Skip to content
2000
image of Cyclooxygenases: From Prostaglandin Synthesis to Innovative Therapies for Inflammation

Abstract

Cyclooxygenases are enzymes involved in prostaglandin synthesis, a part of the inflammatory process. The most frequently applied anti-inflammatory drugs are NSAIDs; however, these medications exhibit very serious side effects, and often, reduce production or are withdrawn from the market. Recently, researchers were focused on finding new, safe, selective COX-2 inhibitors with safety features. This paper reviews cyclooxygenase enzyme malfunction-related diseases, current therapies and new drug discovery opportunities. Prostaglandin-endoperoxide synthases are enzymes involved in the synthesis of prostanoid peptides through the oxidation of nitric oxide and pyruvate phosphate. They are participating factors for various physiological and pathological processes, which include disorders of the oral tissues such as periodontitis, pulpitis, and oral cancer. This paper is a review of some pharmaceutical products in terms of history, efficiency, and possible side effects as inhibitors of the Cyclooxygenase enzyme. The analysis concludes that more recent Cox inhibitors, such as dietary modifications and natural supplements, hold promise for safer and more efficient treatment of diseases involving Cox enzyme function.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708297531240919105551
2024-10-03
2024-11-26
Loading full text...

Full text loading...

References

  1. Agarwal S. Reddy G.V. Reddanna P. Eicosanoids in inflammation and cancer: The role of COX-2. Expert Rev. Clin. Immunol. 2009 5 2 145 165 10.1586/1744666X.5.2.145 20477063
    [Google Scholar]
  2. Mitchell J.A. Kirkby N.S. Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system. Br. J. Pharmacol. 2019 176 8 1038 1050 10.1111/bph.14167 29468666
    [Google Scholar]
  3. Menon M.P. Hua K.F. The long non-coding RNAs: Paramount regulators of the NLRP3 inflammasome. Front. Immunol. 2020 11 569524 10.3389/fimmu.2020.569524 33101288
    [Google Scholar]
  4. Yahfoufi N. Alsadi N. Jambi M. Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018 10 11 1618 10.3390/nu10111618 30400131
    [Google Scholar]
  5. do Prado F.G. Pagnoncelli M.G.B. de Melo Pereira G.V. Karp S.G. Soccol C.R. Fermented soy products and their potential health benefits: A review. Microorganisms 2022 10 8 1606 10.3390/microorganisms10081606 36014024
    [Google Scholar]
  6. Dhankhar S. Mujwar S. Garg N. Chauhan S. Saini M. Sharma P. Kumar S. Kumar Sharma S. Kamal M.A. Rani N. Artificial Intelligence in The Management of Neurodegenerative Disorders. CNS Neurol. Disord. Drug Targets 2024 23 8 931 940 10.2174/0118715273266095231009092603 37861051
    [Google Scholar]
  7. Al Muftyr M. Development and Validation Method of Analysis of Etoricoxib and Paracetamol in Effectiveness Combination in Tablet Dosage Form. Jordan University of Petra 2021
    [Google Scholar]
  8. Malik S. Muhammad K. Waheed Y. Nanotechnology: A revolution in modern industry. Molecules 2023 28 2 661 10.3390/molecules28020661 36677717
    [Google Scholar]
  9. Deng Z. Hassan S. Rafiq M. Li H. He Y. Cai Y. Kang X. Liu Z. Yan T. Pharmacological activity of eriodictyol: The major natural polyphenolic flavanone. Evid. Based Complement. Alternat. Med. 2020 2020 1 6681352 10.1155/2020/6681352 33414838
