Skip to content
2000
Volume 19, Issue 3
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716

Abstract

Background

Sepsis is a life-threatening condition responsible for high morbidity and mortality rates around the world and is characterized by a dysregulated host response to infection, resulting in multiple organ dysfunctions. Eugenol is a phenolic aromatic compound derived from clove oil. It has anti-inflammatory, antioxidant, antibacterial, antiviral, antifungal, and anticancer characteristics, which have led to its extensive use in diverse fields, including cosmetology, medicine, and pharmacology. The ongoing study aimed to evaluate the efficacy of eugenol-loaded chitosan nanoparticles (EC-NPs) on sepsis-induced liver damage using the cecal ligation and puncture (CLP) model.

Methods

Thirty male albino rats were randomly divided into five groups: Sham, sepsis, and septic rats treated with chitosan, eugenol, or EC-NPs.

Results

EC-NPs showed excellent antibacterial, antioxidant, and anti-inflammatory effects . EC-NPs administration significantly improved liver function, as indicated by the decreased liver enzyme activities and C-reactive protein (CRP) level, as well as the increase of albumin content. Moreover, EC-NPs caused an increase in glutathione-reduced and antioxidant enzymes activities, as well as a reduction of malondialdehyde and nitric oxide formation. In addition, the EC-NPs treatment reduced the DNA damage in septic rats; also, the EC-NPs treatment repaired, to some extent, the abnormal architecture of the hepatic tissues of septic rats. Furthermore, the immunohistochemical examination showed a marked decrease in inflammation through the reduction of TNF-α and IL-1β expression.

Conclusion

In conclusion, EC-NPs attenuated liver injury in sepsis through their anti-inflammatory, anti-bacterial, anti-oxidant activities and protection of DNA.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708334976241004041438
2024-10-11
2026-02-22
Loading full text...

Full text loading...

References

  1. XieZ. ShaoB. HooverC. Monocyte upregulation of podoplanin during early sepsis induces complement inhibitor release to protect liver function.JCI Insight2020513e13474910.1172/jci.insight.134749 32641582
    [Google Scholar]
  2. SingerM. DeutschmanC.S. SeymourC.W. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA -.JAMA2016315880181010.1001/jama.2016.0287 26903338
    [Google Scholar]
  3. NiedermanM.S. BaronR.M. BouadmaL. Initial antimicrobial management of sepsis.Crit. Care202125130710.1186/s13054‑021‑03736‑w 34446092
    [Google Scholar]
  4. De BackerD. DeutschmanC.S. HellmanJ. Surviving sepsis campaign research priorities 2023.Crit. Care Med.202452226829610.1097/CCM.0000000000006135 38240508
    [Google Scholar]
  5. KhargaK. KumarL. PatelS.K.S. Recent advances in monoclonal antibody-based approaches in the management of bacterial sepsis.Biomedicines202311376510.3390/biomedicines11030765 36979744
    [Google Scholar]
  6. ZhangJ. WangX. PengY. Combined metabolomic and proteomic analysis of sepsis related acute liver injury and its pathogenesis research.Int. Immunopharmacol.202413011166610.1016/j.intimp.2024.111666 38412671
    [Google Scholar]
  7. PanB. YangY. JiangY. Potential roles of HSYA in attenuating sepsis-induced liver injury through multi-omics analysis.J. Pharm. Biomed. Anal.202423811580110.1016/j.jpba.2023.115801 37924577
