Skip to content
2000
image of Transforming Wound Management: Advancement in Nanomaterials-based Therapeutics

Abstract

The landscape of wound management has undergone a revolutionary transformation with the integration of nanomaterials-based therapeutics. This abstract explores the profound impact of nanotechnology on wound care, highlighting the unique properties of nanomaterials and their role in advancing therapeutic interventions. Nanomaterials, characterized by their dimensions at the nanoscale, have emerged as versatile tools in wound management. The review focuses on various types of nanomaterials, including nanoparticles, nanofibers, and nanocomposites, which offer tailored solutions for optimizing wound healing processes to facilitate controlled drug delivery, developing a novel approach on account of achieving controlled transport of bioactive agents, such as growth factors, antimicrobial compounds, and anti-inflammatory drugs. This precision in drug delivery enhances therapeutic efficacy, promoting optimal wound healing outcomes. One of the pivotal contributions of nanomaterials to wound management is their engineered antimicrobial properties. Nanoparticles also exhibit effective antibacterial characteristics, addressing concerns related to wound infections. Nanomaterials integrated into dressings and scaffolds enhance mechanical strength and provide a conducive environment for cellular processes, fostering tissue regeneration, angiogenesis, and extracellular matrix synthesis. Nanoparticles with anti-inflammatory and antioxidant functionalities create a balanced microenvironment, reduce chronic inflammation, and promote a pro-regenerative milieu. In conclusion, integrating nanomaterials into wound management strategies represents a paradigm shift in therapeutic approaches.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708314632241117192456
2024-12-04
2025-01-20
Loading full text...

Full text loading...

References

  1. Pormohammad A. Monych N.K. Ghosh S. Turner D.L. Turner R.J. Nanomaterials in wound healing and infection control. Antibiotics 2021 10 5 473 10.3390/antibiotics10050473 33919072
    [Google Scholar]
  2. Firlar I. Altunbek M. McCarthy C. Ramalingam M. Camci-Unal G. Functional hydrogels for treatment of chronic wounds. Gels 2022 8 2 127 10.3390/gels8020127 35200508
    [Google Scholar]
  3. Gilaberte Y. Prieto-Torres L. Pastushenko I. Juarranz Á. Anatomy and Function of the Skin. Nanoscience in dermatology. Elsevier 2016 1 14 10.1016/B978‑0‑12‑802926‑8.00001‑X
    [Google Scholar]
  4. Brown T. M. Krishnamurthy K. Histology, hair and follicle StatPearls Treasure Island 2018
    [Google Scholar]
  5. Montagna W. The structure and function of skin. Elsevier 2012
    [Google Scholar]
  6. Evans K. Kim P. J. Overview of treatment of chronic wounds Available from https//tinyurl. com/2nfxccj6 2022
  7. Chesko D.M. Wilgus T.A. Immune cells in cutaneous wound healing: A review of functional data from animal models. Int. J. Mol. Sci. 2022 23 5 2444 10.3390/ijms23052444 35269586
    [Google Scholar]
  8. Raziyeva K. Kim Y. Zharkinbekov Z. Kassymbek K. Jimi S. Saparov A. Immunology of acute and chronic wound healing. Biomolecules 2021 11 5 700 10.3390/biom11050700 34066746
    [Google Scholar]