    [Google Scholar]
  10. Schunck W.H. Konkel A. Fischer R. Weylandt K.H. Therapeutic potential of omega-3 fatty acid-derived epoxyeicosanoids in cardiovascular and inflammatory diseases. Pharmacol. Ther. 2018 183 177 204 10.1016/j.pharmthera.2017.10.016 29080699
    [Google Scholar]
  11. Rahman M. Beg S. Verma A. Al Abbasi F.A. Anwar F. Saini S. Akhter S. Kumar V. Phytoconstituents as pharmacotherapeutics in rheumatoid arthritis: Challenges and scope of nano/submicromedicine in its effective delivery. J. Pharm. Pharmacol. 2016 69 1 1 14 10.1111/jphp.12661 27774648
    [Google Scholar]
  12. Patwardhan B. Warude D. Pushpangadan P. Bhatt N. Ayurveda and traditional Chinese medicine: A comparative overview. Evid. Based Complement. Alternat. Med. 2005 2 4 465 473 10.1093/ecam/neh140 16322803
    [Google Scholar]
  13. Faki Y. Er A. Different chemical structures and physiological/pathological roles of cyclooxygenases. Rambam Maimonides Med. J. 2021 12 1 e0003 10.5041/RMMJ.10426 33245277
    [Google Scholar]
  14. Vodovotz Y. An G. Translational systems biology: Concepts and practice for the future of biomedical research. Amsterdam Elsevier 2014
    [Google Scholar]
  15. Obaid G. Broekgaarden M. Bulin A.L. Huang H.C. Kuriakose J. Liu J. Hasan T. Photonanomedicine: A convergence of photodynamic therapy and nanotechnology. Nanoscale 2016 8 25 12471 12503 10.1039/C5NR08691D 27328309
    [Google Scholar]
  16. Greenhough A. Smartt H.J.M. Moore A.E. Roberts H.R. Williams A.C. Paraskeva C. Kaidi A. The COX-2/PGE2 pathway: Key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 2009 30 3 377 386 10.1093/carcin/bgp014 19136477
    [Google Scholar]
  17. Stack E. DuBois R.N. Regulation of cyclo-oxygenase-2. Best Pract. Res. Clin. Gastroenterol. 2001 15 5 787 800 10.1053/bega.2001.0235 11566041
    [Google Scholar]
  18. Flower R.J. The development of COX2 inhibitors. Nat. Rev. Drug Discov. 2003 2 3 179 191 10.1038/nrd1034 12612644
    [Google Scholar]
  19. Roberts S.J. van Gastel N. Carmeliet G. Luyten F.P. Uncovering the periosteum for skeletal regeneration: The stem cell that lies beneath. Bone 2015 70 10 18 10.1016/j.bone.2014.08.007 25193160
    [Google Scholar]
  20. Dong L. Malkowski M.G. Defining the Conformational Ensembles Associated with Ligand Binding to Cyclooxygenase-2. Biochemistry 2023 62 21 3134 3144 10.1021/acs.biochem.3c00341 37852627
    [Google Scholar]
  21. Miciaccia M. Belviso B.D. Iaselli M. Cingolani G. Ferorelli S. Cappellari M. Loguercio Polosa P. Perrone M.G. Caliandro R. Scilimati A. Three-dimensional structure of human cyclooxygenase (hCOX)-1. Sci. Rep. 2021 11 1 4312 10.1038/s41598‑021‑83438‑z 33619313
    [Google Scholar]
  22. Markworth J.F. Cameron-Smith D. Prostaglandin F 2α stimulates PI3K/ERK/mTOR signaling and skeletal myotube hypertrophy. Am. J. Physiol. Cell Physiol. 2011 300 3 C671 C682 10.1152/ajpcell.00549.2009 21191105
    [Google Scholar]
  23. Iñiguez M.A. Cacheiro-Llaguno C. Cuesta N. Díaz-Muñoz M.D. Fresno M. Prostanoid function and cardiovascular disease. Arch. Physiol. Biochem. 2008 114 3 201 209 10.1080/13813450802180882 18629685
    [Google Scholar]
  24. DuBois R.N. Abramson S.B. Crofford L. Gupta R.A. Simon L.S. Putte L.B.A. Lipsky P.E. Cyclooxygenase in biology and disease. FASEB J. 1998 12 12 1063 1073 10.1096/fasebj.12.12.1063 9737710
    [Google Scholar]