    [Google Scholar]
  8. AbdelnaserM. AlaaeldinR. AttyaM.E. FathyM. Hepatoprotective potential of gabapentin in cecal ligation and puncture-induced sepsis; targeting oxidative stress, apoptosis, and NF-kB/MAPK signaling pathways.Life Sci.2023320January12156210.1016/j.lfs.2023.121562 36907325
    [Google Scholar]
  9. LiY. NieY. YangX. Integration of Kupffer cells into human iPSC-derived liver organoids for modeling liver dysfunction in sepsis.Cell Rep.202443311391810.1016/j.celrep.2024.113918 38451817
    [Google Scholar]
  10. XuRuiming WangDawei Zhengyi ShaoX.L. Neoastilbin ameliorates sepsis-induced liver and kidney injury by blocking the TLR4/NF-Kb pathway.Histol. Histopathol.2024391013291342
    [Google Scholar]
  11. FahmiO. Therapeutic potential of ramipril, losartan, and spironolactone against sepsis-associated liver tissue injury induced by cecal ligation and puncture in rats.Eur. Rev. Med. Pharmacol. Sci.202428518211836
    [Google Scholar]
  12. MohamedA.S. SadekS.A. HassaneinS.S. SolimanA.M. Hepatoprotective effect of echinochrome pigment in septic rats.J. Surg. Res.201923431732410.1016/j.jss.2018.10.004 30527491
    [Google Scholar]
  13. BertozziG. FerraraM. FazioA. Oxidative stress in sepsis: A focus on cardiac pathology.Int. J. Mol. Sci.2024255291210.3390/ijms25052912
    [Google Scholar]
  14. HusseinA.H. AbboodA.S. NaserH.A. HassanS.M. DMF ameliorate myocardial damage in rat model of polymicrobial sepsis induced by CLP.Azerbaijan Pharmaceutical and Pharmacotherapy J2022221757810.61336/appj/22‑1‑16
    [Google Scholar]
  15. BrooksH.F. OsabuteyC.K. MossR.F. AndrewsP.L.R. DaviesD.C. Caecal ligation and puncture in the rat mimics the pathophysiological changes in human sepsis and causes multi-organ dysfunction.Metab. Brain Dis.2007223-435337310.1007/s11011‑007‑9058‑1 17828620
    [Google Scholar]
  16. RhodesA. EvansL.E. AlhazzaniW. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016.Intensive Care Med.2017433304377
    [Google Scholar]
  17. VelasqueM.J.S.G. BranchiniG. CatarinaA.V. Fish oil - Omega-3 exerts protective effect in oxidative stress and liver dysfunctions resulting from experimental sepsis.J. Clin. Exp. Hepatol.2023131647410.1016/j.jceh.2022.07.001 36647406
    [Google Scholar]
  18. AlrahlahA. Al-OdayniA.B. SaeedW.S. Influence of eugenol and its novel methacrylated derivative on the polymerization degree of resin-based composites.Polymers (Basel)2023155112410.3390/polym15051124 36904361
    [Google Scholar]
  19. DeviK.P. NishaS.A. SakthivelR. PandianS.K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane.J. Ethnopharmacol.2010130110711510.1016/j.jep.2010.04.025 20435121
    [Google Scholar]
  20. AranazI. MengibarM. HarrisR. PanosI. MirallesB. AcostaN. Functional characterization of chitin and chitosan.Curr. Chem. Biol.200932203230
    [Google Scholar]
  21. YoonH.J. MoonM.E. ParkH.S. ImS.Y. KimY.H. Chitosan oligosaccharide (COS) inhibits LPS-induced inflammatory effects in RAW 264.7 macrophage cells.Biochem. Biophys. Res. Commun.2007358395495910.1016/j.bbrc.2007.05.042 17512902
    [Google Scholar]
  22. MoghaddamF.D. ZareE.N. HassanpourM. Chitosan-based nanosystems for cancer diagnosis and therapy: Stimuli-responsive, immune response, and clinical studies.Carbohydr. Polym.2024330February12183910.1016/j.carbpol.2024.121839 38368115