  9. Azari Z. Nazarnezhad S. Webster T.J. Hoseini S.J. Brouki Milan P. Baino F. Kargozar S. Stem cell‐mediated angiogenesis in skin tissue engineering and wound healing. Wound. Repair. Regen. 2022 30 4 421 435 10.1111/wrr.13033 35638710
    [Google Scholar]
  10. Las Heras K. Igartua M. Santos-Vizcaino E. Hernandez R.M. Chronic wounds: Current status, available strategies and emerging therapeutic solutions. J. Control. Release 2020 328 532 550 10.1016/j.jconrel.2020.09.039 32971198
    [Google Scholar]
  11. Mathew-Steiner S.S. Roy S. Sen C.K. Collagen in wound healing. Bioengineering 2021 8 5 63 10.3390/bioengineering8050063 34064689
    [Google Scholar]
  12. Wilkinson H.N. Hardman M.J. Wound healing: Cellular mechanisms and pathological outcomes. Open Biol. 2020 10 9 200223 10.1098/rsob.200223 32993416
    [Google Scholar]
  13. Comino-Sanz I.M. López-Franco M.D. Castro B. Pancorbo-Hidalgo P.L. The role of antioxidants on wound healing: A review of the current evidence. J. Clin. Med. 2021 10 16 3558 10.3390/jcm10163558 34441854
    [Google Scholar]
  14. Mo R. Zhang H. Xu Y. Wu X. Wang S. Dong Z. Xia Y. Zheng D. Tan Q. Transdermal drug delivery via microneedles to mediate wound microenvironment. Adv. Drug Deliv. Rev. 2023 195 114753 10.1016/j.addr.2023.114753 36828300
    [Google Scholar]
  15. Malone-Povolny M.J. Maloney S.E. Schoenfisch M.H. Nitric oxide therapy for diabetic wound healing. Adv. Healthc. Mater. 2019 8 12 1801210 10.1002/adhm.201801210 30645055
    [Google Scholar]
  16. da Silva L.P. Reis R.L. Correlo V.M. Marques A.P. Hydrogel-based strategies to advance therapies for chronic skin wounds. Annu. Rev. Biomed. Eng. 2019 21 1 145 169 10.1146/annurev‑bioeng‑060418‑052422 30822099
    [Google Scholar]
  17. Yang R. Liu X. Ren Y. Xue W. Liu S. Wang P. Zhao M. Xu H. Chi B. Injectable adaptive self-healing hyaluronic acid/poly (γ-glutamic acid) hydrogel for cutaneous wound healing. Acta. Biomater. 2021 127 102 115 10.1016/j.actbio.2021.03.057 33813093
    [Google Scholar]
  18. Rybka M. Mazurek Ł. Konop M. Beneficial effect of wound dressings containing silver and silver nanoparticles in wound healing—from experimental studies to clinical practice. Life 2022 13 1 69 10.3390/life13010069 36676019
    [Google Scholar]
  19. Gnanasambanthan H. Maji D. Development of a flexible and wearable microelectrode array patch using a screen-printed masking technique for accelerated wound healing. ACS Appl. Electron. Mater. 2023 5 8 4426 4436 10.1021/acsaelm.3c00637
    [Google Scholar]
  20. Xian C. Zhang Z. You X. Fang Y. Wu J. Nanosized fat emulsion injection modulating local microenvironment promotes angiogenesis in chronic wound healing. Adv. Funct. Mater. 2022 32 32 2202410 10.1002/adfm.202202410
    [Google Scholar]
  21. Oliveira A. Simões S. Ascenso A. Reis C.P. Therapeutic advances in wound healing. J. Dermatolog. Treat. 2022 33 1 2 22 10.1080/09546634.2020.1730296 32056472
    [Google Scholar]
  22. Nandhini S.N. Sisubalan N. Vijayan A. Karthikeyan C. Gnanaraj M. Gideon D.A.M. Jebastin T. Varaprasad K. Sadiku R. Recent advances in green synthesized nanoparticles for bactericidal and wound healing applications. Heliyon 2023 9 2 e13128 10.1016/j.heliyon.2023.e13128 36747553
    [Google Scholar]
  23. Shalaby M.A. Anwar M.M. Saeed H. Nanomaterials for application in wound Healing: current state-of-the-art and future perspectives. J. Polym. Res. 2022 29 3 91 10.1007/s10965‑021‑02870‑x
