Skip to content
2000
Volume 19, Issue 3
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716

Abstract

The landscape of wound management has undergone a revolutionary transformation with the integration of nanomaterials-based therapeutics. This abstract explores the profound impact of nanotechnology on wound care, highlighting the unique properties of nanomaterials and their role in advancing therapeutic interventions. Nanomaterials, characterized by their dimensions at the nanoscale, have emerged as versatile tools in wound management. The review focuses on various types of nanomaterials, including nanoparticles, nanofibers, and nanocomposites, which offer tailored solutions for optimizing wound healing processes to facilitate controlled drug delivery, developing a novel approach on account of achieving controlled transport of bioactive agents, such as growth factors, antimicrobial compounds, and anti-inflammatory drugs. This precision in drug delivery enhances therapeutic efficacy, promoting optimal wound healing outcomes. One of the pivotal contributions of nanomaterials to wound management is their engineered antimicrobial properties. Nanoparticles also exhibit effective antibacterial characteristics, addressing concerns related to wound infections. Nanomaterials integrated into dressings and scaffolds enhance mechanical strength and provide a conducive environment for cellular processes, fostering tissue regeneration, angiogenesis, and extracellular matrix synthesis. Nanoparticles with anti-inflammatory and antioxidant functionalities create a balanced microenvironment, reduce chronic inflammation, and promote a pro-regenerative milieu. In conclusion, integrating nanomaterials into wound management strategies represents a paradigm shift in therapeutic approaches.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708314632241117192456
2024-12-04
2026-02-07
Loading full text...

Full text loading...

References

  1. PormohammadA. MonychN.K. GhoshS. TurnerD.L. TurnerR.J. Nanomaterials in wound healing and infection control.Antibiotics202110547310.3390/antibiotics1005047333919072
    [Google Scholar]
  2. FirlarI. AltunbekM. McCarthyC. RamalingamM. Camci-UnalG. Functional hydrogels for treatment of chronic wounds.Gels20228212710.3390/gels802012735200508
    [Google Scholar]
  3. GilaberteY. Prieto-TorresL. PastushenkoI. JuarranzÁ. Anatomy and Function of the Skin.Nanoscience in dermatology.Elsevier201611410.1016/B978‑0‑12‑802926‑8.00001‑X
    [Google Scholar]
  4. BrownT.M. KrishnamurthyK. Histology, hair and follicle.StatPearlsTreasure Island2018
    [Google Scholar]
  5. MontagnaW. The structure and function of skin.Elsevier2012
    [Google Scholar]
  6. EvansK. KimP.J. Overview of treatment of chronic woundsAvailable from https//tinyurl.com/2nfxccj6 2022
  7. CheskoD.M. WilgusT.A. Immune cells in cutaneous wound healing: A review of functional data from animal models.Int. J. Mol. Sci.2022235244410.3390/ijms2305244435269586
    [Google Scholar]
  8. RaziyevaK. KimY. ZharkinbekovZ. KassymbekK. JimiS. SaparovA. Immunology of acute and chronic wound healing.Biomolecules202111570010.3390/biom1105070034066746
    [Google Scholar]
