Skip to content
2000
Volume 19, Issue 3
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716

Abstract

Background

It is well known that acute or chronic kidney injury could be due to free radicals and pro-oxidants. This investigation aimed to monitor tacrolimus or cyclosporine blood trough levels and anti-oxidant capacity after kidney transplantation.

Methods

There was no intervention in the routine management of transplant recipients. The sample size (n=70) included healthy individuals and kidney-transplanted recipients (n=25 on tacrolimus and n=10 on cyclosporine). The study population was matched for age. The attained information was examined by using the Statistical Package (SPSS Inc, Chicago, IL, USA). The significance level was considered as ≤ 0.05.

Results

In healthy individuals, the mean ± SD for the capacity of antioxidants was 91.9 ± 16.6 (u/ml), which was significantly higher when compared to the mean value of 28.5 ± 22.6 (u/ml) versus 24.7 ± 25.5 (u/ml), kidney recipients with tacrolimus versus cyclosporine ( ≤ 0.04) as immunosuppressive drugs. The mean value of tacrolimus levels was 14.6 ± 6.4 (ng/ml). The correlation between tacrolimus and cyclosporine trough levels and anti-oxidant capacity was 0.19 ( ≤ 0.14). There were no significant differences regarding age in cases and controls ( ≤ 0.42).

Conclusion

This study showed that the capacity of anti-oxidants in kidney transplant recipients, those on tacrolimus or cyclosporine, might be lower than in healthy individuals. Subsequent investigations are recommended to delve into the therapeutic consequences of the influence of antioxidant therapies on the clinical outcomes of transplanted recipients.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708319486241202113259
2024-12-10
2026-02-17
Loading full text...

Full text loading...

