Skip to content
2000
image of Multifaceted Role of Tiliroside in Inflammatory Pathways: Mechanisms and Prospects

Abstract

Tiliroside, a natural polyphenolic compound found in several plant sources, has garnered attention for its potential to mitigate inflammation and its associated diseases. The current review explores the multifaceted functions of Tiliroside in inflammation-related diseases, delving into the underlying mechanisms and prospects for therapeutic applications. Tiliroside exerts its anti-inflammatory effects through a variety of mechanisms, such as the inhibition of inflammatory mediators’ cytokines and chemokines, as well as the suppression of nuclear factor-kappa B (NF-κB) signaling pathways. Additionally, it demonstrates potent antioxidant properties, which further contribute to its anti-inflammatory activity by reducing oxidative stress. In preclinical studies, Tiliroside has shown promising results in ameliorating inflammation in conditions like rheumatoid arthritis, inflammatory bowel disease, and atherosclerosis. Furthermore, Tiliroside's ability to modulate immune responses and stimulate tissue regeneration contributes to its potential as a multimodal agent in treating inflammation-associated disorders. In conclusion, Tiliroside emerges as a promising natural compound with a multifaceted role in inflammation-related diseases with understanding the underlying mechanisms of its therapeutic prospects may pave the way for novel treatments.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708316269241015160515
2024-10-23
2025-01-10
Loading full text...

Full text loading...

References

  1. Maleki S.J. Crespo J.F. Cabanillas B. Anti-inflammatory effects of flavonoids. Food Chem. 2019 299 125124 10.1016/j.foodchem.2019.125124 31288163
    [Google Scholar]
  2. Alharthy K. Balaha M. Devi S. Altharawi A. Yusufoglu H. Aldossari R. Alam A. di Giacomo V. Ameliorative effects of isoeugenol and eugenol against impaired nerve function and inflammatory and oxidative mediators in diabetic neuropathic rats. Biomedicines 2023 11 4 1203 10.3390/biomedicines11041203 37189822
    [Google Scholar]
  3. Rahman M.M. Rahaman M.S. Islam M.R. Rahman F. Mithi F.M. Alqahtani T. Almikhlafi M.A. Alghamdi S.Q. Alruwaili A.S. Hossain M.S. Ahmed M. Das R. Emran T.B. Uddin M.S. Role of phenolic compounds in human disease: current knowledge and future prospects. Molecules 2021 27 1 233 10.3390/molecules27010233 35011465
    [Google Scholar]
  4. Ginwala R. Bhavsar R. Chigbu D.G.I. Jain P. Khan Z.K. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants 2019 8 2 35 10.3390/antiox8020035 30764536
    [Google Scholar]
  5. Alsawaf S. Alnuaimi F. Afzal S. Thomas R.M. Chelakkot A.L. Ramadan W.S. Hodeify R. Matar R. Merheb M. Siddiqui S.S. Vazhappilly C.G. Plant flavonoids on oxidative stress-mediated kidney inflammation. Biology 2022 11 12 1717 10.3390/biology11121717 36552226
    [Google Scholar]
  6. Foudah A.I. Devi S. Alam A. Salkini M.A. Ross S.A. Anticholinergic effect of resveratrol with vitamin E on scopolamine-induced Alzheimer’s disease in rats: Mechanistic approach to prevent inflammation. Front. Pharmacol. 2023 14 1115721 10.3389/fphar.2023.1115721 36817151
    [Google Scholar]
