Horváthová E. Wsólová L. Šramková M. Navarová J. Investigation of anti-oxidative, cytotoxic, DNA-damaging and DNA-protective effects of plant volatiles eugenol and borneol in human-derived HepG2, Caco-2 and VH10 cell lines. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2009 677 1-2 46 52 10.1016/j.mrgentox.2009.05.016 19501671
    [Google Scholar]
  93. Tao W. Sun W. Liu L. Wang G. Xiao Z. Pei X. Wang M. Chitosan oligosaccharide attenuates nonalcoholic fatty liver disease induced by high fat diet through reducing lipid accumulation, inflammation and oxidative stress in C57BL/6 mice. Mar. Drugs 2019 17 11 645 10.3390/md17110645 31744059
    [Google Scholar]
  94. Nagata S. Apoptotic DNA Fragmentation. Exp. Cell Res. 2000 256 1 12 18 10.1006/excr.2000.4834 10739646
    [Google Scholar]
  95. Eray G Ebru S. Investigation of antimicrobial effect of fluoxetine in experimental rat sepsis model :An in vivo study. J Biochem Mol Toxicol. 2022 37 1 e23240
    [Google Scholar]
  96. Bacanlı M. Aydın S. Taner G. Göktaş H.G. Şahin T. Başaran A.A. Başaran N. The protective role of ferulic acid on sepsis-induced oxidative damage in Wistar albino rats. Environ. Toxicol. Pharmacol. 2014 38 3 774 782 10.1016/j.etap.2014.08.018 25305738
    [Google Scholar]
  97. Zhang L.L. Zhang L.F. Xu J.G. Hu Q.P. Comparison study on antioxidant, DNA damage protective and antibacterial activities of eugenol and isoeugenol against several foodborne pathogens. Food Nutr. Res. 2017 61 1 1353356 10.1080/16546628.2017.1353356 28804441
    [Google Scholar]
  98. Saleh H. El-Shorbagy H.M. Chitosan protects liver against ischemia-reperfusion injury via regulating Bcl-2/Bax, TNF-α and TGF-β expression. Int. J. Biol. Macromol. 2020 164 1565 1574 10.1016/j.ijbiomac.2020.07.212 32735924
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708334976241004041438
Loading
/content/journals/raiad/10.2174/0127722708334976241004041438
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: oxidative stress ; and puncture ; cecal ligation ; Eugenol ; hepatic injury ; sepsis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test