References

  1. MannsB. HemmelgarnB. TonelliM. The cost of care for people with chronic kidney disease.Can. J. Kidney Health Dis.20196205435811983552110.1177/2054358119835521
    [Google Scholar]
  2. CollisterD. PannuN. YeF. Health care costs associated with AKI.Clin. J. Am. Soc. Nephrol.201712111733174310.2215/CJN.00950117
    [Google Scholar]
  3. DaenenK. AndriesA. MekahliD. Van SchepdaelA. JouretF. BammensB. Oxidative stress in chronic kidney disease.Pediatr. Nephrol.201934697599110.1007/s00467‑018‑4005‑4
    [Google Scholar]
  4. TabrizianiH. LipkowitzM.S. VuongN. Chronic kidney disease, kidney transplantation and oxidative stress: a new look to successful kidney transplantation.Clin. Kidney J.201811113013510.1093/ckj/sfx091
    [Google Scholar]
  5. RajbalaA. SaneA.S. ShahP.R. Effect of renal transplantation (surgical stress) on serum levels of oxidants and reducing system.Panminerva Med.19994113134
    [Google Scholar]
  6. DennisJ. WittingP. Protective Role for Antioxidants in Acute Kidney Disease.Nutrients20179771810.3390/nu9070718
    [Google Scholar]
  7. GyurászováM. GureckáR. BábíčkováJ. TóthováĽ. Oxidative Stress in the Pathophysiology of Kidney Disease: Implications for Noninvasive Monitoring and Identification of Biomarkers.Oxid. Med. Cell. Longev.2020202011110.1155/2020/5478708
    [Google Scholar]
  8. BasileD.P. AndersonM.D. SuttonT.A. Pathophysiology of acute kidney injury.Compr. Physiol.2012221303135310.1002/cphy.c110041
    [Google Scholar]
  9. FonsecaI. Evidence-based practice, step by step: searching for the evidence.Am. J. Nurs.20141105414710.1097/01
    [Google Scholar]
  10. NafarM. Oxidative stress in kidney transplantation: Causes, consequences, and potential treatment.Iran. J. Kidney Dis.201156357372
    [Google Scholar]
  11. ChrzanowskaM. KamińskaJ. GłydaM. DudaG. MakowskaE. Antioxidant capacity in renal transplant patients.Pharmazie2010
    [Google Scholar]
  12. TariqM. MoraisC. SobkiS. Al SulaimanM. Al KhaderA. N-acetylcysteine attenuates cyclosporin-induced nephrotoxicity in rats.Nephrol. Dial. Transplant.199914492392910.1093/ndt/14.4.923
    [Google Scholar]
  13. ManriqueJ. ErrastiP. LavillaJ. Treatment of hyperhomocysteinemia after renal transplantation.Transplant. Proc.20033551742174410.1016/S0041‑1345(03)00628‑6
    [Google Scholar]
  14. VuralA. YilmazM.I. CaglarK. Assessment of oxidative stress in the early posttransplant period: comparison of cyclosporine A and tacrolimus-based regimens.Am. J. Nephrol.200525325025510.1159/000086079
    [Google Scholar]
  15. CofanF. CofanM. CamposB. GuerraR. CampistolJ.M. OppenheimerF. Effect of calcineurin inhibitors on low-density lipoprotein oxidation.Transplant. Proc.20053793791379310.1016/j.transproceed.2005.10.068
    [Google Scholar]
  16. PerreaD.N. MoulakakisK.G. PoulakouM.V. VlachosI.S. PapachristodoulouA. KostakisA.I. Correlation between oxidative stress and immunosuppressive therapy in renal transplant recipients with an uneventful postoperative course and stable renal function.Int. Urol. Nephrol.200638234334810.1007/s11255‑006‑0054‑x
    [Google Scholar]
  17. MazdakH. Tolou GhamariZ. GholampourM. Bladder cancer: total antioxidant capacity and pharmacotherapy with vitamin-E.Int. Urol. Nephrol.20205271255126010.1007/s11255‑020‑02411‑3
    [Google Scholar]
  18. Tolou-GhamariZ. MortazaviM. PalizbanA.A. NajafiM.R. The investigation of correlation between Iminoral concentration and neurotoxic levels after kidney transplantation.Adv. Biomed. Res.2015415910.4103/2277‑9175.151876
    [Google Scholar]
  19. TadayonF. ShariatiA. Tolou-GhamariZ. Type of vascular anastomosis and early outcome after kidney transplantation.Urologiia2021
    [Google Scholar]
  20. KurutasE.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state.Nutr. J.20151517110.1186/s12937‑016‑0186‑5
    [Google Scholar]
  21. Tolou-GhamariZ. Tacrolimus and cyclosporin pharmacotherapy, detection methods, cytochrome p450 enzymes after heart transplantation.Cardiovasc. Hematol. Agents Med. Chem.202422210611310.2174/1871525721666230726150021
    [Google Scholar]