  25. Barrera S.D. Cepeda L.J.B. Parras J.E.C. The importance of cyclooxigenase in dentistry. Braz. J. Oral Sci. 2024 23 e241181 10.20396/bjos.v23i00.8671181
    [Google Scholar]
  26. Rumzhum N.N. Ammit A.J. Cyclooxygenase 2: Its regulation, role and impact in airway inflammation. Clin. Exp. Allergy 2016 46 3 397 410 10.1111/cea.12697 26685098
    [Google Scholar]
  27. Harizi H. Epigenetic Regulations of Inflammatory Cyclooxygenase‐Derived Prostanoids: Molecular Basis and Pathophysiological Consequences. Curr. Pharm. Des. 2004 10 6 635 646 14965326
    [Google Scholar]
  28. Misra S. Sharma K. COX-2 signaling and cancer: New players in old arena. Curr. Drug Targets 2014 15 3 347 359 10.2174/1389450115666140127102915 24467618
    [Google Scholar]
  29. Rahman S. Malcoun A. Nonsteroidal antiinflammatory drugs, cyclooxygenase-2, and the kidneys. Prim. Care 2014 41 4 803 821 10.1016/j.pop.2014.09.001 25439535
    [Google Scholar]
  30. Bindu S. Mazumder S. Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020 180 114147 10.1016/j.bcp.2020.114147 32653589
    [Google Scholar]
  31. Strillacci A. RNAi-based strategies for cyclooxygenase-2 inhibition in cancer. J Biomed Biotechnol. 2010 2010 828045
    [Google Scholar]
  32. Stables M.J. Gilroy D.W. Old and new generation lipid mediators in acute inflammation and resolution. Prog. Lipid Res. 2011 50 1 35 51 10.1016/j.plipres.2010.07.005 20655950
    [Google Scholar]
  33. Jeffrey A. Gardhouse S. Kleinhenz M. Hocker S.E. Weeder M. Montgomery S.R. Zhang Y. Porting A. Rooney T. Examination of the pharmacokinetics and differential inhibition of cyclooxygenase isoenzymes in New Zealand white rabbits (Oryctolagus cuniculus) by the Non‐Steroidal anti‐inflammatory Robenacoxib. J. Vet. Pharmacol. Ther. 2023 46 2 103 111 10.1111/jvp.13105 36478376
    [Google Scholar]
  34. Sethi G. Shanmugam M.K. Ramachandran L. Kumar A.P. Tergaonkar V. Multifaceted link between cancer and inflammation. Biosci. Rep. 2012 32 1 1 15 10.1042/BSR20100136 21981137
    [Google Scholar]
  35. Squassina A. Manchia M. Manolopoulos V.G. Artac M. Lappa-Manakou C. Karkabouna S. Mitropoulos K. Zompo M.D. Patrinos G.P. Realities and expectations of pharmacogenomics and personalized medicine: Impact of translating genetic knowledge into clinical practice. Pharmacogenomics 2010 11 8 1149 1167 10.2217/pgs.10.97 20712531
    [Google Scholar]
  36. Golubnitschaja O. Costigliola V. EPMA J. 2012 3 1 53 10.1007/s13167‑011‑0137‑3
    [Google Scholar]
  37. Dannhardt G. Kiefer W. Cyclooxygenase inhibitors – current status and future prospects. Eur. J. Med. Chem. 2001 36 2 109 126 10.1016/S0223‑5234(01)01197‑7 11311743
    [Google Scholar]
  38. Grant R.W. Moore A.F. Florez J.C. Genetic architecture of type 2 diabetes:Recent progress and clinical implications. Diabetes Care 2009 32 6 1107 1114 10.2337/dc08‑2171 19460916
    [Google Scholar]
  39. Sharma A. Goel A. Pathogenesis of rheumatoid arthritis and its treatment with anti-inflammatory natural products. Mol. Biol. Rep. 2023 50 5 4687 4706 10.1007/s11033‑023‑08406‑4 37022525
    [Google Scholar]
  40. Moore A.E. Young L.E. Dixon D.A. A common single-nucleotide polymorphism in cyclooxygenase-2 disrupts microRNA-mediated regulation. Oncogene 2012 31 12 1592 1598 10.1038/onc.2011.349 21822307
    [Google Scholar]