  7. Rajendran P. Rengarajan T. Nandakumar N. Palaniswami R. Nishigaki Y. Nishigaki I. Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur. J. Med. Chem. 2014 86 103 112 10.1016/j.ejmech.2014.08.011 25147152
    [Google Scholar]
  8. Tan J. Yadav M.K. Devi S. Kumar M. Neuroprotective effects of arbutin against oxygen and glucose deprivation-induced oxidative stress and neuroinflammation in rat cortical neurons. Acta Pharm. 2022 72 1 123 134 10.2478/acph‑2022‑0002 36651531
    [Google Scholar]
  9. Ullah A. Munir S. Badshah S.L. Khan N. Ghani L. Poulson B.G. Emwas A.H. Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules 2020 25 22 5243 10.3390/molecules25225243 33187049
    [Google Scholar]
  10. Sindhu R. Arora S. Anti-inflammatory potential of different extracts isolated from the roots of Ficus lacor buch. Hum and Murraya koenigii L. spreng. Arch. Biol. Sci. 2014 66 3 1261 1270 10.2298/ABS1403261S
    [Google Scholar]
  11. Behl T. Upadhyay T. Singh S. Chigurupati S. Alsubayiel A.M. Mani V. Vargas-De-La-Cruz C. Uivarosan D. Bustea C. Sava C. Stoicescu M. Radu A.F. Bungau S.G. Polyphenols targeting MAPK mediated oxidative stress and inflammation in rheumatoid arthritis. Molecules 2021 26 21 6570 10.3390/molecules26216570 34770980
    [Google Scholar]
  12. Aodah A.H. Devi S. Alkholifi F.K. Yusufoglu H.S. Foudah A.I. Alam A. Effects of taraxerol on oxidative and inflammatory mediators in isoproterenol-induced cardiotoxicity in an animal model. Molecules 2023 28 10 4089 10.3390/molecules28104089 37241830
    [Google Scholar]
  13. Jin X. Song S. Wang J. Zhang Q. Qiu F. Zhao F. Tiliroside, the major component of Agrimonia pilosa Ledeb ethanol extract, inhibits MAPK/JNK/p38-mediated inflammation in lipopolysaccharide-activated RAW 264.7 macrophages. Exp. Ther. Med. 2016 12 1 499 505 10.3892/etm.2016.3305 27347085
    [Google Scholar]
  14. Goto T. Teraminami A. Lee J.Y. Ohyama K. Funakoshi K. Kim Y.I. Hirai S. Uemura T. Yu R. Takahashi N. Kawada T. Tiliroside, a glycosidic flavonoid, ameliorates obesity-induced metabolic disorders via activation of adiponectin signaling followed by enhancement of fatty acid oxidation in liver and skeletal muscle in obese–diabetic mice. J. Nutr. Biochem. 2012 23 7 768 776 10.1016/j.jnutbio.2011.04.001 21889885
    [Google Scholar]
  15. Matsuda H. Ninomiya K. Shimoda H. Yoshikawa M. Hepatoprotective principles from the flowers of Tilia argentea (Linden): structure requirements of tiliroside and mechanisms of action. Bioorg. Med. Chem. 2002 10 3 707 712 10.1016/S0968‑0896(01)00321‑2 11814859
    [Google Scholar]
  16. Nowak R. Separation and quantification of tiliroside from plant extracts by SPE/RP-HPLC. Pharm. Biol. 2003 41 8 627 630 10.1080/13880200390502559
    [Google Scholar]
  17. Grochowski D.M. Locatelli M. Granica S. Cacciagrano F. Tomczyk M. A review on the dietary flavonoid tiliroside. Compr. Rev. Food Sci. Food Saf. 2018 17 5 1395 1421 10.1111/1541‑4337.12389 33350157
    [Google Scholar]
  18. Luhata L.P. Luhata W.G. TILIROSIDE: Biosynthesis, bioactivity and structure activity relationship (SAR) - A review. J. Phytopharmacol. 2017 6 6 343 348 10.31254/phyto.2017.6607
    [Google Scholar]