    [Google Scholar]
  24. Kwiatkowska A. Drabik M. Lipko A. Grzeczkowicz A. Stachowiak R. Marszalik A. Granicka L.H. Composite membrane dressings system with metallic nanoparticles as an antibacterial factor in wound healing. Membranes 2022 12 2 215 10.3390/membranes12020215 35207136
    [Google Scholar]
  25. Wang W. Lu K. Yu C. Huang Q. Du Y.Z. Nano-drug delivery systems in wound treatment and skin regeneration. J. Nanobiotechnology 2019 17 1 82 10.1186/s12951‑019‑0514‑y 31291960
    [Google Scholar]
  26. Ajith M.P. Aswathi M. Priyadarshini E. Rajamani P. Recent innovations of nanotechnology in water treatment: A comprehensive review. Bioresour. Technol. 2021 342 126000 10.1016/j.biortech.2021.126000 34587582
    [Google Scholar]
  27. Shariati A. Hosseini S.M. Chegini Z. Seifalian A. Arabestani M.R. Graphene-based materials for inhibition of wound infection and accelerating wound healing. Biomed. Pharmacother. 2023 158 114184 10.1016/j.biopha.2022.114184 36587554
    [Google Scholar]
  28. Shi Y. Zhou M. Zhao S. Li H. Wang W. Cheng J. Jin L. Wang Y. Janus amphiphilic nanofiber membranes synergistically drive antibacterial and anti-inflammatory strategies for skin wound healing. Mater. Des. 2023 227 111778 10.1016/j.matdes.2023.111778
    [Google Scholar]
  29. Surber N. Arvidsson R. de Fine Licht K. Palmås K. Implicit values in the recent carbon nanotube debate. NanoEthics 2023 17 2 10 10.1007/s11569‑023‑00443‑4
    [Google Scholar]
  30. Asaftei M. Lucidi M. Cirtoaje C. Holban A.M. Charitidis C.A. Yang F. Wu A. Stanciu G.A. Sağlam Ö. Lazar V. Visca P. Stanciu S.G. Fighting bacterial pathogens with carbon nanotubes: Focused review of recent progress. Rsc. Adv 2023 13 29 19682 19694 10.1039/D3RA01745A 37396836
    [Google Scholar]
  31. Bolshakova O. Lebedev V. Mikhailova E. Zherebyateva O. Aznabaeva L. Burdakov V. Kulvelis Y. Yevlampieva N. Mironov A. Miroshnichenko I. Sarantseva S. Fullerenes on a nanodiamond platform demonstrate antibacterial activity with low cytotoxicity. Pharmaceutics 2023 15 7 1984 10.3390/pharmaceutics15071984 37514170
    [Google Scholar]
  32. Xie X. Zhang M. Li Y. Lei Y. Sun J. Sattorov N. Makhmudov K.B. Wang J. NIR as a “trigger switch” for situ distinguish superbacteria and photothermal synergistic antibacterial treatment with Ag2O particles/lignosulfonate/cationic guar gum hybrid hydrogel. Int. J. Biol. Macromol. 2023 232 123340 10.1016/j.ijbiomac.2023.123340 36682659
    [Google Scholar]
  33. Xu J. Chow E.K.H. Biomedical applications of nanodiamonds: From drug-delivery to diagnostics. SLAS Technol. 2023 28 4 214 222 10.1016/j.slast.2023.03.007 37004790
    [Google Scholar]
  34. Wang X. Sang D. Zou L. Ge S. Yao Y. Fan J. Wang Q. Multiple bioimaging applications based on the excellent properties of Nanodiamond: A review. Molecules 2023 28 10 4063 10.3390/molecules28104063 37241802
    [Google Scholar]
  35. Li Y. Xu C. Lei C. The delivery and activation of growth factors using nanomaterials for bone repair. Pharmaceutics 2023 15 3 1017 10.3390/pharmaceutics15031017 36986877
    [Google Scholar]
  36. Kolanthai E. Fu Y. Kumar U. Babu B. Venkatesan A.K. Liechty K.W. Seal S. Nanoparticle mediated RNA delivery for wound healing. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022 14 2 e1741 10.1002/wnan.1741 34369096
    [Google Scholar]