  22. Tolou GhamariZ. PalizbanA.A. Tacrolimus Pharmacotherapy: Infectious Complications and Toxicity in Organ Transplant Recipients; An Updated Review.Curr. Drug Res. Rev.202310.2174/0125899775259326231212073240
    [Google Scholar]
  23. Tolou-GhamariZ. PalizbanA.A. Michael TredgerJ. Clinical monitoring of tacrolimus after liver transplantation using pentamer formation assay and microparticle enzyme immunoassay.Drugs R D.200451172210.2165/00126839‑200405010‑00003
    [Google Scholar]
  24. Tolou-GhamariZ. WendonJ. TredgerJ.M. In vitro pentamer formation as a biomarker of tacrolimus-related immunosuppressive activity after liver transplantation.Clin. Chem. Lab. Med.200038111209121110.1515/CCLM.2000.190
    [Google Scholar]
  25. Tolou-GhamariZ. PalizbanA.A. Laboratory Monitoring of Cyclosporine Pre-Dose Concentration (C 0) after Kidney Transplantation in Isfahan.IJMS20032828185
    [Google Scholar]
  26. CarcyR. CougnonM. PoetM. Targeting oxidative stress, a crucial challenge in renal transplantation outcome.Free Radic. Biol. Med.202116925827010.1016/j.freeradbiomed.2021.04.023
    [Google Scholar]
  27. MittalM. SiddiquiM.R. TranK. ReddyS.P. MalikA.B. Reactive oxygen species in inflammation and tissue injury.Antioxid. Redox Signal.20142071126116710.1089/ars.2012.5149
    [Google Scholar]
  28. CauS.B.A. CarneiroF.S. TostesR.C. Differential modulation of nitric oxide synthases in aging: therapeutic opportunities.Front. Physiol.2012321810.3389/fphys.2012.00218
    [Google Scholar]
  29. KwiatkowskaM. Oldakowska-JedynakU. WojtaszekE. GlogowskiT. MalyszkoJ. Potential Effects of Immunosuppression on Oxidative Stress and Atherosclerosis in Kidney Transplant Recipients.Oxid. Med. Cell. Longev.202120211666084610.1155/2021/6660846
    [Google Scholar]
  30. ThongprayoonC. HansrivijitP. KovvuruK. Impacts of High Intra- and Inter-Individual Variability in Tacrolimus Pharmacokinetics and Fast Tacrolimus Metabolism on Outcomes of Solid Organ Transplant Recipients.J. Clin. Med.202097219310.3390/jcm9072193
    [Google Scholar]
  31. Tolou-GhamariZ. Nephro and neurotoxicity of calcineurin inhibitors and mechanisms of rejections: A review on tacrolimus and cyclosporin in organ transplantation.J. Nephropathol.201211233010.5812/jnp.6
    [Google Scholar]
  32. ElsamanoudyA.Z. El-BassossyH.M. HassanienM.A. BimaA. GhoneimF.M. Renal oxidative stress and inflammatory response in perinatal Cyclosporine-A exposed rat progeny and its relation to gender.J. Microsc. Ultrastruct.201971444910.4103/JMAU.JMAU_52_18
    [Google Scholar]
  33. Abd-EldayemA.M. MakramS.M. MessihaB.A.S. Abd-ElhafeezH.H. Abdel-ReheimM.A. Cyclosporine-induced kidney damage was halted by sitagliptin and hesperidin via increasing Nrf2 and suppressing TNF-α, NF-κB, and Bax.Sci. Rep.2024141743410.1038/s41598‑024‑57300‑x
    [Google Scholar]
  34. LiuC. ZhuP. FujinoM. 5-aminolaevulinic acid (ALA), enhances heme oxygenase (HO)-1 expression and attenuates tubulointerstitial fibrosis and renal apoptosis in chronic cyclosporine nephropathy.Biochem. Biophys. Res. Commun.2019508258358910.1016/j.bbrc.2018.11.175
    [Google Scholar]
  35. LuY. LiC.F. PingN.N. Hydrogen‐rich water alleviates cyclosporine A‐induced nephrotoxicity via the Keap1/Nrf2 signaling pathway.J. Biochem. Mol. Toxicol.2020345e2246710.1002/jbt.22467
    [Google Scholar]
  36. Al-MassaraniG. Vacher-CoponatH. PaulP. Impact of immunosuppressive treatment on endothelial biomarkers after kidney transplantation.Am. J. Transplant.200881123602367[x.].10.1111/j.1600‑6143.2008.02399.x
    [Google Scholar]
  37. Tolou-GhamariZ. Monitoring tacrolimus after liver transplantation; consideration of alternative techniques and the influence of clinical status.LondonKing’s College1999
    [Google Scholar]
  38. Tolou-GhamariZ. PalizbanA. GharaviM. Cyclosporin trough concentration-rejection relationship after kidney transplantation.Indian J. Pharmacol.2003356395396
    [Google Scholar]
  39. Tolou-GhamariZ SaneiB. Prograf Concentrations in Liver Transplantation: Correlation with Headache and Other Neurotoxic Complications?Thrita201651
    [Google Scholar]