  19. Devi S. Rangra N.K. Rawat R. Alrobaian M.M. Alam A. Singh R. Singh A. Anti-atherogenic effect of Nepitrin-7-O-glucoside: A flavonoid isolated from Nepeta hindostana via acting on PPAR – α receptor. Steroids 2021 165 108770 10.1016/j.steroids.2020.108770 33227319
    [Google Scholar]
  20. Diuzheva A. Carradori S. Andruch V. Locatelli M. De Luca E. Tiecco M. Germani R. Menghini L. Nocentini A. Gratteri P. Campestre C. Use of innovative (Micro) extraction techniques to characterise Harpagophytum procumbens root and its commercial food supplements. Phytochem. Anal. 2018 29 3 233 241 10.1002/pca.2737 29143440
    [Google Scholar]
  21. Turfus S. Delgoda R. Picking D. Gurley B. Pharmacokinetics. Pharmacognosy Academic Press 2017 10.1016/B978‑0‑12‑802104‑0.00025‑1
    [Google Scholar]
  22. Zan T. Piao L. Wei Y. Gu Y. Liu B. Jiang D. Simultaneous determination and pharmacokinetic study of three flavonoid glycosides in rat plasma by LC–MS/MS after oral administration of Rubus chingii Hu extract. Biomed. Chromatogr. 2018 32 3 e4106 10.1002/bmc.4106 28976589
    [Google Scholar]
  23. Luo Z. Morgan M.R.A. Day A.J. Transport of trans- tiliroside (kaempferol-3- β -D-(6″- p- coumaroyl-glucopyranoside) and related flavonoids across Caco-2 cells, as a model of absorption and metabolism in the small intestine. Xenobiotica 2015 45 8 722 730 10.3109/00498254.2015.1007492 25761590
    [Google Scholar]
  24. Sousa A.P. Fernandes D.A. Ferreira M.D.L. Cordeiro L.V. Souza M.F.V. Pessoa H.L.F. Oliveira Filho A.A. Sá R.C.S. 2023 Analysis of the toxicological and pharmacokinetic profile of Kaempferol-3-O-β-D-(6”-E-p-coumaryl) glucopyranoside - Tiliroside: in silico, in vitro and ex vivo assay. Brazilian Journal of Biology, 83.
  25. Yin X. Wang M. Xia Z. In vitro evaluation of intestinal absorption of tiliroside from Edgeworthia gardneri (Wall.) Meisn. Xenobiotica 2021 51 6 728 736 10.1080/00498254.2021.1904304 33874851
    [Google Scholar]
  26. Zhang W. Liu D. Zhou E. Wang W. Wang H. Li Q. Hepatoprotective effect of tiliroside and characterization of its metabolites in human hepatocytes by ultra-high performance liquid chromatography-high resolution mass spectrometry. J. Funct. Foods 2023 107 105675 10.1016/j.jff.2023.105675
    [Google Scholar]
  27. Zinatizadeh M.R. Schock B. Chalbatani G.M. Zarandi P.K. Jalali S.A. Miri S.R. The Nuclear Factor κ B (NF-kB) signaling in cancer development and immune diseases. Genes Dis. 2021 8 3 287 297 10.1016/j.gendis.2020.06.005 33997176
    [Google Scholar]
  28. Yadav S. Srivastava S. Singh G. Platelet‐rich plasma exhibits anti‐inflammatory effect and attenuates cardiomyocyte damage by reducing NF‐κB and enhancing VEGF expression in isoproterenol induced cardiotoxicity model. Environ. Toxicol. 2022 37 4 936 953 10.1002/tox.23456 35014750
    [Google Scholar]
  29. An J. Chen B. Kang X. Zhang R. Guo Y. Zhao J. Yang H. Neuroprotective effects of natural compounds on LPS-induced inflammatory responses in microglia. Am. J. Transl. Res. 2020 12 6 2353 2378 32655777
    [Google Scholar]
  30. Liu Y. Yang X. Liu Y. Jiang T. Ren S. Chen J. Xiong H. Yuan M. Li W. Machens H.G. Chen Z. NRF2 signalling pathway: New insights and progress in the field of wound healing. J. Cell. Mol. Med. 2021 25 13 5857 5868 10.1111/jcmm.16597 34145735