  9. AzariZ. NazarnezhadS. WebsterT.J. HoseiniS.J. Brouki MilanP. BainoF. KargozarS. Stem cell‐mediated angiogenesis in skin tissue engineering and wound healing.Wound. Repair. Regen.202230442143510.1111/wrr.1303335638710
    [Google Scholar]
  10. Las HerasK. IgartuaM. Santos-VizcainoE. HernandezR.M. Chronic wounds: Current status, available strategies and emerging therapeutic solutions.J. Control. Release202032853255010.1016/j.jconrel.2020.09.03932971198
    [Google Scholar]
  11. Mathew-SteinerS.S. RoyS. SenC.K. Collagen in wound healing.Bioengineering2021856310.3390/bioengineering805006334064689
    [Google Scholar]
  12. WilkinsonH.N. HardmanM.J. Wound healing: Cellular mechanisms and pathological outcomes.Open Biol.202010920022310.1098/rsob.20022332993416
    [Google Scholar]
  13. Comino-SanzI.M. López-FrancoM.D. CastroB. Pancorbo-HidalgoP.L. The role of antioxidants on wound healing: A review of the current evidence.J. Clin. Med.20211016355810.3390/jcm1016355834441854
    [Google Scholar]
  14. MoR. ZhangH. XuY. WuX. WangS. DongZ. XiaY. ZhengD. TanQ. Transdermal drug delivery via microneedles to mediate wound microenvironment.Adv. Drug Deliv. Rev.202319511475310.1016/j.addr.2023.11475336828300
    [Google Scholar]
  15. Malone-PovolnyM.J. MaloneyS.E. SchoenfischM.H. Nitric oxide therapy for diabetic wound healing.Adv. Healthc. Mater.2019812180121010.1002/adhm.20180121030645055
    [Google Scholar]
  16. da SilvaL.P. ReisR.L. CorreloV.M. MarquesA.P. Hydrogel-based strategies to advance therapies for chronic skin wounds.Annu. Rev. Biomed. Eng.201921114516910.1146/annurev‑bioeng‑060418‑05242230822099
    [Google Scholar]
  17. YangR. LiuX. RenY. XueW. LiuS. WangP. ZhaoM. XuH. ChiB. Injectable adaptive self-healing hyaluronic acid/poly (γ-glutamic acid) hydrogel for cutaneous wound healing.Acta. Biomater.202112710211510.1016/j.actbio.2021.03.05733813093
    [Google Scholar]
  18. RybkaM. MazurekŁ. KonopM. Beneficial effect of wound dressings containing silver and silver nanoparticles in wound healing—from experimental studies to clinical practice.Life20221316910.3390/life1301006936676019
    [Google Scholar]
  19. GnanasambanthanH. MajiD. Development of a flexible and wearable microelectrode array patch using a screen-printed masking technique for accelerated wound healing.ACS Appl. Electron. Mater.2023584426443610.1021/acsaelm.3c00637
    [Google Scholar]
  20. XianC. ZhangZ. YouX. FangY. WuJ. Nanosized fat emulsion injection modulating local microenvironment promotes angiogenesis in chronic wound healing.Adv. Funct. Mater.20223232220241010.1002/adfm.202202410
    [Google Scholar]
  21. OliveiraA. SimõesS. AscensoA. ReisC.P. Therapeutic advances in wound healing.J. Dermatolog. Treat.202233122210.1080/09546634.2020.173029632056472
    [Google Scholar]
  22. NandhiniS.N. SisubalanN. VijayanA. KarthikeyanC. GnanarajM. GideonD.A.M. JebastinT. VaraprasadK. SadikuR. Recent advances in green synthesized nanoparticles for bactericidal and wound healing applications.Heliyon202392e1312810.1016/j.heliyon.2023.e1312836747553
    [Google Scholar]
  23. ShalabyM.A. AnwarM.M. SaeedH. Nanomaterials for application in wound Healing: current state-of-the-art and future perspectives.J. Polym. Res.20222939110.1007/s10965‑021‑02870‑x