  41. Wang J. Wu M.Y. Su H. Lu J. Chen X. Tan J. Lu J.H. iNOS interacts with autophagy receptor p62 and is degraded by autophagy in macrophages. Cells 2019 8 10 1255 10.3390/cells8101255 31618870
    [Google Scholar]
  42. Kumar A. Behl T. Jamwal S. Kaur I. Sood A. Kumar P. Exploring the molecular approach of COX and LOX in Alzheimer’s and Parkinson’s disorder. Mol. Biol. Rep. 2020 47 12 9895 9912 10.1007/s11033‑020‑06033‑x 33263931
    [Google Scholar]
  43. Kharkar P.S. Cancer stem cell (CSC) inhibitors in oncology—a promise for a better therapeutic outcome: State of the art and future perspectives. J. Med. Chem. 2020 63 24 15279 15307 10.1021/acs.jmedchem.0c01336 33325699
    [Google Scholar]
  44. Perrone M.G. Scilimati A. Simone L. Vitale P. Selective COX-1 inhibition: A therapeutic target to be reconsidered. Curr. Med. Chem. 2010 17 32 3769 3805 10.2174/092986710793205408 20858219
    [Google Scholar]
  45. Wieland H.A. Michaelis M. Kirschbaum B.J. Rudolphi K.A. Osteoarthritis — an untreatable disease? Nat. Rev. Drug Discov. 2005 4 4 331 344 10.1038/nrd1693 15803196
    [Google Scholar]
  46. Yang D.H.A. Hsu C.F. Lin C.Y. Guo J.Y. Yu W.C.Y. Chang V.H.S. Krüppel-like factor 10 upregulates the expression of cyclooxygenase 1 and further modulates angiogenesis in endothelial cell and platelet aggregation in gene-deficient mice. Int. J. Biochem. Cell Biol. 2013 45 2 419 428 10.1016/j.biocel.2012.11.007 23178857
    [Google Scholar]
  47. Harwood J.L. Polyunsaturated fatty acids: Conversion to lipid mediators, roles in inflammatory diseases and dietary sources. Int. J. Mol. Sci. 2023 24 10 8838 10.3390/ijms24108838 37240183
    [Google Scholar]
  48. Ahmadi M. Bekeschus S. Weltmann K.D. von Woedtke T. Wende K. Non-steroidal anti-inflammatory drugs: Recent advances in the use of synthetic COX-2 inhibitors. RSC Med. Chem. 2022 13 5 471 496 10.1039/D1MD00280E 35685617
    [Google Scholar]
  49. Jachak S. Cyclooxygenase inhibitory natural products: Current status. Curr. Med. Chem. 2006 13 6 659 678 10.2174/092986706776055698 16529558
    [Google Scholar]
  50. Cozmin M. Lungu I.I. Gutu C. Stefanache A. Duceac L.D. Șoltuzu B.D. Damir D. Calin G. Bogdan Goroftei E.R. Grierosu C. Boev M. Turmeric: From spice to cure. A review of the anti-cancer, radioprotective and anti-inflammatory effects of turmeric sourced compounds. Front. Nutr. 2024 11 1399888 10.3389/fnut.2024.1399888 38863589
    [Google Scholar]
  51. Bischoff-Kont I. Fürst R. Benefits of ginger and its constituent 6-shogaol in inhibiting inflammatory processes. Pharmaceuticals (Basel) 2021 14 6 571 10.3390/ph14060571 34203813
    [Google Scholar]
  52. Durkin L.A. Childs C.E. Calder P.C. Omega-3 polyunsaturated fatty acids and the intestinal epithelium—a review. Foods 2021 10 1 199 10.3390/foods10010199 33478161
    [Google Scholar]
  53. Kawa NI Adra SW Management of obesity and related inflammatory disorders. Inflammation and Obesity: A New and Novel Approach to Manage Obesity and its Consequences Cambridge, Massachusetts Academic Press 2023 10.1016/B978‑0‑323‑90960‑0.00011‑4
    [Google Scholar]
  54. Debjit Bhowmik C. Turmeric: A herbal and traditional medicine. Arch. Appl. Sci. Res. 2009 1 2 86 108
    [Google Scholar]
  55. Peng Y. Ao M. Dong B. Jiang Y. Yu L. Chen Z. Hu C. Xu R. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures. Drug Des. Devel. Ther. 2021 15 4503 4525 10.2147/DDDT.S327378 34754179
    [Google Scholar]