    [Google Scholar]
  31. Sehnert B. Burkhardt H. Dübel S. Voll R.E. Cell-Type Targeted NF-kappaB Inhibition for the Treatment of Inflammatory Diseases. Cells 2020 9 7 1627 10.3390/cells9071627 32640727
    [Google Scholar]
  32. Velagapudi R. Aderogba M. Olajide O.A. Tiliroside, a dietary glycosidic flavonoid, inhibits TRAF-6/NF-κB/p38-mediated neuroinflammation in activated BV2 microglia. Biochim. Biophys. Acta, Gen. Subj. 2014 1840 12 3311 3319 10.1016/j.bbagen.2014.08.008 25152356
    [Google Scholar]
  33. Radziejewska I. Supruniuk K. Tomczyk M. Izdebska W. Borzym-Kluczyk M. Bielawska A. Bielawski K. Galicka A. p-Coumaric acid, Kaempferol, Astragalin and Tiliroside Influence the Expression of Glycoforms in AGS Gastric Cancer Cells. Int. J. Mol. Sci. 2022 23 15 8602 10.3390/ijms23158602 35955735
    [Google Scholar]
  34. Lacy P. Stow J.L. Cytokine release from innate immune cells: association with diverse membrane trafficking pathways. Blood 2011 118 1 9 18 10.1182/blood‑2010‑08‑265892 21562044
    [Google Scholar]
  35. Foudah A.I. Devi S. Alqarni M.H. Alam A. Salkini M.A. Kumar M. Almalki H.S. Quercetin attenuates nitroglycerin-induced migraine headaches by inhibiting oxidative stress and inflammatory mediators. Nutrients 2022 14 22 4871 10.3390/nu14224871 36432556
    [Google Scholar]
  36. Hu X. li J. Fu M. Zhao X. Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct. Target. Ther. 2021 6 1 402 10.1038/s41392‑021‑00791‑1 34824210
    [Google Scholar]
  37. Kaur G. Devi S. Sharma A. Sood P. Pharmacological insights and role of bufalin (bufadienolides) in inflammation modulation: a narrative review. Inflammopharmacology 2024 32 5 3057 3077 10.1007/s10787‑024‑01517‑9 39012431
    [Google Scholar]
  38. Hu Q. Bian Q. Rong D. Wang L. Song J. Huang H.S. Zeng J. Mei J. Wang P.Y. JAK/STAT pathway: Extracellular signals, diseases, immunity, and therapeutic regimens. Front. Bioeng. Biotechnol. 2023 11 1110765 10.3389/fbioe.2023.1110765 36911202
    [Google Scholar]
  39. Yin Q. Wang L. Yu H. Chen D. Zhu W. Sun C. Pharmacological Effects of Polyphenol Phytochemicals on the JAK-STAT Signaling Pathway. Front. Pharmacol. 2021 12 716672 10.3389/fphar.2021.716672 34539403
    [Google Scholar]
  40. Sala A. Recio M.C. Schinella G.R. Máñez S. Giner R.M. Cerdá-Nicolás M. Ríos J-L. Assessment of the anti-inflammatory activity and free radical scavenger activity of tiliroside. Eur. J. Pharmacol. 2003 461 1 53 61 10.1016/S0014‑2999(02)02953‑9 12568916
    [Google Scholar]
  41. Fahmideh H. Shapourian H. Moltafeti R. Tavakol C. Forghaniesfidvajani R. Zalpoor H. Nabi-Afjadi M. The Role of Natural Products as Inhibitors of JAK/STAT Signaling Pathways in Glioblastoma Treatment. Oxid. Med. Cell. Longev. 2022 2022 1 17 10.1155/2022/7838583 36193062
    [Google Scholar]
  42. Mishra A. Mishra P.S. Bandopadhyay R. Khurana N. Angelopoulou E. Paudel Y.N. Piperi C. Neuroprotective Potential of Chrysin: Mechanistic Insights and Therapeutic Potential for Neurological Disorders. Molecules 2021 26 21 6456 10.3390/molecules26216456 34770864
    [Google Scholar]