    [Google Scholar]
  24. KwiatkowskaA. DrabikM. LipkoA. GrzeczkowiczA. StachowiakR. MarszalikA. GranickaL.H. Composite membrane dressings system with metallic nanoparticles as an antibacterial factor in wound healing.Membranes202212221510.3390/membranes1202021535207136
    [Google Scholar]
  25. WangW. LuK. YuC. HuangQ. DuY.Z. Nano-drug delivery systems in wound treatment and skin regeneration.J. Nanobiotechnology20191718210.1186/s12951‑019‑0514‑y31291960
    [Google Scholar]
  26. AjithM.P. AswathiM. PriyadarshiniE. RajamaniP. Recent innovations of nanotechnology in water treatment: A comprehensive review.Bioresour. Technol.202134212600010.1016/j.biortech.2021.12600034587582
    [Google Scholar]
  27. ShariatiA. HosseiniS.M. CheginiZ. SeifalianA. ArabestaniM.R. Graphene-based materials for inhibition of wound infection and accelerating wound healing.Biomed. Pharmacother.202315811418410.1016/j.biopha.2022.11418436587554
    [Google Scholar]
  28. ShiY. ZhouM. ZhaoS. LiH. WangW. ChengJ. JinL. WangY. Janus amphiphilic nanofiber membranes synergistically drive antibacterial and anti-inflammatory strategies for skin wound healing.Mater. Des.202322711177810.1016/j.matdes.2023.111778
    [Google Scholar]
  29. SurberN. ArvidssonR. de Fine LichtK. PalmåsK. Implicit values in the recent carbon nanotube debate.NanoEthics20231721010.1007/s11569‑023‑00443‑4
    [Google Scholar]
  30. AsafteiM. LucidiM. CirtoajeC. HolbanA.M. CharitidisC.A. YangF. WuA. StanciuG.A. SağlamÖ. LazarV. ViscaP. StanciuS.G. Fighting bacterial pathogens with carbon nanotubes: Focused review of recent progress.Rsc. Adv20231329196821969410.1039/D3RA01745A37396836
    [Google Scholar]
  31. BolshakovaO. LebedevV. MikhailovaE. ZherebyatevaO. AznabaevaL. BurdakovV. KulvelisY. YevlampievaN. MironovA. MiroshnichenkoI. SarantsevaS. Fullerenes on a nanodiamond platform demonstrate antibacterial activity with low cytotoxicity.Pharmaceutics2023157198410.3390/pharmaceutics1507198437514170
    [Google Scholar]
  32. XieX. ZhangM. LiY. LeiY. SunJ. SattorovN. MakhmudovK.B. WangJ. NIR as a “trigger switch” for situ distinguish superbacteria and photothermal synergistic antibacterial treatment with Ag2O particles/lignosulfonate/cationic guar gum hybrid hydrogel.Int. J. Biol. Macromol.202323212334010.1016/j.ijbiomac.2023.12334036682659
    [Google Scholar]
  33. XuJ. ChowE.K.H. Biomedical applications of nanodiamonds: From drug-delivery to diagnostics.SLAS Technol.202328421422210.1016/j.slast.2023.03.00737004790
    [Google Scholar]
  34. WangX. SangD. ZouL. GeS. YaoY. FanJ. WangQ. Multiple bioimaging applications based on the excellent properties of Nanodiamond: A review.Molecules20232810406310.3390/molecules2810406337241802
    [Google Scholar]
  35. LiY. XuC. LeiC. The delivery and activation of growth factors using nanomaterials for bone repair.Pharmaceutics2023153101710.3390/pharmaceutics1503101736986877
    [Google Scholar]
  36. KolanthaiE. FuY. KumarU. BabuB. VenkatesanA.K. LiechtyK.W. SealS. Nanoparticle mediated RNA delivery for wound healing.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2022142e174110.1002/wnan.174134369096
    [Google Scholar]