  56. Guimarães M.R. Coimbra L.S. de Aquino S.G. Spolidorio L.C. Kirkwood K.L. Rossa C. Jr Potent anti-inflammatory effects of systemically administered curcumin modulate periodontal disease in vivo. J. Periodontal Res. 2011 46 2 269 279 10.1111/j.1600‑0765.2010.01342.x 21306385
    [Google Scholar]
  57. Memarzia A. Khazdair M.R. Behrouz S. Gholamnezhad Z. Jafarnezhad M. Saadat S. Boskabady M.H. Experimental and clinical reports on anti‐inflammatory, antioxidant, and immunomodulatory effects of Curcuma longa and curcumin, an updated and comprehensive review. Biofactors 2021 47 3 311 350 10.1002/biof.1716 33606322
    [Google Scholar]
  58. Patnaik N. Garden of Life: An Introduction to the Healing Plants of India. New York THORSONS 1993
    [Google Scholar]
  59. Ballester P. Cerdá B. Arcusa R. Marhuenda J. Yamedjeu K. Zafrilla P. Effect of ginger on inflammatory diseases. Molecules 2022 27 21 7223 10.3390/molecules27217223 36364048
    [Google Scholar]
  60. Spolarich A.E. Andrews L. An examination of the bleeding complications associated with herbal supplements, antiplatelet and anticoagulant medications. Association 2007 81 3 67 67 17908423
    [Google Scholar]
  61. Crichton M. Marshall S. Marx W. Isenring E. Lohning A. Therapeutic health effects of ginger ( Zingiber officinale ): Updated narrative review exploring the mechanisms of action. Nutr. Rev. 2023 81 9 1213 1224 10.1093/nutrit/nuac115 36688554
    [Google Scholar]
  62. Krieglstein C.F. Anthoni C. Rijcken E.J.M. Laukötter M. Spiegel H.U. Boden S.E. Schweizer S. Safayhi H. Senninger N. Schürmann G. Acetyl-11-keto-β-boswellic acid, a constituent of a herbal medicine from Boswellia serrata resin, attenuates experimental ileitis. Int. J. Colorectal Dis. 2001 16 2 88 95 10.1007/s003840100292 11355324
    [Google Scholar]
  63. Rentea R. Therapeutic advantages of highly standardized Boswellia extracts. Seman. Sch. 2008
    [Google Scholar]
  64. Solanki N Gupta G Chellappan DK Singh SK Gulati M Paudel KR Hansbro PM Dua K Bhan S Saini M Dureja H Boswellic acids: A critical appraisal of their therapeutic and nutritional benefits in chronic inflammatory diseases. Endocr Metab Immune Disord Drug Targets 2024 24 1 116 129 10.2174/1871530323666230512154634
    [Google Scholar]
  65. Nieto G. Ros G. Castillo J. Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): A review. Medicines (Basel) 2018 5 3 98 10.3390/medicines5030098 30181448
    [Google Scholar]
  66. Gamaro G.D. Suyenaga E. Borsoi M. Lermen J. Pereira P. Ardenghi P. Effect of rosmarinic and caffeic acids on inflammatory and nociception process in rats. ISRN Pharmacol. 2011 2011 1 1 6 10.5402/2011/451682 22084714
    [Google Scholar]
  67. Du G.J. Zhang Z. Wen X.D. Yu C. Calway T. Yuan C.S. Wang C.Z. Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients 2012 4 11 1679 1691 10.3390/nu4111679 23201840
    [Google Scholar]
  68. Hossen I. Kaiqi Z. Hua W. Junsong X. Mingquan H. Yanping C. Epigallocatechin gallate ( EGCG ) inhibits lipopolysaccharide‐induced inflammation in RAW 264.7 macrophage cells via modulating nuclear factor kappa‐light‐chain enhancer of activated B cells ( NF‐ κ B ) signaling pathway. Food Sci. Nutr. 2023 11 8 4634 4650 10.1002/fsn3.3427 37576060
    [Google Scholar]
  69. Shrikanta A. Kumar A. Govindaswamy V. Resveratrol content and antioxidant properties of underutilized fruits. J. Food Sci. Technol. 2015 52 1 383 390 10.1007/s13197‑013‑0993‑z 25593373