  43. Wang D. Ali F. Liu H. Cheng Y. Wu M. Saleem M.Z. Zheng H. Wei L. Chu J. Xie Q. Shen A. Peng J. Quercetin inhibits angiotensin II-induced vascular smooth muscle cell proliferation and activation of JAK2/STAT3 pathway: A target based networking pharmacology approach. Front. Pharmacol. 2022 13 1002363 10.3389/fphar.2022.1002363 36324691
    [Google Scholar]
  44. Moens U. Kostenko S. Sveinbjørnsson B. The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinases (MAPKAPKs) in Inflammation. Genes (Basel) 2013 4 2 101 133 10.3390/genes4020101 24705157
    [Google Scholar]
  45. Cargnello M. Roux P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 2011 75 1 50 83 10.1128/MMBR.00031‑10 21372320
    [Google Scholar]
  46. Ayroldi E. Cannarile L. Migliorati G. Nocentini G. Delfino D.V. Riccardi C. Mechanisms of the anti‐inflammatory effects of glucocorticoids: genomic and nongenomic interference with MAPK signaling pathways. FASEB J. 2012 26 12 4805 4820 10.1096/fj.12‑216382 22954589
    [Google Scholar]
  47. Merecz-Sadowska A. Sitarek P. Śliwiński T. Zajdel R. Anti-Inflammatory Activity of Extracts and Pure Compounds Derived from Plants via Modulation of Signaling Pathways, Especially PI3K/AKT in Macrophages. Int. J. Mol. Sci. 2020 21 24 9605 10.3390/ijms21249605 33339446
    [Google Scholar]
  48. Velagapudi R. Olajide O.A. Aderogba M.A. Tiliroside produced anti-neuroinflammatory effects through interference with NF-κB And MAPK signalling in LPS+ IFN-γ stimulated BV-2 microglia. 2014 Available from: http://www.pA2online.org/abstracts/Vol11Issue3abst093P.pdf(accessed on 2-10-2024)
    [Google Scholar]
  49. Olajide O.A. Sarker S.D. Alzheimer’s disease: natural products as inhibitors of neuroinflammation. Inflammopharmacology 2020 28 6 1439 1455 10.1007/s10787‑020‑00751‑1 32930914
    [Google Scholar]
  50. Foudah A.I. Alqarni M.H. Devi S. Singh A. Alam A. Alam P. Singh S. Analgesic action of catechin on chronic constriction injury–induced neuropathic pain in Sprague–Dawley rats. Front. Pharmacol. 2022 13 895079 10.3389/fphar.2022.895079 36034867
    [Google Scholar]
  51. Parameswaran N. Patial S. Tumor necrosis factor-α signaling in macrophages. Crit. Rev. Eukaryot. Gene Expr. 2010 20 2 87 103 10.1615/CritRevEukarGeneExpr.v20.i2.10 21133840
    [Google Scholar]
  52. Ruiz A. Palacios Y. Garcia I. Chavez-Galan L. Transmembrane TNF and Its Receptors TNFR1 and TNFR2 in Mycobacterial Infections. Int. J. Mol. Sci. 2021 22 11 5461 10.3390/ijms22115461 34067256
    [Google Scholar]
  53. Behl T. Mehta K. Sehgal A. Singh S. Sharma N. Ahmadi A. Arora S. Bungau S. Exploring the role of polyphenols in rheumatoid arthritis. Crit. Rev. Food Sci. Nutr. 2022 62 19 5372 5393 10.1080/10408398.2021.1924613 33998910
    [Google Scholar]
  54. Jang D. Lee A.H. Shin H.Y. Song H.R. Park J.H. Kang T.B. Lee S.R. Yang S.H. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021 22 5 2719 10.3390/ijms22052719 33800290
    [Google Scholar]
  55. Oeckinghaus A. Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol. 2009 1 4 a000034 a000034 10.1101/cshperspect.a000034 20066092
    [Google Scholar]
  56. Sameer A.S. Nissar S. Toll-Like Receptors (TLRs): Structure, Functions, Signaling, and Role of Their Polymorphisms in Colorectal Cancer Susceptibility. BioMed Res. Int. 2021 2021 1 14 10.1155/2021/1157023 34552981