    [Google Scholar]
  23. MalikS. MuhammadK. WaheedY. Nanotechnology: A revolution in modern industry.Molecules202328266110.3390/molecules28020661 36677717
    [Google Scholar]
  24. PantA. MackrajI. GovenderT. Advances in sepsis diagnosis and management: a paradigm shift towards nanotechnology.J. Biomed. Sci.2021281610.1186/s12929‑020‑00702‑6 33413364
    [Google Scholar]
  25. KurniaH.P. PuruhitaD.T. Nazhif HaykalM. Eugenol nanoparticle encapsulated chitosan enhances cell cycle arrest in hela human cervical cancer cells.Syst. Rev. Pharm.2021121692699
    [Google Scholar]
  26. ScottA.C. Mackie & mccartney practical medical microbiology In: New York: Churchill Livingstone199614th ed161181Available from: https://search.worldcat.org/title/mackie-mccartney-practical-medical-microbiology/oclc/438723144?referer=di&ht=edition
    [Google Scholar]
  27. MohamedM.S.M. MostafaH.M. MohamedS.H. Abd El-MoezS.I. KamelZ. Combination of silver nanoparticles and vancomycin to overcome antibiotic resistance in planktonic/biofilm cell from clinical and animal source.Microb. Drug Resist.202026111410142010.1089/mdr.2020.0089 32354252
    [Google Scholar]
  28. Mahdi-PourB. JothyS.L. LathaL.Y. ChenY. SasidharanS. Antioxidant activity of methanol extracts of different parts of lantana camara.Asian Pac. J. Trop. Biomed.201221296096510.1016/S2221‑1691(13)60007‑6 23593576
    [Google Scholar]
  29. AnjumN.F. ShanmugarajanD. Prashantha KumarB.R. Novel derivatives of eugenol as a new class of pparγ agonists in treating inflammation: Design, synthesis, sar analysis and in vitro anti-inflammatory activity.Molecules2023289389910.3390/molecules28093899 37175309
    [Google Scholar]
  30. ChineduE. AromeD. AmehF. A new method for determining acute toxicity in animal models.Toxicol. Int.201320322422610.4103/0971‑6580.121674 24403732
    [Google Scholar]
  31. MeunierC.J. BurtonJ. CumpsJ. VerbeeckR.K. Evaluation of the formalin test to assess the analgesic activity of diflunisal in the rat.Eur. J. Pharm. Sci.19986430731210.1016/S0928‑0987(97)10020‑3 9795087
    [Google Scholar]
  32. LiuM.W. SuM.X. ZhangW. Effect of Melilotus suaveolens extract on pulmonary microvascular permeability by downregulating vascular endothelial growth factor expression in rats with sepsis.Mol. Med. Rep.20151153308331610.3892/mmr.2015.3146 25571852
    [Google Scholar]
  33. MohamedA.S. HosneyM. BassionyH. Sodium pentobarbital dosages for exsanguination affect biochemical, molecular and histological measurements in rats.Sci. Rep.202010137810.1038/s41598‑019‑57252‑7 31942001
    [Google Scholar]
  34. LongoB. SommerfeldE.P. Dual role of eugenol on chronic gastric ulcer in rats: Low-dose healing efficacy and the worsening gastric lesion in high doses.Chem. Biol. Interact.20202021333 33245926
    [Google Scholar]
  35. KouraR.A.A. MohamedH.R.H. AhmedK.A. BaiomyA.A.A. BahaaeldineM.A. MohamedA.S. The therapeutic role of chitosan-saponin-bentonite nanocomposite on acute kidney injury induced by chromium in male wistar rats.Biointerface Res. Appl. Chem.2023136123
    [Google Scholar]
  36. WuD. ZhouS. HuS. LiuB. Inflammatory responses and histopathological changes in a mouse model of Staphylococcus aureus-induced bloodstream infections.J. Infect. Dev. Ctries.201711429430510.3855/jidc.7800 28459220
    [Google Scholar]