    [Google Scholar]
  70. De Sá Coutinho D. Pacheco M.T. Frozza R.L. Bernardi A. Anti-inflammatory effects of resveratrol: Mechanistic insights. Int. J. Mol. Sci. 2018 19 6 1812 10.3390/ijms19061812 29925765
    [Google Scholar]
  71. Peñaloza E.M.C. Chemical composition variability in the Uncaria tomentosa (cat’s claw) wild population. Quim. Nova 2015 38 378 386
    [Google Scholar]
  72. Ribeiro V.P. Arruda C. Abd El-Salam M. Bastos J.K. Brazilian medicinal plants with corroborated anti-inflammatory activities: A review. Pharm. Biol. 2018 56 1 253 268 10.1080/13880209.2018.1454480 29648503
    [Google Scholar]
  73. Fadlalddin N. Association of various concentrations of cat's claw herb (Uncaria tomentosa) on lymphocyte proliferation and nitric oxide expression: An in-vitro study of osteoarthritis. Semam. Sch. 2018
    [Google Scholar]
  74. Sharifi-Rad J. Rayess Y.E. Rizk A.A. Sadaka C. Zgheib R. Zam W. Sestito S. Rapposelli S. Neffe-Skocińska K. Zielińska D. Salehi B. Setzer W.N. Dosoky N.S. Taheri Y. El Beyrouthy M. Martorell M. Ostrander E.A. Suleria H.A.R. Cho W.C. Maroyi A. Martins N. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front. Pharmacol. 2020 11 01021 10.3389/fphar.2020.01021 33041781
    [Google Scholar]
  75. Fernández-Moriano C González-Burgos E Gómez-Serranillos MP Curcumin: Current evidence of its therapeutic potential as a lead candidate for anti-inflammatory drugs-an overview. Discovery and Development of Anti-inflammatory Agents from Natural Products Amsterdam Elsevier 2019
    [Google Scholar]
  76. Dalsasso R.R. Valencia G.A. Monteiro A.R. Impact of drying and extractions processes on the recovery of gingerols and shogaols, the main bioactive compounds of ginger. Food Res. Int. 2022 154 111043 10.1016/j.foodres.2022.111043 35337584
    [Google Scholar]
  77. Terry R. Posadzki P. Watson L.K. Ernst E. The use of ginger (Zingiber officinale) for the treatment of pain: A systematic review of clinical trials. Pain Med. 2011 12 12 1808 1818 10.1111/j.1526‑4637.2011.01261.x 22054010
    [Google Scholar]
  78. Khuwijitjaru P. Sayputikasikorn N. Samuhasaneetoo S. Penroj P. Siriwongwilaichat P. Adachi S. Subcritical water extraction of flavoring and phenolic compounds from cinnamon bark (<i>Cinnamomum zeylanicum</i>). J. Oleo Sci. 2012 61 6 349 355 10.5650/jos.61.349 22687781
    [Google Scholar]
  79. Gunawardena D Govindaraghavan S Münch G Anti-inflammatory properties of cinnamon polyphenols and their monomeric precursors. Polyphenols in Human Health and Disease: Polyphenols in Human Health and Disease Cambridge, Massachusetts Academic press 2014 10.1016/B978‑0‑12‑398456‑2.00030‑X
    [Google Scholar]
  80. Delgado Y. Cassé C. Ferrer-Acosta Y. Suárez-Arroyo I.J. Rodríguez-Zayas J. Torres A. Torres-Martínez Z. Pérez D. González M.J. Velázquez-Aponte R.A. Andino J. Correa-Rodríguez C. Franco J.C. Milán W. Rosario G. Velázquez E. Vega J. Colón J. Batista C. Biomedical effects of the phytonutrients turmeric, garlic, cinnamon, graviola, and oregano: A comprehensive review. Appl. Sci. (Basel) 2021 11 18 8477 10.3390/app11188477
    [Google Scholar]
  81. Nipa Tochi B. Wang Z. - Ying Xu S. Zhang W. Therapeutic application of pineapple protease (bromelain): A review. Pak. J. Nutr. 2008 7 4 513 520 10.3923/pjn.2008.513.520
    [Google Scholar]