    [Google Scholar]
  57. Mogensen T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 2009 22 2 240 273 10.1128/CMR.00046‑08 19366914
    [Google Scholar]
  58. Roh J.S. Sohn D.H. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw. 2018 18 4 e27 10.4110/in.2018.18.e27 30181915
    [Google Scholar]
  59. Piccinini A.M. Midwood K.S. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010 2010 1 21 10.1155/2010/672395 20706656
    [Google Scholar]
  60. Kawasaki T. Kawai T. Toll-like receptor signaling pathways. Front. Immunol. 2014 5 461 10.3389/fimmu.2014.00461 25309543
    [Google Scholar]
  61. Pouremamali F. Pouremamali A. Dadashpour M. Soozangar N. Jeddi F. An update of Nrf2 activators and inhibitors in cancer prevention/promotion. Cell Commun. Signal. 2022 20 1 100 10.1186/s12964‑022‑00906‑3 35773670
    [Google Scholar]
  62. Kryszczuk M. Kowalczuk O. Significance of NRF2 in physiological and pathological conditions an comprehensive review. Arch. Biochem. Biophys. 2022 730 109417 10.1016/j.abb.2022.109417 36202215
    [Google Scholar]
  63. Hu C. Zhao J.F. Wang Y.M. Wu X. Ye L. Tiliroside induces ferroptosis to repress the development of triple-negative breast cancer cells. Tissue Cell 2023 83 102116 10.1016/j.tice.2023.102116 37301139
    [Google Scholar]
  64. Han R. Yang H. Lu L. Lin L. Tiliroside as a CAXII inhibitor suppresses liver cancer development and modulates E2Fs/Caspase-3 axis. Sci. Rep. 2021 11 1 8626 10.1038/s41598‑021‑88133‑7 33883691
    [Google Scholar]
  65. Dai M. Wikantyasning E. Wahyuni A. Kusumawati I. Saifudin A. Suhendi A. Antiproliferative properties of tiliroside from Guazuma ulmifolia lamk on T47D and MCF7 cancer cell lines. Natl. J. Physiol. Pharm. Pharmacol. 2016 6 6 627 10.5455/njppp.2016.6.0617727072016
    [Google Scholar]
  66. Fernandes D.A. Oliveira L.H.G. Rique H.L. Souza M.F.V. Nunes F.C. Insights on the larvicidal mechanism of action of fractions and compounds from aerial parts of Helicteres velutina K. Schum against Aedes aegypti L. Molecules 2020 25 13 3015 10.3390/molecules25133015 32630318
    [Google Scholar]
  67. Tomczyk M. Drozdowska D. Bielawska A. Bielawski K. Gudej J. Human DNA topoisomerase inhibitors from Potentilla argentea and their cytotoxic effect against MCF-7. Pharmazie 2008 63 5 389 393 18557426
    [Google Scholar]
  68. Yuan Z. Luan G. Wang Z. Hao X. Li J. Suo Y. Li G. Wang H. Flavonoids from Potentilla parvifolia Fisch. and their neuroprotective effects in human neuroblastoma SH ‐ SY 5Y Cells in vitro. Chem. Biodivers. 2017 14 6 e1600487 10.1002/cbdv.201600487 28294523
    [Google Scholar]
  69. Ninomiya K. Matsuda H. Kubo M. Morikawa T. Nishida N. Yoshikawa M. Potent anti-obese principle from Rosa canina: Structural requirements and mode of action of trans-tiliroside. Bioorg. Med. Chem. Lett. 2007 17 11 3059 3064 10.1016/j.bmcl.2007.03.051 17400451
    [Google Scholar]
  70. Qiao W. Zhao C. Qin N. Zhai H.Y. Duan H.Q. Identification of trans-tiliroside as active principle with anti-hyperglycemic, anti-hyperlipidemic and antioxidant effects from Potentilla chinesis. J. Ethnopharmacol. 2011 135 2 515 521 10.1016/j.jep.2011.03.062 21463674
    [Google Scholar]