  40. Tolou-GhamariZ. Monitoring heart transplant recipients in order to investigate immunosuppressive drug absorption using pharmacokinetics parameters and its’ correlation with nephrotoxicity.AJECR201964
    [Google Scholar]
  41. Tolou-GhamariZ. PalizbanA.A. TredgerJ.M. Modelling tacrolimus AUC in acute and chronic liver disease immediately after transplant. Transplantationsmedizin.Organ der Deutschen Transplantationsgesellschaft2004162109111
    [Google Scholar]
  42. Tolou-GhamariZ. PalizbanA.A. WendonJ. TredgerJ.M. Pharmacokinetics of tacrolimus immediately after liver transplantation. Transplantationsmedizin.Organ der Deutschen Transplantationsgesellschaft2004162112116
    [Google Scholar]
  43. AmmarM. YaichS. HakimA. Tacrolimus trough level and oxidative stress in Tunisian kidney transplanted patients.Ren. Fail.2024461231386310.1080/0886022X.2024.2313863
    [Google Scholar]
  44. FrijhoffJ. WinyardP.G. ZarkovicN. Clinical relevance of biomarkers of oxidative stress.Antioxid. Redox Signal.201523141144117010.1089/ars.2015.6317
    [Google Scholar]
  45. StefanovićN.Z. CvetkovićT.P. Jevtović-StoimenovT.M. Potential role of tacrolimus in erythrocytes’ antioxidative capacity in long-term period after renal transplantation.Eur. J. Pharm. Sci.20157013213910.1016/j.ejps.2015.01.013
    [Google Scholar]
  46. de CalM. SilvaS. CruzD. Oxidative stress and ‘monocyte reprogramming’ after kidney transplant: a longitudinal study.Blood Purif.200826110511010.1159/000110575
    [Google Scholar]
  47. JoncquelM. LabasqueJ. DemaretJ. Targeted Metabolomics Analysis Suggests That Tacrolimus Alters Protection against Oxidative Stress.Antioxidants2023127141210.3390/antiox12071412
    [Google Scholar]
  48. KidokoroK. SatohM. NagasuH. Tacrolimus induces glomerular injury via endothelial dysfunction caused by reactive oxygen species and inflammatory change.Kidney Blood Press. Res.201235654955710.1159/000339494
    [Google Scholar]
  49. StumpfJ. BuddeK. WitzkeO. Fixed low dose versus concentration-controlled initial tacrolimus dosing with reduced target levels in the course after kidney transplantation: results from a prospective randomized controlled non-inferiority trial (Slow & Low study).EClinicalMedicine20246710238110.1016/j.eclinm.2023.102381
    [Google Scholar]
  50. DengS. JinT. ZhangL. BuH. ZhangP. Mechanism of tacrolimus-induced chronic renal fibrosis following transplantation is regulated by ox-LDL and its receptor, LOX-1.Mol. Med. Rep.20161454124413410.3892/mmr.2016.5735
    [Google Scholar]
  51. JiangY.J. CuiS. LuoK. Nicotine exacerbates tacrolimus-induced renal injury by programmed cell death.Korean J. Intern. Med. (Korean. Assoc. Intern. Med.)20213661437144910.3904/kjim.2021.326
    [Google Scholar]
  52. MorenoJ.M. RuizM.C. RuizN. Modulation factors of oxidative status in stable renal transplantation.Transplant. Proc.20053731428143010.1016/j.transproceed.2005.02.037
    [Google Scholar]
  53. Tolou-GhamariZ. Nosocomial Urinary Tract Infections in a Tertiary Hospital; Preliminary Study of Antibiotics Susceptibility Testing and Pathogen Types.Antiinfect. Agents2024222e25102322269610.2174/0122113525258170231016081424
    [Google Scholar]
  54. Tolou-GhamariZ. Investigation of Nosocomial Urianary Tract Infections Post transplanatation, Main Pathogens, and Sensitivity Tests.Curr Drug Ther202310.2174/0115748855271275231115064229
    [Google Scholar]
  55. Tolou-GhamariZ. Preliminary Study of Antibiotics Susceptibility Testing and Pathogens Associated with Nosocomial Infections in a Tertiary Hospital.Antiinfect. Agents2024222e27102322286510.2174/0122113525259607231020063637
    [Google Scholar]
  56. Rodrigues-DiezR. González-GuerreroC. Ocaña-SalcedaC. Calcineurin inhibitors cyclosporine A and tacrolimus induce vascular inflammation and endothelial activation through TLR4 signaling.Sci. Rep.201662791510.1038/srep27915
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708319486241202113259
Loading
/content/journals/raiad/10.2174/0127722708319486241202113259
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test