  82. Chakraborty A. Mitra S. Tallei T. Tareq A. Nainu F. Cicia D. Dhama K. Emran T. Simal-Gandara J. Capasso R. Bromelain a potential bioactive compound: A comprehensive overview from a pharmacological perspective. Life (Basel) 2021 11 4 317 10.3390/life11040317 33917319
    [Google Scholar]
  83. Pereira I.C. Sátiro Vieira E.E. de Oliveira Torres L.R. Carneiro da Silva F.C. de Castro e Sousa J.M. Torres-Leal F.L. Bromelain supplementation and inflammatory markers: A systematic review of clinical trials. Clin. Nutr. ESPEN 2023 55 116 127 10.1016/j.clnesp.2023.02.028 37202035
    [Google Scholar]
  84. Srivastava J. Gupta S. Extraction, characterization, stability and biological activity of flavonoids isolated from chamomile flowers. Mol. Cell. Pharmacol. 2009 1 3 138 147 10.4255/mcpharmacol.09.18 20098626
    [Google Scholar]
  85. Huang W.Y. Cai Y.Z. Zhang Y. Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention. Nutr. Cancer 2009 62 1 1 20 10.1080/01635580903191585 20043255
    [Google Scholar]
  86. Srivastava J.K. Pandey M. Gupta S. Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity. Life Sci. 2009 85 19-20 663 669 10.1016/j.lfs.2009.09.007 19788894
    [Google Scholar]
  87. Srivastava J.K. Shankar E. Gupta S. Chamomile: A herbal medicine of the past with bright future. Mol. Med. Rep. 2010 3 6 895 901 21132119
    [Google Scholar]
  88. Guarner V. Rubio-Ruiz M.E. Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease. Interdiscip Top Gerontol. 2015 40 99 106 10.1159/000364934
    [Google Scholar]
  89. Dhankhar S. Chauhan S. Mehta D.K. Nitika Saini K. Saini M. Das R. Gupta S. Gautam V. Novel targets for potential therapeutic use in Diabetes mellitus. Diabetol. Metab. Syndr. 2023 15 1 17 10.1186/s13098‑023‑00983‑5 36782201
    [Google Scholar]
  90. Rohilla M. Rishabh Bansal S. Garg A. Dhiman S. Dhankhar S. Saini M. Chauhan S. Alsubaie N. Batiha G.E.S. Albezrah N.K.A. Singh T.G. Discussing pathologic mechanisms of Diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of Diabetic retinopathy. Biomed. Pharmacother. 2023 169 115881 10.1016/j.biopha.2023.115881 37989030
    [Google Scholar]
  91. Saharan R. Kaur J. Dhankhar S. Garg N. Chauhan S. Beniwal S. Sharma H. Hydrogel-based Drug Delivery System in Diabetes Management. Pharm. Nanotechnol. 2024 12 4 289 299 10.2174/0122117385266276230928064235 37818559
    [Google Scholar]
  92. Shek P.N. Shephard R.J. Physical exercise as a human model of limited inflammatory response. Can. J. Physiol. Pharmacol. 1998 76 5 589 597 10.1139/y98‑040 9839086
    [Google Scholar]
  93. Cerqueira É. Marinho D.A. Neiva H.P. Lourenço O. Inflammatory effects of high and moderate intensity exercise—a systematic review. Front. Physiol. 2020 10 1550 10.3389/fphys.2019.01550 31992987
    [Google Scholar]
  94. Munhoz C.D. García-Bueno B. Madrigal J.L.M. Lepsch L.B. Scavone C. Leza J.C. Stress-induced neuroinflammation: Mechanisms and new pharmacological targets. Braz. J. Med. Biol. Res. 2008 41 12 1037 1046 10.1590/S0100‑879X2008001200001 19148364
    [Google Scholar]
  95. Wolever R.Q. Bobinet K.J. McCabe K. Mackenzie E.R. Fekete E. Kusnick C.A. Baime M. Effective and viable mind-body stress reduction in the workplace: A randomized controlled trial. J. Occup. Health Psychol. 2012 17 2 246 258 10.1037/a0027278 22352291
    [Google Scholar]