  37. Paladini F. Pollini M. Antimicrobial silver nanoparticles for wound healing application: Progress and future trends. Materials 2019 12 16 2540 10.3390/ma12162540 31404974
    [Google Scholar]
  38. Searle T. Ali F.R. Al-Niaimi F. Zinc in dermatology. J. Dermatolog. Treat. 2022 33 5 2455 2458 10.1080/09546634.2022.2062282 35437093
    [Google Scholar]
  39. Borkow G. Melamed E. Copper, an abandoned player returning to the wound healing battle Recent Advances in Wound Healing IntechOpen 2021
    [Google Scholar]
  40. Krishnaswami V. Raju N.S. Alagarsamy S. Kandasamy R. Novel Nanocarriers for the Treatment of Wound Healing. Curr. Pharm. Des. 2020 26 36 4591 4600 10.2174/1381612826666200701203432 32611292
    [Google Scholar]
  41. Anaya-Esparza L.M. Ruvalcaba-Gómez J.M. Maytorena-Verdugo C.I. González-Silva N. Romero-Toledo R. Aguilera-Aguirre S. Pérez-Larios A. Montalvo-González E. Chitosan-TiO2: A versatile hybrid composite. Materials 2020 13 4 811 10.3390/ma13040811 32053948
    [Google Scholar]
  42. Xu L. Wang Y.Y. Huang J. Chen C.Y. Wang Z.X. Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020 10 20 8996 9031 10.7150/thno.45413 32802176
    [Google Scholar]
  43. Monika P. Chandraprabha M.N. Rangarajan A. Waiker P.V. Chidambara Murthy K.N. Challenges in healing wound: Role of complementary and alternative medicine. Front. Nutr. 2022 8 791899 10.3389/fnut.2021.791899 35127787
    [Google Scholar]
  44. Guan T. Li J. Chen C. Liu Y. Self‐assembling peptide‐based hydrogels for wound tissue repair. Adv. Sci. (Weinh.) 2022 9 10 2104165 10.1002/advs.202104165 35142093
    [Google Scholar]
  45. Diaz-Gomez L. Gonzalez-Prada I. Millan R. Da Silva-Candal A. Bugallo-Casal A. Campos F. Concheiro A. Alvarez-Lorenzo C. 3D printed carboxymethyl cellulose scaffolds for autologous growth factors delivery in wound healing. Carbohydr. Polym. 2022 278 118924 10.1016/j.carbpol.2021.118924 34973742
    [Google Scholar]
  46. Mashaghi S. Jadidi T. Koenderink G. Mashaghi A. Lipid Nanotechnology. Int. J. Mol. Sci. 2013 14 2 4242 4282 10.3390/ijms14024242 23429269
    [Google Scholar]
  47. Naseri N. Valizadeh H. Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull. 2015 5 3 305 313 10.15171/apb.2015.043 26504751
    [Google Scholar]
  48. Arantes V.T. Faraco A.A.G. Ferreira F.B. Oliveira C.A. Martins-Santos E. Cassini-Vieira P. Barcelos L.S. Ferreira L.A.M. Goulart G.A.C. Retinoic acid-loaded solid lipid nanoparticles surrounded by chitosan film support diabetic wound healing in in vivo study. Colloids Surf. B Biointerfaces 2020 188 110749 10.1016/j.colsurfb.2019.110749 31927466
    [Google Scholar]
  49. Fiorentini F. Suarato G. Grisoli P. Zych A. Bertorelli R. Athanassiou A. Plant-based biocomposite films as potential antibacterial patches for skin wound healing. Eur. Polym. J. 2021 150 110414 10.1016/j.eurpolymj.2021.110414
    [Google Scholar]
  50. Macedo A.S. Mendes F. Filipe P. Reis S. Fonte P. Nanocarrier-mediated topical insulin delivery for wound healing. Materials 2021 14 15 4257 10.3390/ma14154257 34361451
    [Google Scholar]
  51. Elhassan E. Devnarain N. Mohammed M. Govender T. Omolo C.A. Engineering hybrid nanosystems for efficient and targeted delivery against bacterial infections. J. Control. Release 2022 351 598 622 10.1016/j.jconrel.2022.09.052 36183972
    [Google Scholar]