  37. PaladiniF. PolliniM. Antimicrobial silver nanoparticles for wound healing application: Progress and future trends.Materials20191216254010.3390/ma1216254031404974
    [Google Scholar]
  38. SearleT. AliF.R. Al-NiaimiF. Zinc in dermatology.J. Dermatolog. Treat.20223352455245810.1080/09546634.2022.206228235437093
    [Google Scholar]
  39. BorkowG. MelamedE. Copper, an abandoned player returning to the wound healing battleRecent Advances in Wound HealingIntechOpen2021
    [Google Scholar]
  40. KrishnaswamiV. RajuN.S. AlagarsamyS. KandasamyR. Novel Nanocarriers for the Treatment of Wound Healing.Curr. Pharm. Des.202026364591460010.2174/138161282666620070120343232611292
    [Google Scholar]
  41. Anaya-EsparzaL.M. Ruvalcaba-GómezJ.M. Maytorena-VerdugoC.I. González-SilvaN. Romero-ToledoR. Aguilera-AguirreS. Pérez-LariosA. Montalvo-GonzálezE. Chitosan-TiO2: A versatile hybrid composite.Materials202013481110.3390/ma1304081132053948
    [Google Scholar]
  42. XuL. WangY.Y. HuangJ. ChenC.Y. WangZ.X. XieH. Silver nanoparticles: Synthesis, medical applications and biosafety.Theranostics202010208996903110.7150/thno.4541332802176
    [Google Scholar]
  43. MonikaP. ChandraprabhaM.N. RangarajanA. WaikerP.V. Chidambara MurthyK.N. Challenges in healing wound: Role of complementary and alternative medicine.Front. Nutr.2022879189910.3389/fnut.2021.79189935127787
    [Google Scholar]
  44. GuanT. LiJ. ChenC. LiuY. Self‐assembling peptide‐based hydrogels for wound tissue repair.Adv. Sci. (Weinh.)2022910210416510.1002/advs.20210416535142093
    [Google Scholar]
  45. Diaz-GomezL. Gonzalez-PradaI. MillanR. Da Silva-CandalA. Bugallo-CasalA. CamposF. ConcheiroA. Alvarez-LorenzoC. 3D printed carboxymethyl cellulose scaffolds for autologous growth factors delivery in wound healing.Carbohydr. Polym.202227811892410.1016/j.carbpol.2021.11892434973742
    [Google Scholar]
  46. MashaghiS. JadidiT. KoenderinkG. MashaghiA. Lipid Nanotechnology.Int. J. Mol. Sci.20131424242428210.3390/ijms1402424223429269
    [Google Scholar]
  47. NaseriN. ValizadehH. Zakeri-MilaniP. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application.Adv. Pharm. Bull.20155330531310.15171/apb.2015.04326504751
    [Google Scholar]
  48. ArantesV.T. FaracoA.A.G. FerreiraF.B. OliveiraC.A. Martins-SantosE. Cassini-VieiraP. BarcelosL.S. FerreiraL.A.M. GoulartG.A.C. Retinoic acid-loaded solid lipid nanoparticles surrounded by chitosan film support diabetic wound healing in in vivo study.Colloids Surf. B Biointerfaces202018811074910.1016/j.colsurfb.2019.11074931927466
    [Google Scholar]
  49. FiorentiniF. SuaratoG. GrisoliP. ZychA. BertorelliR. AthanassiouA. Plant-based biocomposite films as potential antibacterial patches for skin wound healing.Eur. Polym. J.202115011041410.1016/j.eurpolymj.2021.110414
    [Google Scholar]
  50. MacedoA.S. MendesF. FilipeP. ReisS. FonteP. Nanocarrier-mediated topical insulin delivery for wound healing.Materials20211415425710.3390/ma1415425734361451
    [Google Scholar]
  51. ElhassanE. DevnarainN. MohammedM. GovenderT. OmoloC.A. Engineering hybrid nanosystems for efficient and targeted delivery against bacterial infections.J. Control. Release202235159862210.1016/j.jconrel.2022.09.05236183972
    [Google Scholar]