  37. ReitmanS. FrankelS. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases.Am. J. Clin. Pathol.1957281566310.1093/ajcp/28.1.56 13458125
    [Google Scholar]
  38. BelfieldA. GoldbergD.M. Revised assay for serum phenyl phosphatase activity using 4-amino-antipyrine.Enzyme197112556157310.1159/000459586 5169852
    [Google Scholar]
  39. SzaszG. A kinetic photometric method for serum γ-glutamyl transpeptidase.Clin. Chem.196915212413610.1093/clinchem/15.2.124 5773262
    [Google Scholar]
  40. TietzNW Clinical guide to laboratory tests.1990
    [Google Scholar]
  41. OhkawaH. OhishiN. YagiK. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Anal. Biochem.197995235135810.1016/0003‑2697(79)90738‑3 36810
    [Google Scholar]
  42. BeutlerE. DuronO. KellyB.M. Improved method for the determination of blood glutathione.J. Lab. Clin. Med.196361882888 13967893
    [Google Scholar]
  43. AebiH. Catalase in vitro. Methods Enzymol1984105121610.1016/S0076‑6879(84)05016‑3 6727660
    [Google Scholar]
  44. NishikimiM. Appaji RaoN. YagiK. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen.Biochem. Biophys. Res. Commun.197246284985410.1016/S0006‑291X(72)80218‑3 4400444
    [Google Scholar]
  45. HabigW.H. PabstM.J. JakobyW.B. Glutathione S-Transferases.J. Biol. Chem.1974249227130713910.1016/S0021‑9258(19)42083‑8 4436300
    [Google Scholar]
  46. PagliaD.E. ValentineW.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase.J. Lab. Clin. Med.1967701158169 6066618
    [Google Scholar]
  47. MontgomeryH.A.C. DymockJ.F. The rapid determination of nitrate in fresh and saline waters.Analyst (Lond.)196287103437437810.1039/an9628700374
    [Google Scholar]
  48. loannou YA, Chen FW. Quantitation of DNA fragmentation in apoptosis.Nucleic Acids Res.199624599299310.1093/nar/24.5.992 8600475
    [Google Scholar]
  49. Al ShawousA. SolimanA. FahmyS. MohamedA. Therapeutic efficacy of anodonta cygnea and crayfish procambarus clarkii hemolymph extracts on sepsis-induced acute liver injury in neonate rats.Int. J. Pharmacol.202319218519610.3923/ijp.2023.185.196
    [Google Scholar]
  50. RefaieM.M.M. El-HussienyM. The role of interleukin‐1b and its antagonist (diacerein) in estradiol benzoate‐induced endometrial hyperplasia and atypia in female rats.Fundam. Clin. Pharmacol.201731443844610.1111/fcp.12285 28299811
    [Google Scholar]
  51. DyckB. UnterbergM. AdamzikM. KoosB. The impact of pathogens on sepsis prevalence and outcome.Pathogens20241318910.3390/pathogens13010089 38276162
    [Google Scholar]
  52. MarcheseA. BarbieriR. CoppoE. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint.Crit. Rev. Microbiol.201743666868910.1080/1040841X.2017.1295225 28346030
    [Google Scholar]
  53. NazzaroF. FratianniF. De MartinoL. CoppolaR. De FeoV. Effect of essential oils on pathogenic bacteria.Pharmaceuticals (Basel)20136121451147410.3390/ph6121451 24287491
    [Google Scholar]
  54. DeviK.P. SakthivelR. NishaS.A. SuganthyN. PandianS.K. Eugenol alters the integrity of cell membrane and acts against the nosocomial pathogen Proteus mirabilis.Arch. Pharm. Res.201336328229210.1007/s12272‑013‑0028‑3 23444040
    [Google Scholar]
  55. CostaE.M. SilvaS. PinaC. TavariaF.K. PintadoM.M. Evaluation and insights into chitosan antimicrobial activity against anaerobic oral pathogens.Anaerobe201218330530910.1016/j.anaerobe.2012.04.009 22561525