  52. Medina D.X. Chung E.P. Bowser R. Sirianni R.W. Lipid and polymer blended polyester nanoparticles loaded with adapalene for activation of retinoid signaling in the CNS following intravenous administration. J. Drug Deliv. Sci. Technol. 2019 52 927 933 10.1016/j.jddst.2019.04.013
    [Google Scholar]
  53. Tong W.Y. Tan W.N. Kamarul Azizi M.A. Leong C.R. El Azab I.H. Lim J.W. Mahmoud M.H.H. Dailin D.J. Ibrahim M.M. Chuah L.F. Nanoparticle-laden contact lens for controlled release of vancomycin with enhanced antibiotic efficacy. Chemosphere 2023 338 139492 10.1016/j.chemosphere.2023.139492 37451643
    [Google Scholar]
  54. Garay-Jimenez J.C. Gergeres D. Young A. Lim D.V. Turos E. Physical properties and biological activity of poly(butyl acrylate–styrene) nanoparticle emulsions prepared with conventional and polymerizable surfactants. Nanomedicine 2009 5 4 443 451 10.1016/j.nano.2009.01.015 19523413
    [Google Scholar]
  55. Sun Y. Bhattacharjee A. Reynolds M. Li Y.V. Synthesis and characterizations of gentamicin-loaded poly-lactic-co-glycolic (PLGA) nanoparticles. J. Nanopart. Res. 2021 23 8 155 10.1007/s11051‑021‑05293‑3
    [Google Scholar]
  56. Ahmed R. Augustine R. Chaudhry M. Akhtar U.A. Zahid A.A. Tariq M. Falahati M. Ahmad I.S. Hasan A. Nitric oxide-releasing biomaterials for promoting wound healing in impaired diabetic wounds: State of the art and recent trends. Biomed. Pharmacother. 2022 149 112707 10.1016/j.biopha.2022.112707 35303565
    [Google Scholar]
  57. Poole R.K. Flavohaemoglobin: The pre-eminent nitric oxide–detoxifying machine of microorganisms F1000Res 9 2020 F1000
    [Google Scholar]
  58. Engelsman A. F. Krom B. P. van Dam G. M. Busscher H. J. Ploeg R. J. van der Mei H. C. Antimicrobial effects of no-releasing poly (ethylene vinylacetate) coating on soft-tissue implants in vitro and in vivo Acta. Biomater. 2009 5 6 1905
    [Google Scholar]
  59. Rong F. Tang Y. Wang T. Feng T. Song J. Li P. Huang W. Nitric oxide-releasing polymeric materials for antimicrobial applications: A review. Antioxidants 2019 8 11 556 10.3390/antiox8110556 31731704
    [Google Scholar]
  60. Pieretti J.C. Seabra A.B. Nitric oxide-releasing nanomaterials and skin infections Antioxidants 2020 8 556 10.1007/978‑3‑030‑35147‑2_1
    [Google Scholar]
  61. Yadav E. Yadav P. Verma A. Amelioration of full thickness dermal wounds by topical application of biofabricated zinc oxide and iron oxide nano-ointment in albino Wistar rats. J. Drug Deliv. Sci. Technol. 2021 66 102833 10.1016/j.jddst.2021.102833
    [Google Scholar]
  62. Makarov V.V Love A.J Sinitsyna O.V Green nanotechnologies: Synthesis of metal nanoparticles using plants. J. Nat. 2014 6 1 35 44
    [Google Scholar]
  63. Lakkim V. Reddy M.C. Pallavali R.R. Reddy K.R. Reddy C.V. Inamuddin Bilgrami A.L. Lomada D. Green synthesis of silver nanoparticles and evaluation of their antibacterial activity against multidrug-resistant bacteria and wound healing efficacy using a murine model. Antibiotics 2020 9 12 902 10.3390/antibiotics9120902 33322213
    [Google Scholar]
  64. Emam-Djomeh Z. Hajikhani M. Chitosan/poly (ethylene glycol)/ZnO bionanocomposite for wound healing application. Biodegradable and Environmental Applications of Bionanocomposites. Springer 2022 31 65
    [Google Scholar]
  65. Ehtesabi H. Fayaz M. Hosseini-Doabi F. Rezaei P. The application of green synthesis nanoparticles in wound healing: A review. Mater. Today Sustain 2023 21 100272 10.1016/j.mtsust.2022.100272