  52. MedinaD.X. ChungE.P. BowserR. SirianniR.W. Lipid and polymer blended polyester nanoparticles loaded with adapalene for activation of retinoid signaling in the CNS following intravenous administration.J. Drug Deliv. Sci. Technol.20195292793310.1016/j.jddst.2019.04.013
    [Google Scholar]
  53. TongW.Y. TanW.N. Kamarul AziziM.A. LeongC.R. El AzabI.H. LimJ.W. MahmoudM.H.H. DailinD.J. IbrahimM.M. ChuahL.F. Nanoparticle-laden contact lens for controlled release of vancomycin with enhanced antibiotic efficacy.Chemosphere202333813949210.1016/j.chemosphere.2023.13949237451643
    [Google Scholar]
  54. Garay-JimenezJ.C. GergeresD. YoungA. LimD.V. TurosE. Physical properties and biological activity of poly(butyl acrylate–styrene) nanoparticle emulsions prepared with conventional and polymerizable surfactants.Nanomedicine20095444345110.1016/j.nano.2009.01.01519523413
    [Google Scholar]
  55. SunY. BhattacharjeeA. ReynoldsM. LiY.V. Synthesis and characterizations of gentamicin-loaded poly-lactic-co-glycolic (PLGA) nanoparticles.J. Nanopart. Res.202123815510.1007/s11051‑021‑05293‑3
    [Google Scholar]
  56. AhmedR. AugustineR. ChaudhryM. AkhtarU.A. ZahidA.A. TariqM. FalahatiM. AhmadI.S. HasanA. Nitric oxide-releasing biomaterials for promoting wound healing in impaired diabetic wounds: State of the art and recent trends.Biomed. Pharmacother.202214911270710.1016/j.biopha.2022.11270735303565
    [Google Scholar]
  57. PooleR.K. Flavohaemoglobin: The pre-eminent nitric oxide–detoxifying machine of microorganismsF1000Res92020F1000
    [Google Scholar]
  58. EngelsmanA. F. KromB. P. van DamG. M. BusscherH. J. PloegR. J. van der MeiH. C. Antimicrobial effects of no-releasing poly (ethylene vinylacetate) coating on soft-tissue implants in vitro and in vivo Acta. Biomater.2009561905
    [Google Scholar]
  59. RongF. TangY. WangT. FengT. SongJ. LiP. HuangW. Nitric oxide-releasing polymeric materials for antimicrobial applications: A review.Antioxidants201981155610.3390/antiox811055631731704
    [Google Scholar]
  60. PierettiJ.C. SeabraA.B. Nitric oxide-releasing nanomaterials and skin infectionsAntioxidants2020855610.1007/978‑3‑030‑35147‑2_1
    [Google Scholar]
  61. YadavE. YadavP. VermaA. Amelioration of full thickness dermal wounds by topical application of biofabricated zinc oxide and iron oxide nano-ointment in albino Wistar rats.J. Drug Deliv. Sci. Technol.20216610283310.1016/j.jddst.2021.102833
    [Google Scholar]
  62. MakarovV.V LoveA.J SinitsynaO.V Green nanotechnologies: Synthesis of metal nanoparticles using plants.J. Nat.2014613544
    [Google Scholar]
  63. LakkimV. ReddyM.C. PallavaliR.R. ReddyK.R. ReddyC.V. Inamuddin BilgramiA.L. LomadaD. Green synthesis of silver nanoparticles and evaluation of their antibacterial activity against multidrug-resistant bacteria and wound healing efficacy using a murine model.Antibiotics202091290210.3390/antibiotics912090233322213
    [Google Scholar]
  64. Emam-DjomehZ. HajikhaniM. Chitosan/poly (ethylene glycol)/ZnO bionanocomposite for wound healing application.Biodegradable and Environmental Applications of Bionanocomposites.Springer20223165
    [Google Scholar]
  65. EhtesabiH. FayazM. Hosseini-DoabiF. RezaeiP. The application of green synthesis nanoparticles in wound healing: A review.Mater. Today Sustain20232110027210.1016/j.mtsust.2022.100272