    [Google Scholar]
  56. KrajewskaB. WydroP. JańczykA. Probing the modes of antibacterial activity of chitosan. effects of ph and molecular weight on chitosan interactions with membrane lipids in langmuir films.Biomacromolecules201112114144415210.1021/bm2012295 21936509
    [Google Scholar]
  57. RaafatD. von BargenK. HaasA. SahlH.G. Insights into the mode of action of chitosan as an antibacterial compound.Appl. Environ. Microbiol.200874123764377310.1128/AEM.00453‑08 18456858
    [Google Scholar]
  58. LiJ. ZhuangS. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives.Eur. Polym. J.2020138July109984[Internet].10.1016/j.eurpolymj.2020.109984
    [Google Scholar]
  59. OwC.P.C. Trask-MarinoA. BetrieA.H. EvansR.G. MayC.N. LankadevaY.R. Targeting oxidative stress in septic acute kidney injury: From theory to practice.J. Clin. Med.20211017379810.3390/jcm10173798 34501245
    [Google Scholar]
  60. BondetV. Brand-WilliamsW. BersetC. Kinetics and mechanisms of antioxidant activity using the DPPH• free radical method.Lebensm. Wiss. Technol.199730660961510.1006/fstl.1997.0240
    [Google Scholar]
  61. El GhallabY. Al JahidA. Jamal EddineJ. Ait Haj SaidA. ZaraybyL. DerfoufiS. Syzygium aromaticum L.: phytochemical investigation and comparison of the scavenging activity of essential oil, extracts and eugenol.Advances in Traditional Medicine2020202153158[Internet].10.1007/s13596‑019‑00416‑7
    [Google Scholar]
  62. RuiL. XieM. HuB. ZhouL. SaeeduddinM. ZengX. Enhanced solubility and antioxidant activity of chlorogenic acid-chitosan conjugates due to the conjugation of chitosan with chlorogenic acid.Carbohydr. Polym.201717020621610.1016/j.carbpol.2017.04.076 28521988
    [Google Scholar]
  63. Giamarellos-BourboulisE.J. AschenbrennerA.C. BauerM. The pathophysiology of sepsis and precision-medicine-based immunotherapy.Nat. Immunol.2024251192810.1038/s41590‑023‑01660‑5 38168953
    [Google Scholar]
  64. SunY. SunS. ChenP. Maresins as novel anti-inflammatory actors and putative therapeutic targets in sepsis.Pharmacol. Res.202420210711310.1016/j.phrs.2024.107113 38387744
    [Google Scholar]
  65. BarbozaJN da Silva Maia Bezerra FilhoC SilvaRO MedeirosJVR de SousaDP An overview on the anti-inflammatory potential and antioxidant profile of eugenol.xid Med Cell Longev2018222018395726210.1155/2018/3957262
    [Google Scholar]
  66. NazirA. Chronic post-ICU pain: A review of the mechanism and the rehabilitation management.Anaesth. Pain Intensive Care202428115916510.35975/apic.v28i1.2389
    [Google Scholar]
  67. SadekS.A. HassaneinS.S. MohamedA.S. SolimanA.M. FahmyS.R. Echinochrome pigment extracted from sea urchin suppress the bacterial activity, inflammation, nociception, and oxidative stress resulted in the inhibition of renal injury in septic rats.J. Food Biochem.2022463e1372910.1111/jfbc.13729 33871886
    [Google Scholar]
  68. DubuissonD. DennisS.G. The formalin test: A quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats.Pain197742Suppl. C16117410.1016/0304‑3959(77)90130‑0 564014
    [Google Scholar]
  69. ChungG. RheeJ.N. JungS.J. KimJ.S. OhS.B. Modulation of CaV2.3 calcium channel currents by eugenol.J. Dent. Res.200887213714110.1177/154405910808700201 18218839
    [Google Scholar]
  70. OkamotoY. KawakamiK. MiyatakeK. MorimotoM. ShigemasaY. MinamiS. Analgesic effects of chitin and chitosan.Carbohydr. Polym.200249324925210.1016/S0144‑8617(01)00316‑2