    [Google Scholar]
  66. Akhmetova A. Heinz A. Electrospinning proteins for wound healing purposes: Opportunities and challenges. Pharmaceutics 2020 13 1 4 10.3390/pharmaceutics13010004 33374930
    [Google Scholar]
  67. Ma K. Chan C.K. Liao S. Hwang W.Y.K. Feng Q. Ramakrishna S. Electrospun nanofiber scaffolds for rapid and rich capture of bone marrow-derived hematopoietic stem cells. Biomaterials 2008 29 13 2096 2103 10.1016/j.biomaterials.2008.01.024 18289666
    [Google Scholar]
  68. Katti D.S. Robinson K.W. Ko F.K. Laurencin C.T. Bioresorbable nanofiber‐based systems for wound healing and drug delivery: Optimization of fabrication parameters. J. Biomed. Mater. Res. B Appl. Biomater. 2004 70B 2 286 296 10.1002/jbm.b.30041 15264311
    [Google Scholar]
  69. Veleirinho B. Berti F.V. Dias P.F. Maraschin M. Ribeiro-do-Valle R.M. Lopes-da-Silva J.A. Manipulation of chemical composition and architecture of non-biodegradable poly(ethylene terephthalate)/chitosan fibrous scaffolds and their effects on L929 cell behavior. Mater. Sci. Eng. C 2013 33 1 37 46 10.1016/j.msec.2012.07.047 25428039
    [Google Scholar]
  70. Passalacqua T.G. Dutra L.A. de Almeida L. Velásquez A.M.A. Torres F.A.E. Yamasaki P.R. dos Santos M.B. Regasini L.O. Michels P.A.M. Bolzani V.S. Graminha M.A.S. Synthesis and evaluation of novel prenylated chalcone derivatives as anti-leishmanial and anti-trypanosomal compounds. Bioorg. Med. Chem. Lett. 2015 25 16 3342 3345 10.1016/j.bmcl.2015.05.072 26055530
    [Google Scholar]
  71. Bacakova M. Musilkova J. Riedel T. Stranska D. Brynda E. Bacakova L. Zaloudkova M. The potential applications of fibrin-coated electrospun polylactide nanofibers in skin tissue engineering. Int. J. Nanomedicine 2016 11 771 789 10.2147/IJN.S99317 26955273
    [Google Scholar]
  72. Rezvani Ghomi E. Khosravi F. Neisiany R.E. Shakiba M. Zare M. Lakshminarayanan R. Chellappan V. Abdouss M. Ramakrishna S. Advances in electrospinning of aligned nanofiber scaffolds used for wound dressings. Curr. Opin. Biomed. Eng. 2022 22 100393 10.1016/j.cobme.2022.100393
    [Google Scholar]
  73. Law J.X. Liau L.L. Saim A. Yang Y. Idrus R. Electrospun collagen nanofibers and their applications in skin tissue engineering. Tissue Eng. Regen. Med. 2017 14 6 699 718 10.1007/s13770‑017‑0075‑9 30603521
    [Google Scholar]
  74. Kaplan D. Adams W.W. Farmer B. Viney C. Silk: Biology, structure, properties, and genetics. Silk Polymers ACS Symposium Series; American Chemical Society Washington 1994
    [Google Scholar]
  75. Ribeiro T.G. Franca J.R. Fuscaldi L.L. Santos M.L. Duarte M.C. Lage P.S. Martins V.T. Costa L.E. Fernandes S.O. Cardoso V.N. Castilho R.O. Soto M. Tavares C.A. Faraco A.A. Coelho E.A. Chávez-Fumagalli M.A. An optimized nanoparticle delivery system based on chitosan and chondroitin sulfate molecules reduces the toxicity of amphotericin B and is effective in treating tegumentary leishmaniasis. Int. J. Nanomedicine 2014 9 5341 5353 25429219
    [Google Scholar]
  76. Hao Y. Zhao W. Zhang L. Zeng X. Sun Z. Zhang D. Shen P. Li Z. Han Y. Li P. Zhou Q. Bio-multifunctional alginate/chitosan/fucoidan sponges with enhanced angiogenesis and hair follicle regeneration for promoting full-thickness wound healing. Mater. Des. 2020 193 108863 10.1016/j.matdes.2020.108863