  71. Han N. Gu Y. Ye C. Cao Y. Liu Z. Yin J. Antithrombotic activity of fractions and components obtained from raspberry leaves (Rubus chingii). Food Chem. 2012 132 1 181 185 10.1016/j.foodchem.2011.10.051 26434278
    [Google Scholar]
  72. Silva G. Pereira A. Rezende B. da Silva J. Cruz J. de Souza M. Gomes R. Teles Y. Cortes S. Lemos V. Mechanism of the antihypertensive and vasorelaxant effects of the flavonoid tiliroside in resistance arteries. Planta Med. 2013 79 12 1003 1008 10.1055/s‑0032‑1328765 23877918
    [Google Scholar]
  73. Li X. Tian Y. Wang T. Lin Q. Feng X. Jiang Q. Liu Y. Chen D. Role of the p-coumaroyl moiety in the antioxidant and cytoprotective effects of flavonoid glycosides: Comparison of astragalin and tiliroside. Molecules 2017 22 7 1165 10.3390/molecules22071165 28704976
    [Google Scholar]
  74. Li K. Xiao Y. Wang Z. Fu F. Shao S. Song F. Zhao J. Lin X. Liu Q. Xu J. Tiliroside is a new potential therapeutic drug for osteoporosis in mice. J. Cell. Physiol. 2019 234 9 16263 16274 10.1002/jcp.28289 30815860
    [Google Scholar]
  75. Shimoda H. Tanaka J. Zaiki K. Nakaoji K. Tiliroside, a constituent of strawberry seeds, slightly enhances hyaluronan production via hyaluronan synthase 2 expression in mouse skin and human fibroblasts. Int. J. Biomed. Sci. 2019 15 1 24 31 10.59566/IJBS.2019.15024
    [Google Scholar]
  76. Gao D. Fu Q.F. Wang L.J. Wang D.D. Zhang K.L. Yang F.Q. Xia Z.N. Molecularly imprinted polymers for the selective extraction of tiliroside from the flowers of Edgeworthia gardneri (wall.) Meisn. J. Sep. Sci. 2017 40 12 2629 2637 10.1002/jssc.201700240 28453223
    [Google Scholar]
  77. Ayinde B.A. Owolabi J.O. Uti I.S. Ogbeta P.C. Choudhary M.I. Isolation of the antidiarrhoeal tiliroside and its derivative from Waltheria indica leaf extract. Niger. J. Nat. Prod. Med. 2021 25 1 86 92 10.4314/njnpm.v25i1.10
    [Google Scholar]
  78. Shaw P. Xiao M. Zhang T. Cao F. Liang W. Yang Y. Huang T. Tang Y.S. Liu B. Zhao X. Tiliroside, a polymerase inhibitor from Hibiscus mutabilis L., exhibits anti-influenza activity in vitro and in vivo. SSRN 2022 10.2139/ssrn.4229801
    [Google Scholar]
  79. Wang P. Hu M. Wang L. Qu J. Liu Y. Li C. Liu Z. Ma C. Kang W. Chemical constituents and coagulation effects of the flowers of Rosa chinensis Jacq. J. Fut. Foods 2023 3 2 155 162 10.1016/j.jfutfo.2022.12.006
    [Google Scholar]
  80. Alkholifi F.K. Devi S. Aldawsari M.F. Foudah A.I. Alqarni M.H. Salkini M.A. Sweilam S.H. Effects of Tiliroside and Lisuride co-treatment on the PI3K/Akt signal pathway: Modulating neuroinflammation and apoptosis in Parkinson’s Disease. Biomedicines 2023 11 10 2735 10.3390/biomedicines11102735 37893109
    [Google Scholar]
  81. Kozai Y. Matsuura Y. Daily intake of rosehip extract decreases abdominal visceral fat in preobese subjects: A randomized, double-blind, placebo-controlled clinical trial. Diabetes Metab. Syndr. Obes. 2015 8 147 156
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708316269241015160515
Loading
/content/journals/raiad/10.2174/0127722708316269241015160515
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Nfr2 ; TNF-α ; TLR ; MAPK ; inflammation ; Tiliroside ; NF-κB
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test