    [Google Scholar]
  71. SchuurmanA.R. SlootP.M.A. WiersingaW.J. van der PollT. Embracing complexity in sepsis.Crit. Care202327110210.1186/s13054‑023‑04374‑0 36906606
    [Google Scholar]
  72. GeC.L. ChenW. ZhangL.N. AiY.H. ZouY. PengQ.Y. Hippocampus‐prefrontal cortex inputs modulate spatial learning and memory in a mouse model of sepsis induced by cecal ligation puncture.CNS Neurosci. Ther.202329139040110.1111/cns.14013 36377471
    [Google Scholar]
  73. VenturaF. GreubG. LilesW.C. JacobS.T. Proposed framework for conducting clinically relevant translational biomarker research for the diagnosis, prognosis and management of sepsis.Diagnostics (Basel)202414330010.3390/diagnostics14030300 38337815
    [Google Scholar]
  74. ManandharS. GaddamR.R. ChambersS. BhatiaM. Kupffer cell inactivation alters endothelial cell adhesion molecules in cecal ligation and puncture-induced sepsis.Biomolecules20241418410.3390/biom14010084 38254684
    [Google Scholar]
  75. AlkharfyK. AhmadA. JanB. RaishM. RehmanM. Thymoquinone modulates the expression of sepsis related microRNAs in a CLP model.Exp. Ther. Med.202223639510.3892/etm.2022.11322 35495595
    [Google Scholar]
  76. KaruppasamyV. The anti-integrity activity of eugenol on inflammatory markers of chronic atherosclerosis.Syst. Rev. Pharm.2022132177187
    [Google Scholar]
  77. WangZ.F. WangM.Y. YuD.H. Therapeutic effect of chitosan on CCl4 induced hepatic fibrosis in rats.Mol. Med. Rep.20181833211321810.3892/mmr.2018.9343 30085342
    [Google Scholar]
  78. BilginaylarK. AykacA. SayinerS. ÖzkayalarH. ŞehirliA.Ö. Evaluation of the antiapoptotic and anti-inflammatory properties of chitosan in methotrexate-induced oral mucositis in rats.Mol. Biol. Rep.20224943237324510.1007/s11033‑022‑07158‑x 35064410
    [Google Scholar]
  79. BeyerD. HoffJ. SommerfeldO. ZipprichA. GaßlerN. PressA.T. The liver in sepsis: Molecular mechanism of liver failure and their potential for clinical translation.Mol. Med.20222818410.1186/s10020‑022‑00510‑8 35907792
    [Google Scholar]
  80. KasirzadehS. GhahremaniM.H. SetayeshN. JeivadF. ShadboorestanA. TaheriA. β -Sitosterol Alters the Inflammatory Response in CLP Rat Model of Sepsis by Modulation of NF κ B Signaling.Biomed Res. Int.2021
    [Google Scholar]
  81. SalehH. SolimanA.M. MohamedA.S. MarieM.A.S. Antioxidant effect of sepia ink extract on extrahepatic cholestasis induced by bile duct ligation in rats.Biomed. Environ. Sci.2015288582594 26383596
    [Google Scholar]
  82. ZhangJ. WangT. FangY. Clinical significance of serum albumin/globulin ratio in patients with pyogenic liver abscess.Front. Surg.20218November67779910.3389/fsurg.2021.677799 34917645
    [Google Scholar]
  83. BionE. BrenardR. ParienteE.A. Sinusoidal portal hypertension in hepatic amyloidosis.Gut199132222723010.1136/gut.32.2.227 1864548
    [Google Scholar]
  84. FathyM. KhalifaE.M.M.A. FawzyM.A. Modulation of inducible nitric oxide synthase pathway by eugenol and telmisartan in carbon tetrachloride-induced liver injury in rats.Life Sci.201921621620721410.1016/j.lfs.2018.11.031 30452970
    [Google Scholar]
  85. AndradesM. RitterC. de OliveiraM.R. StreckE.L. Fonseca MoreiraJ.C. Dal-PizzolF. Antioxidant treatment reverses organ failure in rat model of sepsis: role of antioxidant enzymes imbalance, neutrophil infiltration, and oxidative stress.J. Surg. Res.20111672e307e31310.1016/j.jss.2009.08.005 19959187