    [Google Scholar]
  77. Summa M. Russo D. Penna I. Margaroli N. Bayer I.S. Bandiera T. Athanassiou A. Bertorelli R. A biocompatible sodium alginate/povidone iodine film enhances wound healing. Eur. J. Pharm. Biopharm. 2018 122 17 24 10.1016/j.ejpb.2017.10.004 29017952
    [Google Scholar]
  78. Shalumon K.T. Anulekha K.H. Nair S.V. Nair S.V. Chennazhi K.P. Jayakumar R. Corrigendum to Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings Int. J. Biol. Macromol. 2019 134 1218 10.1016/j.ijbiomac.2019.04.152 31076181
    [Google Scholar]
  79. Tang Y. Lan X. Liang C. Zhong Z. Xie R. Zhou Y. Miao X. Wang H. Wang W. Honey loaded alginate/PVA nanofibrous membrane as potential bioactive wound dressing. Carbohydr. Polym. 2019 219 113 120 10.1016/j.carbpol.2019.05.004 31151507
    [Google Scholar]
  80. García-Moreno P.J. Özdemir N. Stephansen K. Mateiu R.V. Echegoyen Y. Lagaron J.M. Chronakis I.S. Jacobsen C. Development of carbohydrate-based nano-microstructures loaded with fish oil by using electrohydrodynamic processing. Food. Hydrocoll. 2017 69 273 285 10.1016/j.foodhyd.2017.02.013
    [Google Scholar]
  81. Aguilar-Vázquez G. Loarca-Piña G. Figueroa-Cárdenas J.D. Mendoza S. Electrospun fibers from blends of pea (Pisum sativum) protein and pullulan. Food. Hydrocoll 2018 83 173 181 10.1016/j.foodhyd.2018.04.051
    [Google Scholar]
  82. Wang H. Gong X. Guo X. Liu C. Fan Y.Y. Zhang J. Niu B. Li W. Characterization, release, and antioxidant activity of curcumin-loaded sodium alginate/ZnO hydrogel beads. Int. J. Biol. Macromol. 2019 121 1118 1125 10.1016/j.ijbiomac.2018.10.121 30340010
    [Google Scholar]
  83. Hamedi S. Shojaosadati S.A. Najafi V. Alizadeh V. A novel double-network antibacterial hydrogel based on aminated bacterial cellulose and schizophyllan. Carbohydr. Polym. 2020 229 115383 10.1016/j.carbpol.2019.115383 31826529
    [Google Scholar]
  84. Mousaviasl S. Saleh T. Shojaosadati S.A. Boddohi S. Synthesis and characterization of schizophyllan nanogels via inverse emulsion using biobased materials. Int. J. Biol. Macromol. 2018 120 468 474 10.1016/j.ijbiomac.2018.08.119 30153460
    [Google Scholar]
  85. Vashisth P. Srivastava A.K. Nagar H. Raghuwanshi N. Sharan S. Nikhil K. Pruthi P.A. Singh R.P. Roy P. Pruthi V. Drug functionalized microbial polysaccharide based nanofibers as transdermal substitute. Nanomedicine 2016 12 5 1375 1385 10.1016/j.nano.2016.01.019 26964481
    [Google Scholar]
  86. McCarthy R.R. Ullah M.W. Booth P. Pei E. Yang G. The use of bacterial polysaccharides in bioprinting. Biotechnol. Adv. 2019 37 8 107448 10.1016/j.biotechadv.2019.107448 31513840
    [Google Scholar]
  87. Innocenti Malini R. Lesage J. Toncelli C. Fortunato G. Rossi R.M. Spano F. Crosslinking dextran electrospun nanofibers via borate chemistry: Proof of concept for wound patches. Eur. Polym. J. 2019 110 276 282 10.1016/j.eurpolymj.2018.11.017
    [Google Scholar]
  88. Faralli A. Shekarforoush E. Ajalloueian F. Mendes A.C. Chronakis I.S. In vitro permeability enhancement of curcumin across Caco-2 cells monolayers using electrospun xanthan-chitosan nanofibers. Carbohydr. Polym. 2019 206 38 47 10.1016/j.carbpol.2018.10.073 30553335
    [Google Scholar]
  89. Shao P. Feng J. Sun P. Xiang N. Lu B. Qiu D. Recent advances in improving stability of food emulsion by plant polysaccharides. Food Res. Int. 2020 137 109376 10.1016/j.foodres.2020.109376 33233078