    [Google Scholar]
  66. AkhmetovaA. HeinzA. Electrospinning proteins for wound healing purposes: Opportunities and challenges.Pharmaceutics2020131410.3390/pharmaceutics1301000433374930
    [Google Scholar]
  67. MaK. ChanC.K. LiaoS. HwangW.Y.K. FengQ. RamakrishnaS. Electrospun nanofiber scaffolds for rapid and rich capture of bone marrow-derived hematopoietic stem cells.Biomaterials200829132096210310.1016/j.biomaterials.2008.01.02418289666
    [Google Scholar]
  68. KattiD.S. RobinsonK.W. KoF.K. LaurencinC.T. Bioresorbable nanofiber‐based systems for wound healing and drug delivery: Optimization of fabrication parameters.J. Biomed. Mater. Res. B Appl. Biomater.200470B228629610.1002/jbm.b.3004115264311
    [Google Scholar]
  69. VeleirinhoB. BertiF.V. DiasP.F. MaraschinM. Ribeiro-do-ValleR.M. Lopes-da-SilvaJ.A. Manipulation of chemical composition and architecture of non-biodegradable poly(ethylene terephthalate)/chitosan fibrous scaffolds and their effects on L929 cell behavior.Mater. Sci. Eng. C2013331374610.1016/j.msec.2012.07.04725428039
    [Google Scholar]
  70. PassalacquaT.G. DutraL.A. de AlmeidaL. VelásquezA.M.A. TorresF.A.E. YamasakiP.R. dos SantosM.B. RegasiniL.O. MichelsP.A.M. BolzaniV.S. GraminhaM.A.S. Synthesis and evaluation of novel prenylated chalcone derivatives as anti-leishmanial and anti-trypanosomal compounds.Bioorg. Med. Chem. Lett.201525163342334510.1016/j.bmcl.2015.05.07226055530
    [Google Scholar]
  71. BacakovaM. MusilkovaJ. RiedelT. StranskaD. BryndaE. BacakovaL. ZaloudkovaM. The potential applications of fibrin-coated electrospun polylactide nanofibers in skin tissue engineering.Int. J. Nanomedicine20161177178910.2147/IJN.S9931726955273
    [Google Scholar]
  72. Rezvani GhomiE. KhosraviF. NeisianyR.E. ShakibaM. ZareM. LakshminarayananR. ChellappanV. AbdoussM. RamakrishnaS. Advances in electrospinning of aligned nanofiber scaffolds used for wound dressings.Curr. Opin. Biomed. Eng.20222210039310.1016/j.cobme.2022.100393
    [Google Scholar]
  73. LawJ.X. LiauL.L. SaimA. YangY. IdrusR. Electrospun collagen nanofibers and their applications in skin tissue engineering.Tissue Eng. Regen. Med.201714669971810.1007/s13770‑017‑0075‑930603521
    [Google Scholar]
  74. KaplanD. AdamsW.W. FarmerB. VineyC. Silk: Biology, structure, properties, and genetics.Silk PolymersACS Symposium Series; American Chemical SocietyWashington1994
    [Google Scholar]
  75. RibeiroT.G. FrancaJ.R. FuscaldiL.L. SantosM.L. DuarteM.C. LageP.S. MartinsV.T. CostaL.E. FernandesS.O. CardosoV.N. CastilhoR.O. SotoM. TavaresC.A. FaracoA.A. CoelhoE.A. Chávez-FumagalliM.A. An optimized nanoparticle delivery system based on chitosan and chondroitin sulfate molecules reduces the toxicity of amphotericin B and is effective in treating tegumentary leishmaniasis.Int. J. Nanomedicine201495341535325429219
    [Google Scholar]
  76. HaoY. ZhaoW. ZhangL. ZengX. SunZ. ZhangD. ShenP. LiZ. HanY. LiP. ZhouQ. Bio-multifunctional alginate/chitosan/fucoidan sponges with enhanced angiogenesis and hair follicle regeneration for promoting full-thickness wound healing.Mater. Des.202019310886310.1016/j.matdes.2020.108863