    [Google Scholar]
  86. JoffreJ. HellmanJ. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation.Antioxid. Redox Signal.202135151291130710.1089/ars.2021.0027 33637016
    [Google Scholar]
  87. BacanlıM. AydınS. TanerG. Does rosmarinic acid treatment have protective role against sepsis-induced oxidative damage in Wistar Albino rats?Hum. Exp. Toxicol.201635887788610.1177/0960327115607971 26429925
    [Google Scholar]
  88. KumarS. SaxenaJ. SrivastavaV.K. The interplay of oxidative stress and ros scavenging: Antioxidants as a therapeutic potential in sepsis.Vaccines (Basel)20221010157510.3390/vaccines10101575 36298439
    [Google Scholar]
  89. SenousyS.R. AhmedA.S.F. AbdelhafeezD.A. KhalifaM.M.A. AbourehabM.A.S. El-DalyM. Alpha-chymotrypsin protects against acute lung, kidney, and liver injuries and increases survival in clp-induced sepsis in rats through inhibition of TLR4/NF-κB pathway.Drug Des. Devel. Ther.2022163023303910.2147/DDDT.S370460 36105322
    [Google Scholar]
  90. LeeR.P. WangD. LinN.T. ChenH.I. Physiological and chemical indicators for early and late stages of sepsis in conscious rats.J. Biomed. Sci.20029661362110.1007/BF02254989 12432227
    [Google Scholar]
  91. Aydemir CelepN. GedikliS. Protective effect of silymarin on liver in experimental in the sepsis model of rats.Acta Histochem. Cytochem.202356191910.1267/ahc.22‑00059 36890848
    [Google Scholar]
  92. SlameňováD. HorváthováE. WsólováL. ŠramkováM. NavarováJ. Investigation of anti-oxidative, cytotoxic, DNA-damaging and DNA-protective effects of plant volatiles eugenol and borneol in human-derived HepG2, Caco-2 and VH10 cell lines.Mutat. Res. Genet. Toxicol. Environ. Mutagen.20096771-2465210.1016/j.mrgentox.2009.05.016 19501671
    [Google Scholar]
  93. TaoW. SunW. LiuL. Chitosan oligosaccharide attenuates nonalcoholic fatty liver disease induced by high fat diet through reducing lipid accumulation, inflammation and oxidative stress in C57BL/6 mice.Mar. Drugs2019171164510.3390/md17110645 31744059
    [Google Scholar]
  94. NagataS. Apoptotic DNA Fragmentation.Exp. Cell Res.20002561121810.1006/excr.2000.4834 10739646
    [Google Scholar]
  95. ErayG. EbruS. Investigation of antimicrobial effect of fluoxetine in experimental rat sepsis model: An in vivo study.J. Biochem. Mol. Toxicol.2022371e23240
    [Google Scholar]
  96. BacanlıM. AydınS. TanerG. The protective role of ferulic acid on sepsis-induced oxidative damage in Wistar albino rats.Environ. Toxicol. Pharmacol.201438377478210.1016/j.etap.2014.08.018 25305738
    [Google Scholar]
  97. ZhangL.L. ZhangL.F. XuJ.G. HuQ.P. Comparison study on antioxidant, DNA damage protective and antibacterial activities of eugenol and isoeugenol against several foodborne pathogens.Food Nutr. Res.2017611135335610.1080/16546628.2017.1353356 28804441
    [Google Scholar]
  98. SalehH. El-ShorbagyH.M. Chitosan protects liver against ischemia-reperfusion injury via regulating Bcl-2/Bax, TNF-α and TGF-β expression.Int. J. Biol. Macromol.20201641565157410.1016/j.ijbiomac.2020.07.212 32735924
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708334976241004041438
Loading
/content/journals/raiad/10.2174/0127722708334976241004041438
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test