    [Google Scholar]
  90. Wang H. Ziegler G.R. Electrospun nanofiber mats from aqueous starch-pullulan dispersions: Optimizing dispersion properties for electrospinning. Int. J. Biol. Macromol. 2019 133 1168 1174 10.1016/j.ijbiomac.2019.04.199 31054308
    [Google Scholar]
  91. Li H. Zhang Z. Godakanda V.U. Chiu Y.J. Angkawinitwong U. Patel K. Stapleton P.G. de Silva R.M. de Silva K.M.N. Zhu L.M. Williams G.R. The effect of collection substrate on electrospun ciprofloxacin-loaded poly(vinylpyrrolidone) and ethyl cellulose nanofibers as potential wound dressing materials. Mater. Sci. Eng. C 2019 104 109917 10.1016/j.msec.2019.109917 31500044
    [Google Scholar]
  92. Augustine R. Augustine A. Kalarikkal N. Thomas S. Fabrication and characterization of biosilver nanoparticles loaded calcium pectinate nano-micro dual-porous antibacterial wound dressings. Prog. Biomater. 2016 5 3-4 223 235 10.1007/s40204‑016‑0060‑8 27995588
    [Google Scholar]
  93. Hoseyni S.Z. Jafari S.M. Shahiri Tabarestani H. Ghorbani M. Assadpour E. Sabaghi M. Production and characterization of catechin-loaded electrospun nanofibers from Azivash gum- polyvinyl alcohol. Carbohydr. Polym. 2020 235 115979 10.1016/j.carbpol.2020.115979 32122510
    [Google Scholar]
  94. Zhang C. Feng F. Zhang H. Emulsion electrospinning: Fundamentals, food applications and prospects. Trends Food Sci. Technol. 2018 80 175 186 10.1016/j.tifs.2018.08.005
    [Google Scholar]
  95. Gupta A. Kumar R. Upadhyay N.K. Surekha P. Roy P.K. Synthesis, characterization and efficacy of chemically crosslinked PVA hydrogels for dermal wound healing in experimental animals. J. Appl. Polym. Sci. 2009 111 3 1400 1408 10.1002/app.28990
    [Google Scholar]
  96. Koski A. Yim K. Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater. Lett. 2004 58 3-4 493 497 10.1016/S0167‑577X(03)00532‑9
    [Google Scholar]
  97. Lin T. Fang J. Wang H. Cheng T. Wang X. Using chitosan as a thickener for electrospinning dilute PVA solutions to improve fibre uniformity. Nanotechnology 2006 17 15 3718 3723 10.1088/0957‑4484/17/15/017
    [Google Scholar]
  98. Venugopal J.R. Zhang Y. Ramakrishna S. In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane. Artif. Organs 2006 30 6 440 446 10.1111/j.1525‑1594.2006.00239.x 16734595
    [Google Scholar]
  99. Savkovic V. Flämig F. Schneider M. Sülflow K. Loth T. Lohrenz A. Hacker M.C. Schulz-Siegmund M. Simon J.C. Polycaprolactone fiber meshes provide a 3 D environment suitable for cultivation and differentiation of melanocytes from the outer root sheath of hair follicle. J. Biomed. Mater. Res. A 2016 104 1 26 36 10.1002/jbm.a.35536 26126647
    [Google Scholar]
  100. Lorden E.R. Miller K.J. Bashirov L. Ibrahim M.M. Hammett E. Jung Y. Medina M.A. Rastegarpour A. Selim M.A. Leong K.W. Levinson H. Mitigation of hypertrophic scar contraction via an elastomeric biodegradable scaffold. Biomaterials 2015 43 61 70 10.1016/j.biomaterials.2014.12.003 25591962
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708314632241117192456
Loading
/content/journals/raiad/10.2174/0127722708314632241117192456
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: nanomaterials ; angiogenesis ; Wound healing ; nanofibers ; wound care
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test