    [Google Scholar]
  77. SummaM. RussoD. PennaI. MargaroliN. BayerI.S. BandieraT. AthanassiouA. BertorelliR. A biocompatible sodium alginate/povidone iodine film enhances wound healing.Eur. J. Pharm. Biopharm.2018122172410.1016/j.ejpb.2017.10.00429017952
    [Google Scholar]
  78. ShalumonK.T. AnulekhaK.H. NairS.V. NairS.V. ChennazhiK.P. JayakumarR. Corrigendum to Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressingsInt. J. Biol. Macromol.2019134121810.1016/j.ijbiomac.2019.04.15231076181
    [Google Scholar]
  79. TangY. LanX. LiangC. ZhongZ. XieR. ZhouY. MiaoX. WangH. WangW. Honey loaded alginate/PVA nanofibrous membrane as potential bioactive wound dressing.Carbohydr. Polym.201921911312010.1016/j.carbpol.2019.05.00431151507
    [Google Scholar]
  80. García-MorenoP.J. ÖzdemirN. StephansenK. MateiuR.V. EchegoyenY. LagaronJ.M. ChronakisI.S. JacobsenC. Development of carbohydrate-based nano-microstructures loaded with fish oil by using electrohydrodynamic processing.Food. Hydrocoll.20176927328510.1016/j.foodhyd.2017.02.013
    [Google Scholar]
  81. Aguilar-VázquezG. Loarca-PiñaG. Figueroa-CárdenasJ.D. MendozaS. Electrospun fibers from blends of pea (Pisum sativum) protein and pullulan.Food. Hydrocoll20188317318110.1016/j.foodhyd.2018.04.051
    [Google Scholar]
  82. WangH. GongX. GuoX. LiuC. FanY.Y. ZhangJ. NiuB. LiW. Characterization, release, and antioxidant activity of curcumin-loaded sodium alginate/ZnO hydrogel beads.Int. J. Biol. Macromol.20191211118112510.1016/j.ijbiomac.2018.10.12130340010
    [Google Scholar]
  83. HamediS. ShojaosadatiS.A. NajafiV. AlizadehV. A novel double-network antibacterial hydrogel based on aminated bacterial cellulose and schizophyllan.Carbohydr. Polym.202022911538310.1016/j.carbpol.2019.11538331826529
    [Google Scholar]
  84. MousaviaslS. SalehT. ShojaosadatiS.A. BoddohiS. Synthesis and characterization of schizophyllan nanogels via inverse emulsion using biobased materials.Int. J. Biol. Macromol.201812046847410.1016/j.ijbiomac.2018.08.11930153460
    [Google Scholar]
  85. VashisthP. SrivastavaA.K. NagarH. RaghuwanshiN. SharanS. NikhilK. PruthiP.A. SinghR.P. RoyP. PruthiV. Drug functionalized microbial polysaccharide based nanofibers as transdermal substitute.Nanomedicine20161251375138510.1016/j.nano.2016.01.01926964481
    [Google Scholar]
  86. McCarthyR.R. UllahM.W. BoothP. PeiE. YangG. The use of bacterial polysaccharides in bioprinting.Biotechnol. Adv.201937810744810.1016/j.biotechadv.2019.10744831513840
    [Google Scholar]
  87. Innocenti MaliniR. LesageJ. ToncelliC. FortunatoG. RossiR.M. SpanoF. Crosslinking dextran electrospun nanofibers via borate chemistry: Proof of concept for wound patches.Eur. Polym. J.201911027628210.1016/j.eurpolymj.2018.11.017
    [Google Scholar]
  88. FaralliA. ShekarforoushE. AjalloueianF. MendesA.C. ChronakisI.S. In vitro permeability enhancement of curcumin across Caco-2 cells monolayers using electrospun xanthan-chitosan nanofibers.Carbohydr. Polym.2019206384710.1016/j.carbpol.2018.10.07330553335
    [Google Scholar]
  89. ShaoP. FengJ. SunP. XiangN. LuB. QiuD. Recent advances in improving stability of food emulsion by plant polysaccharides.Food Res. Int.202013710937610.1016/j.foodres.2020.10937633233078