  96. Haack M. Simpson N. Sethna N. Kaur S. Mullington J. Sleep deficiency and chronic pain: Potential underlying mechanisms and clinical implications. Neuropsychopharmacology 2020 45 1 205 216 10.1038/s41386‑019‑0439‑z 31207606
    [Google Scholar]
  97. Desai S.J. Prickril B. Rasooly A. Mechanisms of phytonutrient modulation of cyclooxygenase-2 (COX-2) and inflammation related to cancer. Nutr. Cancer 2018 70 3 350 375 10.1080/01635581.2018.1446091 29578814
    [Google Scholar]
  98. Perrone M.G. Centonze A. Miciaccia M. Ferorelli S. Scilimati A. Cyclooxygenase inhibition safety and efficacy in inflammation-based psychiatric disorders. Molecules 2020 25 22 5388 10.3390/molecules25225388 33217958
    [Google Scholar]
  99. Sears B. Ricordi C. Anti-inflammatory nutrition as a pharmacological approach to treat obesity. J Obes 2011 2011 431985 10.1155/2011/431985
    [Google Scholar]
  100. Nunes C.R. Barreto Arantes M. Menezes de Faria Pereira S. Leandro da Cruz L. de Souza Passos M. Pereira de Moraes L. Vieira I.J.C. Barros de Oliveira D. Plants as sources of anti-inflammatory agents. Molecules 2020 25 16 3726 10.3390/molecules25163726 32824133
    [Google Scholar]
  101. Ahmed M.S. Khan I.J. Aman S. Chauhan S. Kaur N. Shriwastav S. Goel K. Saini M. Dhankar S. Singh T.G. Dev J. Mujwar S. Phytochemical investigations, in-vitro antioxidant, antimicrobial potential, and in-silico computational docking analysis of Euphorbia milii Des Moul. J. Exp. Biol. Agric. Sci. 2023 11 2 380 393 10.18006/2023.11(2).380.393
    [Google Scholar]
  102. Shahbazi R. Sharifzad F. Bagheri R. Alsadi N. Yasavoli-Sharahi H. Matar C. Anti-inflammatory and immunomodulatory properties of fermented plant foods. Nutrients 2021 13 5 1516 10.3390/nu13051516 33946303
    [Google Scholar]
  103. Nigam D. Yadav R. Tiwari U. Omega-3 fatty acids and its role in human health. Functional Food and Human Health Cham Springer 2018 10.1007/978‑981‑13‑1123‑9_9
    [Google Scholar]
  104. Fu Y. Associations among dietary omega-3 polyunsaturated fatty acids, the gut microbiota, and intestinal immunity. Mediators Inflamm. 2021 2021 8879227 10.1155/2021/8879227
    [Google Scholar]
  105. Wall R. Ross R.P. Fitzgerald G.F. Stanton C. Fatty acids from fish: The anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Rev. 2010 68 5 280 289 10.1111/j.1753‑4887.2010.00287.x 20500789
    [Google Scholar]
  106. Badri W. Miladi K. Nazari Q.A. Greige-Gerges H. Fessi H. Elaissari A. Encapsulation of NSAIDs for inflammation management: Overview, progress, challenges and prospects. Int. J. Pharm. 2016 515 1-2 757 773 10.1016/j.ijpharm.2016.11.002 27829170
    [Google Scholar]
  107. Häuser W. Perrot S. Clauw D.J. Fitzcharles M.A. Unravelling fibromyalgia—steps toward individualized management. J. Pain 2018 19 2 125 134 10.1016/j.jpain.2017.08.009 28943233
    [Google Scholar]
  108. Narsinghani T. Sharma R. Lead optimization on conventional non-steroidal anti-inflammatory drugs: An approach to reduce gastrointestinal toxicity. Chem. Biol. Drug Des. 2014 84 1 1 23 10.1111/cbdd.12292 24460671
    [Google Scholar]
  109. Morphy R. Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem. 2005 48 21 6523 6543 10.1021/jm058225d 16220969
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708297531240919105551
Loading
/content/journals/raiad/10.2174/0127722708297531240919105551
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test