    [Google Scholar]
  90. WangH. ZieglerG.R. Electrospun nanofiber mats from aqueous starch-pullulan dispersions: Optimizing dispersion properties for electrospinning.Int. J. Biol. Macromol.20191331168117410.1016/j.ijbiomac.2019.04.19931054308
    [Google Scholar]
  91. LiH. ZhangZ. GodakandaV.U. ChiuY.J. AngkawinitwongU. PatelK. StapletonP.G. de SilvaR.M. de SilvaK.M.N. ZhuL.M. WilliamsG.R. The effect of collection substrate on electrospun ciprofloxacin-loaded poly(vinylpyrrolidone) and ethyl cellulose nanofibers as potential wound dressing materials.Mater. Sci. Eng. C201910410991710.1016/j.msec.2019.10991731500044
    [Google Scholar]
  92. AugustineR. AugustineA. KalarikkalN. ThomasS. Fabrication and characterization of biosilver nanoparticles loaded calcium pectinate nano-micro dual-porous antibacterial wound dressings.Prog. Biomater.201653-422323510.1007/s40204‑016‑0060‑827995588
    [Google Scholar]
  93. HoseyniS.Z. JafariS.M. Shahiri TabarestaniH. GhorbaniM. AssadpourE. SabaghiM. Production and characterization of catechin-loaded electrospun nanofibers from Azivash gum- polyvinyl alcohol.Carbohydr. Polym.202023511597910.1016/j.carbpol.2020.11597932122510
    [Google Scholar]
  94. ZhangC. FengF. ZhangH. Emulsion electrospinning: Fundamentals, food applications and prospects.Trends Food Sci. Technol.20188017518610.1016/j.tifs.2018.08.005
    [Google Scholar]
  95. GuptaA. KumarR. UpadhyayN.K. SurekhaP. RoyP.K. Synthesis, characterization and efficacy of chemically crosslinked PVA hydrogels for dermal wound healing in experimental animals.J. Appl. Polym. Sci.200911131400140810.1002/app.28990
    [Google Scholar]
  96. KoskiA. YimK. ShivkumarS. Effect of molecular weight on fibrous PVA produced by electrospinning.Mater. Lett.2004583-449349710.1016/S0167‑577X(03)00532‑9
    [Google Scholar]
  97. LinT. FangJ. WangH. ChengT. WangX. Using chitosan as a thickener for electrospinning dilute PVA solutions to improve fibre uniformity.Nanotechnology200617153718372310.1088/0957‑4484/17/15/017
    [Google Scholar]
  98. VenugopalJ.R. ZhangY. RamakrishnaS. In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane.Artif. Organs200630644044610.1111/j.1525‑1594.2006.00239.x16734595
    [Google Scholar]
  99. SavkovicV. FlämigF. SchneiderM. SülflowK. LothT. LohrenzA. HackerM.C. Schulz-SiegmundM. SimonJ.C. Polycaprolactone fiber meshes provide a 3 D environment suitable for cultivation and differentiation of melanocytes from the outer root sheath of hair follicle.J. Biomed. Mater. Res. A20161041263610.1002/jbm.a.3553626126647
    [Google Scholar]
  100. LordenE.R. MillerK.J. BashirovL. IbrahimM.M. HammettE. JungY. MedinaM.A. RastegarpourA. SelimM.A. LeongK.W. LevinsonH. Mitigation of hypertrophic scar contraction via an elastomeric biodegradable scaffold.Biomaterials201543617010.1016/j.biomaterials.2014.12.00325591962
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708314632241117192456
Loading
/content/journals/raiad/10.2174/0127722708314632241117192456
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): angiogenesis; nanofibers; nanomaterials; nanoparticles; wound care; Wound healing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test